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Preface

Graphs are usually represented as geometric objects drawn in the plane, con-
sisting of nodes and curves connecting them. The main message of this book is that
such a representation is not merely a help of visualizing the graph, but an impor-
tant mathematical tool. It is obvious that this geometry is crucial in engineering, if
you want to understand rigidity of frameworks and mobility of mechanisms. But
even if there is no geometry directly connected to the graph-theoretic problem, a
well-chosen geometric embedding has mathematical meaning and applications in
proofs and algorithms. This thought has emerged in the 1970’s, and I found it
quite fruitful: Among its first applications, it lead to a classification result in the
theory of node-coverings, to the theory of orthogonal representations, and through
this, to several combinatorial applications of semidefinite optimization.

I have given quite a few courses and lectures about the fast expanding theory
of geometric representations of graphs. In 2014, I gave an advanced course on
this topic at the Eidgenossische Technische Hochschule in Zurich, and the interest
and active participation of the audience, faculty, postdocs and graduate students
provided great inspiration. I am most grateful for the hospitality of ETH.

By that time, I had decided that it is worthwhile to merge my handouts and
lecture notes about this general topic into a book. This took quite some time;
partly, because other duties limited the time I could spend on this project, but
also because I kept recognizing common concepts that extended through several
seemingly unrelated topics, and holding, I hope, the material better together (for
example, randomization, non-degeneracy and duality). Many new results and new
applications of the topic have also been emerging, even outside mathematics, like in
statistical and quantum physics and computer science (learning theory). At some
point I had to decide to round things up and publish this book.

xiii
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CHAPTER 1

Why are Geometric Representations Interesting?

To represent a graph geometrically is a natural goal in itself, since it provides
visual access to the abstract structure of the graph. But, in addition, it is an
important tool in the study of various graph properties, including their algorithmic
aspects. To illustrate what this means, let us describe a few examples of increasing
complexity.

1.1. Edge coloring

We start with a very simple application of a well-chosen geometric image. How
many colors are needed to color the edges of a complete graph so that no two edges
incident with the same node get the same color? The answer depends on the parity
of the number of nodes n. If n is odd, then at most (n−1)/2 edges can use the
same color, so we need at least (

n

2

)/n−1

2
= n

colors. To show that this is sufficient, we consider the nodes as the vertices of a
regular polygon. An edge and all diagonals parallel to it can be colored with the
same color. Rotating this set about the center of the polygon, we get n such sets of
edges, which together cover all edges of the graph. So they form an edge-coloring
with n colors (Figure 1.1, left).

Figure 1.1. Optimal edge coloring of a complete graph with an
odd and even number of nodes.

If n is odd, then the analogous computation gives a weaker lower bound of(
n

2

)/n
2

= n−1

for the number of colors. Is this sufficient? To improve the construction by a similar
use of rotations as for odd n, we step up to dimension 3. We represent the nodes
as the vertices of a pyramid with an (n−1)-sided regular polygon as its base. For
any edge e of the base, we can color the diagonals parallel to e as well as the edge
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2 1. WHY ARE GEOMETRIC REPRESENTATIONS INTERESTING?

connecting its apex to the base vertex opposite to e with the same color. Rotating
this set again about the axis of the pyramid, we get a coloring of the edges of Kn

with n−1 colors (Figure 1.1, right).
There are of course many other ways to solve this simple problem; but the

above construction using geometry is perhaps the nicest.

1.2. Disjoint paths

Suppose that we have a 2-connected graph G and two specified nodes s and t.
Two “requests” come in for two nodes x and y, and we have to find two disjoint
paths connecting s and t to x and y (it does not matter which of x and y will be
connected to s). This can be computed by one of zillions of flow or connectivity
algorithms in reasonable time.

Now suppose that we have to compute such paths for many requests {x, y}. Do
we have to repeat the computation each time? We can do much better if we use the
following theorem: Given a 2-connected graph and two specified nodes s and t, we
can order all nodes so that s is first, t is last, and every other node v has a neighbor
that comes earlier as well as a neighbor that comes later. Such an ordering is called
an s-t numbering. It is not hard to construct such a numbering (Exercise 1.2).

Once we know an s-t numbering, and a request {x, y} comes in, it is trivial to
find two disjoint paths: Let (say) x precede y in the ordering, then we can move
from x to an earlier neighbor x′, then to an even earlier neighbor x′′ of x′ etc. until
we reach s. Similarly, we can move from y to a later neighbor y′, then to an even
later neighbor y′′ of y′ etc. until we reach t. This way we trace out two paths as
requested.

The ordering can be thought of as representing the nodes of G by points on the
line, and the easy procedure to find the two paths uses this geometric representation.

1.3. Hitting times

In this book, we will discuss some properties of random walks on a graph (as
far as they are related to geometric representations). We’ll also use the physical
representation of a graph with the edges replaced by rubber bands. As a sampler,
let us describe a very simple but nice connection.

Let a be a node of a connected graph G. We start a walk at v0 = a. We select
one of the neighbors v1 of v0 at random (every neighbor has the same probability
of being selected), and we move to v1. Then we move from v1 to v2 in the same
way, etc. This way we get an infinite sequence of random nodes (v0, v1, v2, . . . ),
which we call a random walk on G.

Many important questions can be asked about a random walk (we are going
to talk about some of them later). Perhaps the following is the simplest. Let b be
another node of G. We define the hitting time H(a, b) as the expected number of
steps before a random walk, started at a, will reach b. (This number is known to
be finite for a finite connected graph.)

There are many interesting questions you can ask about hitting times. To begin
with, what are the hitting times on particular graphs like paths, cycles, or trees?

The following construction is very useful answering quite a few of these basic
questions (of course, there are questions about hitting times whose answer requires
a much more sophisticated approach). Consider the edges of the graph as rubber
bands; these are ideal (or really high tech) rubber bands, contracting to zero length
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when not stretched, and not getting tangled. Attach a weight of deg(v) to each
node v. Nail the node b to the wall and let the graph find its equilibrium (Figure
1.2).
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Figure 1.2. Hanging a tree, a path, and a 3-cube from a node.
The graphs are horizontally distorted to show their structure. The
stretching of the edges is easily computed using Hooke’s Law.

The simple but useful fact about this construction is that each node v will be
at a distance of H(v, b) below b. This is not hard to prove noticing that the hitting
times to b and the distances from b satisfy the same equations (see Exercise 1.4).

Using this geometric/physical picture, we can derive several interesting facts
about hitting times. Applying the construction to a path with k nodes, we see
that the k-th edge from the bottom is stretched to a length of 2k−1 (this is the
total weight of the nodes below it). Hence the total length of the path will be
1+3+ · · ·+(2n−3) = (n−1)2; this is the hitting time from one endpoint of the
path to the other. Or, using the symmetries of the skeleton of the 3-dimensional
cube, we can see that the lowest edges are stretched to length 1 (3 edges carry a
weight of 3), the next layer, to length 2, and the edges incident to b, to length 7.
So the hitting time from a node to the opposite node is 10. Exercises 1.5–1.7 offer
some further applications of this geometric construction.

1.4. Shannon capacity

The last two examples used just a single dimension; of course, one-dimensional
geometry is not “really” geometry, and we better give a higher-dimensional example,
which is substantially more involved. The following problem in information theory
was raised by Claude Shannon, and it motivated the introduction of orthogonal
representations [Lovász 1979b] and several of the results to be discussed in this
book.

Consider a noisy channel through which we are sending messages composed
of a finite alphabet V . There is an output alphabet U , and each v ∈ V , when
transmitted through the channel, can come out as any element in a set Uv ⊆ U .
Usually there is a probability distribution specified on each set Uv, telling us the
probability with which v produces a given u ∈ Uv, but for the problem we want to
discuss, these probabilities do not matter. As a matter of fact, the output alphabet
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will play no role either, except to tell us which pairs of input characters can be
confused: those pairs (v, v′) for which Uv∩Uv′ 6= ∅.

One way to model the problem is as follows: We consider V as the set of nodes
of a graph, and connect two of them by an edge if they can be confused. This
way we obtain a graph G, which we call the confusion graph of the alphabet. The
maximum number of non-confusable messages of length 1 is the maximum number
of nonadjacent nodes (the maximum size of a stable set) in the graph G, which we
denote by α(G).

Now we consider longer messages, say of length k. We want to select as many
of them as possible so that no two of them can possibly be confused. This means
that for any two of these selected messages, there should be a position, where the
two characters are not confusable. As we shall see, the number of words we can
select grows as Θk for some Θ ≥ 1, which is called the Shannon zero-error capacity
of the channel.

A simple and natural way to create such a set of words is to pick a non-
confusable subset of the alphabet, and use only those words composed from this
set. So if we have α non-confusable characters in our alphabet, then we can create
αk non-confusable messages of length k. But, as we shall see, making use of other
characters in the alphabet we can create more! How much more, is the issue in this
discussion.

Let us look at two simple examples (Figure 1.3).

p q

db v

Figure 1.3. Two confusion graphs. In the alphabet {p, q, b, d}
two letters that are related by a reflection in a horizontal or ver-
tical line are confusable, but not if they are related by two such
reflection. The confusability graph of the alphabet {m,n, u, v, w}
is only convincing a little in handwriting, but this graph plays an
important role in this book.

Example 1.1. Consider the simple alphabet (p, q, d, b), where the pairs {p, q},
{q, d}, {d, b} and {b, p} are confusable (Figure 1.3, left). We can just keep p and d
(which are not confusable), which allows us to create 2k non-confusable messages
of length k. On the other hand, if we use a word, then all the 2k words obtained
from it by replacing some occurrences of p and q by the other, as well as some
occurrences of b and d by the other, are excluded. Hence the number of messages
we can use is at most 4k/2k = 2k. �

Example 1.2 (5-cycle). If we switch to alphabets with 5 characters, then we
get a much more difficult problem. Let V = {m,n, u, v, w} be our alphabet, with
confusable pairs {m,n}, {n, u}, {u, v}, {v, w} and {w,m} (Figure 1.3, right; we refer
to this example as the “pentagon”). Among any three characters there are two that
can be confused, so we have only two non-confusable characters. Restricting the



1.4. SHANNON CAPACITY 5

alphabet to two such characters (say, m and v), we get 2k non-confusable messages
of length k.

But we can do better: the following 5 messages of length two are non-confusable:
mm, nu, uw, vn and wv. This takes some checking: for example, mm and nu
cannot be confused, because their second characters, m and u, cannot be confused.
If k is even, then we can construct 5k/2 non-confusable messages, by concatenating
any k/2 of the above 5. This number grows like (

√
5)k ≈ 2.236k instead of 2k, a

substantial gain! �

Can we do better by looking at longer messages (say, messages of length 10 or
1000), and by some ad hoc method finding among them more that 55 non-confusable
messages? We are going to show that we cannot, which means that the set of words
composed of the above 5 messages of length 2 is optimal.

The trick is to represent the alphabet in a different way. Let us assign to each
character i ∈ V a vector ui in some Euclidean space Rd. If two characters are not
confusable, then we represent them by orthogonal vectors.

If a subset of characters S is non-confusable, then the vectors ui (i ∈ S) are
mutually orthogonal unit vectors, and hence for every unit vector c,∑

i∈S
(cTui)

2 ≤ 1.

Hence |S|mini∈S(cTui)
2 ≤ 1, or

|S| ≤ max
i∈S

1

(cTui)2
≤ max

i∈V

1

(cTui)2
.

So if we find a representation u and a unit vector c for which the squared products
(cTui)

2 are all large (which means that the angels ](c,ui) are all small), then we
get a good upper bound on |S|.

v

c

Figure 1.4. An umbrella representing the pentagon.

For the alphabet in Example 1.2 (the pentagon), we use the 3-dimensional
vectors in Figure 1.4. To describe these, consider an umbrella with 5 ribs of unit
length. Open it up to the point when nonconsecutive ribs are orthogonal. This way
we get 5 unit vectors um,un,uu,uv,uw, assigned to the nodes of the pentagon so
that each ui forms the same angle with the “handle” c and any two nonadjacent
nodes are labeled with orthogonal vectors. With some effort, one can compute that
(cTui)

2 = 1/
√

5 for every i, and so we get that |S| ≤
√

5 for every non-confusable
set S. Since |S| is an integer, this implies that |S| ≤ 2.

This is ridiculously much work to conclude that the 5-cycle does not contain 3
nonadjacent nodes! But the vector representation is very useful for handling longer
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messages. We define the tensor product of two vectors u = (u1, . . . , un) ∈ Rn and
v = (v1, . . . , vm) ∈ Rm as the vector

u◦v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, . . . , unv1, . . . , unvm)T ∈ Rnm.
It is easy to see that |u◦v| = |u| |v|, and (more generally) if u,x ∈ Rn and
v,y ∈ Rm, then (u◦v)T(x◦y) = (uTx)(vTy). For a k ≥ 1, if we represent a
message i1 . . . ik by the vector ui1 ◦· · ·◦uik , then non-confusable messages will be
represented by orthogonal vectors. Indeed, if i1 . . . ik and j1 . . . jk are not confus-
able, then there is at least one subscript r for which ir and jr are not confusable,
hence uT

ir
ujr = 0, which implies that

(ui1 ◦· · ·◦uik)T(uj1 ◦· · ·◦ujk) = (uT
i1uj1) . . . (uT

ik
ujk) = 0.

Using c◦· · ·◦c (k factors) as the “handle”, we get that for any set S of non-
confusable messages of length k,

|S| ≤ max
i1,...,ik

1(
(c◦· · ·◦c)T(ui1 ◦· · ·◦uik)

)2 = max
i1,...,ik

1

(cTui1)2 . . . (cTuik)2
= (
√

5)k.

So every set of non-confusable messages of length k has at most (
√

5)k elements.
We have seen that this bound can be attained, at least for even k. Thus we have
established that the Shannon zero-error capacity of the pentagon is

√
5.

We will return to this topic in Sections 11.5.1 and 12.2, where the zero-error
capacity problem will be discussed for general confusability graphs, in classical and
quantum information theory.

1.5. Vector-labeled graphs or frameworks?

One of the most basic objects we study in this book is a graph whose nodes are
labeled by vectors from a euclidean space Rd. We can also think of these vectors
as the positions of the nodes in Rd. A mapping u : V → Rd can be thought of
as a “drawing”, or “embedding”, or “geometric representation” of the set V in a
Euclidean space. Most of the time, V will be the node set of a graph, and we
should think of ui as the position of node i; in this case, we think of the edges
as straight line segments connecting the points in the corresponding position. The
main point in this book is to relate geometric and graph-theoretic properties, so
this way of visualizing is often very useful. On the other hand, all three phrases
above are ambiguous, and we are going to use “vector labeling” in most of the
formal statements. This is the computer science view: we have a graph and store
additional information for each node (see Figure 1.5). A vector-labeled graph (G,u)
will also be called a framework, motivated by the important topic of rigidity.

The difference between “vector-labeled graphs” and “geometric representa-
tions” is a bit more than just different usage of words. In computer science (indeed,
in any area that uses and analyzes data), one considers large tables where each row
corresponds to an item of some sort, and the numbers in the row represent differ-
ent data (for example, age, weight, height, income of a person, or frequencies of a
word in various types of documents). Often the set of rows has a network structure
(say, people who know each other or words with similar meaning can be considered
“adjacent” in these networks).

Surprisingly, the geometry of the row vectors often contains important informa-
tion about the data, and geometric manipulation can lead to a better handle on the
data, even though these data had nothing to do with geometry. While obviously
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Figure 1.5. Two ways of looking at a graph with vector labeling
(not all vector labels are shown).

closely related to our more mathematical material, we cannot treat in detail this
emerging line of research.

While this is not strictly true, most of the time we can distinguish two kinds of
vectors: those which are “true” vectors (best to think of them as geometric objects,
like point positions or velocities), and those which are assignments of numbers, like
weighting the nodes or edges of a graph. “True” vectors will be denoted by boldface
characters. Mathematically, there is no difference of course.

Exercise 1.1. Prove that s-t numberings can be characterized as orderings of
the nodes in which the nodes preceding any node induce a connected subgraph,
and the same holds for the nodes following a given node.

Exercise 1.2. Design an algorithm that constructs an s-t numbering of a graph
in polynomial time.

Exercise 1.3. Let us assign a real weight f(e) to every edge of a transitive
tournament on n nodes.
(a) For v ∈ V , let Pv be the set of all pairs (a, b) such that there is a directed
path of length a leaving v along which the weights are monotone increasing, as
well as a directed path of length b leaving v along which the weights are monotone
non-increasing, starting with the same edge. Prove that the sets Pv are different.
(b) Prove that if n ≤

(
p+q
p

)
, then either there is a directed path of length p+1 along

which the weights are monotone increasing, or there is a directed path of length q+
1 along which the weights are monotone non-increasing.[Chvátal–Komlós 1971]:

Exercise 1.4. (a) Prove that the hitting times to a given node of a connected
graph G satisfy the equations

H(u, b) = 1+
1

deg(u)

∑
v∈N(u)

H(v, u), (u 6= b).

(b) Prove that the distances to b in the construction in Section 1.3 satisfy the
same equations. (c) Prove that this implies that the hitting times to b are equal
to the distances from b.

Exercise 1.5. Compute the hitting time (a) between two nodes of a cycle of
length n; (b) between two nodes of the skeleton of the dodecahedron; (c) from
one vertex of the d-dimensional cube to the opposite one.

Exercise 1.6. Let G be a tree, and let ij ∈ E. Let k be the number of nodes
of G\ ij in the component containing i. Then the hitting time from i to j is the
2k−1.

Exercise 1.7. Let G be a simple connected graph, and let ij ∈ E. Then |H(i, j)−
H(j, i)| ≤ n2−3n+3, and this can be attained.
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Exercise 1.8. Prove that for every graph with at most 5 nodes, with the exception
of the pentagon, its Shannon capacity equals to the maximum cardinality of a
stable set (mutually nonadjacent nodes) of the graph.



CHAPTER 2

Planar Graphs

In the first half of this book, we consider mostly planar graphs and their geomet-
ric representations, mostly in the plane. We start with a survey of basic results on
planar graphs. This chapter is of an introductory nature; we give very few proofs,
and this material might go as well to the Appendix as well-known background.
Still, planar graphs play a very important role, and some of the considerations here
provide a good introduction into the methods in this book, so this chapter deserves
to be part of the main material. We assume familiarity with basic graph theory;
notation and terminology are summarized in Appendix B.

2.1. Graphs and maps

2.1.1. Planarity and duality. A multigraph G is planar, if it can be drawn
in the plane so that its edges are Jordan curves and they are disjoint except for
their endnodes. A planar map is a planar multigraph with a fixed embedding. We
also use this phrase to denote the image of this embedding, i.e., the subset of the
plane which is the union of the set of points representing the nodes and the Jordan
curves representing the edges. It is trivial that every subgraph of a planar graph is
planar. It is slightly less trivial that contracting an edge to a single node preserves
planarity.

The complement of a map G decomposes into a finite number of arcwise con-
nected pieces, which we call the countries of the planar map. (Often the countries
are called “faces”, but we reserve the word “face” for the faces of polyhedra.) The
set of its countries will be denoted V ∗, and often we use the notation f = |V ∗|.
There is one special country, which is unbounded; the other countries are bounded.
The unbounded country most often does not play any special role; we can make
any other country p unbounded by applying an inversion with respect to a circle
contained in p.

A planar map is called a triangulation if every country is bounded by a triangle.
Note that a triangulation may have parallel edges, but two parallel edges cannot
bound a country. In every simple planar map G we can introduce new edges to
turn all countries into triangles while keeping the graph simple.

If the planar map is connected (which we are going to assume most of the time),
then every country is homeomorphic to an open disk, except for the unbounded
country, which is homeomorphic to an open ring. Each country has a boundary
consisting of a cyclic sequence of edges. An edge can occur twice in the boundary
sequence; this happens if and only if it is a cut-edge (isthmus) of the multigraph.
If the multigraph is 2-edge-connected, then no boundary sequence contains a repe-
tition, and if it is 2-node-connected, then every boundary is a (simple) cycle. The
country also defines a cyclic sequence of nodes; a node my occur many times in this
sequence. Each occurrence of a node in this sequence is called a corner. In other

9
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words, a corner is defined by two edges of the boundary of the country, called the
edges of the corner, which are consecutive in the cyclic order along the boundary,
but also in the cyclic order of the edges around the node. These two edges are
different except if the corner is a node of degree 1.

Figure 2.1. A planar map and its dual.

Every connected planar map G has a dual map G∗ = (V ∗, E∗) (Figure 2.1).
As an abstract graph, this can be defined as the multigraph whose nodes are the
countries of G, and if two countries share k edges, then we connect them in G∗ by
k edges. So each edge e ∈ E will correspond to a unique edge e∗ of G∗, and vice
versa; hence |E∗| = |E| = m. If the same country is incident with e from both
sides, then e∗ is a loop. For a country p, we denote by deg(p) its degree in the dual
map. This is the number of edges on its boundary, with the addition that if the
boundary passes an edge twice, then this edge is counted twice in deg(v).

This dual map has a natural drawing in the plane: in the interior of each
country F of G we select a point vF (which can be called its capital), and on each
edge e ∈ E we select a point ue (this will not be a node of G∗, just an auxiliary
point). We connect vF to the points ue for each edge on the boundary of F by
nonintersecting Jordan curves inside F . If the boundary of F goes through e twice
(i.e., both sides of e belong to F ), then we connect vF to ue by two curves, entering e
from two sides. The two curves entering ue form a single Jordan curve representing
the edge e∗. It is not hard to see that each country of G∗ will contain a unique
node of G, and so (G∗)∗ = G. Contracting an edge that is not a loop in a planar
map corresponds to deleting it from the dual, and vice versa.

Often we will need an orientation of G. Then each (oriented) edge e ∈ E has a
tail tl(e) ∈ V , a head hd(e) ∈ V , a right shore rs(e) ∈ V ∗, and a left shore ls(e) ∈ V ∗.
There is a natural way to define an orientation of the dual map G∗ = (V ∗, E∗), so
that the dual edge e∗ ∈ E∗ crosses the corresponding edge e ∈ E from left to right.
The dual of the dual of an oriented map is not the original map, but the original
map with its orientation reversed.

From a planar map, we can create further planar maps that are often useful.
The lozenge map G♦ = (V ♦, E♦) of a planar map G is defined by V ♦ = V ∪V ∗,
where we connect p ∈ V to i ∈ V ∗ if p is a node of country i. So G♦ has an edge
for every corner of G. We do not connect two nodes in V nor in V ∗, so G♦ is a
bipartite graph. It is easy to see that G♦ is planar.

The dual map of the lozenge map is also interesting. It is called the medial
map of G, denoted by G./, and it can be described as follows: we subdivide each
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edge by a new node; these will be the nodes of the medial map. For every corner
of every country, we connect the two nodes on the two edges bordering this corner
by a Jordan curve inside the country (Figure 2.2). The medial graph has two
kinds of countries: those corresponding to nodes of G and those corresponding to
countries of G. Thus the countries of G./ can be two-colored so that every edge
separates countries of different colors. This of course is equivalent to saying that
G♦ is bipartite.

Figure 2.2. The dual map, the lozenge map and the medial map
of a part of a planar map.

We can avoid the complications of the exceptional unbounded country if we
consider maps on the sphere. Every planar map can be projected onto the sphere
by inverse stereographic projection (Figure 2.3, see also Appendix A.4.2), and vice
versa. Often this leads to simpler statements, since one does not need to distinguish
an unbounded country. (On the other hand, it is easier to follow arguments in the
plane.)

Figure 2.3. Projecting a planar map onto the sphere by inverse
stereographic projection.

2.1.2. Euler’s Formula. We often need the following basic identity for con-
nected planar maps, called Euler’s Formula (where n denotes the number of nodes,
m denotes the number of edges, and f denotes the number of countries):

(2.1) n−m+f = 2.

This follows easily from the observation that if we take a spanning tree of a planar
map, then those edges of the dual graph which correspond to edges outside this tree
form a spanning tree of the dual graph (Figure 2.4). The spanning tree has n−1
edges, the spanning tree of the dual has f−1 edges, whence (n−1)+(f−1) = m.
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Figure 2.4. Spanning trees in two planar graphs, and the corre-
sponding spanning trees in their duals. For the grid on the right,
the broken edges emanating through the boundary go to the capital
of the unbounded country, which is not shown.

Let us mention some important consequences of Euler’s Formula. For a simple
planar map, each country has at least 3 edges, and adding these up, we count every
edges twice. So we have 2m ≥ 3f = 3(m+2−n), and rearranging, we get

(2.2) m ≤ 3n−6.

If, in addition, the graph has no triangles, then a similar simple counting argument
gives that

(2.3) m ≤ 2n−4.

From these inequalities it is easy to derive the following fact.

Proposition 2.1. Every simple planar graph has a node with degree at most 5,
and every triangle-free simple planar graph has a node with degree at most 3. �

From (2.2) and (2.3) it follows immediately that the “Kuratowski graphs” K5

and K3,3 (see Figure 2.5) are not planar. This observation leads to the following
characterization of planar graphs.

Theorem 2.2 (Kuratowski’s Theorem). A graph G is embeddable in the plane
if and only if it does not contain a subgraph homeomorphic to the complete graph
K5 or the complete bipartite graph K3,3. �

K K
5 3,3

K
5

K
3,3

Figure 2.5. The two Kuratowski graphs. The two drawings on
the right show that both graphs can be drawn in the plane with a
single crossing.
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To show a further typical application of Euler’s Formula, we prove a lemma,
which will be useful in several arguments later on. In a planar map whose edges
are 2-colored, we call a node quiet if the edges of each color emanating from it are
consecutive in the cyclic order of the embedding.

Lemma 2.3. In every simple planar map whose edges are 2-colored there are at
least two quiet nodes.

Proof. We may assume that the graph is 3-connected: we can add edges to
make it 3-connected, and color them arbitrarily; a quiet node in the extended graph
is quiet in the original graph as well. We call a corner bicolored, if its two edges are
differently colored. We are going to estimate the number N of bicolored corners
and the number h of quiet nodes in two different ways.

If a node v is not quiet, then the color of edges incident with it changes at least
four times in their cyclic order according to the embedding. (In particular, every
such node must have degree at least four.) This means that v is incident with at
least 4 bicolored corners, nd hence

(2.4) N ≥ 4(n−h).

On the other hand, let fr be the number of countries with r edges on their boundary.
The maximum number of bicolored corners of a country with r edges is{

r−1, if r is odd,

r, if r is even.

Thus the number of bicolored corners is at most

(2.5) N ≤ 2f3 +4f4 +4f5 +6f6 +6f7 + . . .

Using the trivial identities

f = f3 +f4 +f5 + . . . and 2m = 3f3 +4f4 +5f5 + . . .

we get by Euler’s formula

N ≤ 2f3 +4f4 +4f5 +6f6 +6f7 + · · · ≤ 2f3 +4f4 +6f5 +8f6 + . . .

= 4m−4f = 4n−8.

By (2.4), it follows that h ≥ 2. �

2.1.3. 3-connected planar graphs. Among planar graphs, 3-connected pla-
nar graphs are especially important. We start with a simple but useful fact. A cycle
C in a graph G is called separating, if either it has a chord, or G\V (C) has at least
two connected components. (We can think of considering every chord of C as a con-
nected component of the point set G\C, where G and C are considered as subsets
of the plane.)

Proposition 2.4. In a 3-connected planar graph a cycle bounds a country if and
only if it is not separating. �

Since to be separating is an intrinsic property of a cycle in the graph (i.e., it
does not depend on the way the graph is embedded), this proposition implies:

Corollary 2.5. Every simple 3-connected planar graph has an essentially unique
embedding in the plane in the sense that the set of cycles that bound countries is
uniquely determined. �
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Once we have identified these cycles, gluing a topological disk on each of them,
we get a (topological) sphere with the graph embedded in it.

The following related characterization of 3-connected planar graphs was proved
in [Tutte 1963].

Theorem 2.6. Let G be a 3-connected graph. Then every edge of G is contained in
at least two nonseparating cycles. G is planar if and only if every edge is contained
in exactly two nonseparating cycles. �

2.1.4. Planar separation. The following important theorem is the basis of
many recursive algorithms for planar graphs [Lipton–Tarjan 1979].

Theorem 2.7 (Planar Separator Theorem). Every planar graph G on n nodes

contains a set S ⊆ V such that |S| ≤
√

8n, and every connected component of G\S
has at most 2n/3 nodes. �

One can play with the two constants in the bounds on the size of S and the
size of the connected components of G\S, and many variations and improvements
have been found, which we don’t discuss here. We will describe a proof based on
circle packing, with a weaker bound of 3n/4 on the sizes of the components, but
stronger bound 2

√
n on the size of any component of G\S, in Section 5.4. The

simple example of a k×k grid shows that (up to the constants) the theorem is best
possible (Exercise 2.10).

2.2. Straight line representation

Planarity is defined in terms of embedding the graph in the plane in the topo-
logical sense. How “nice” can we make this drawing? We’ll talk a lot about this
question; but as a warm-up, let us answer the first question that comes to mind: do
we need curves to represent the edges in the planar embedding of a graph, or can we
get by using straight line segments only? It is clear that to make two parallel edges
disjoint (up to their endpoints), at least one of them must bend. The Wagner–Fáry
Theorem [Wagner 1936, Fáry 1948] shows that this is the only situation that forces
bending.

Theorem 2.8. Every simple planar map can be drawn in the plane with straight
edges. �

Figure 2.6 illustrates the theorem. Since this theorem will follow from several
of our later constructions, we do not give the simple induction proof here (which is
described in many textbooks and internet sites).

Figure 2.6. Drawing a simple planar map with curvy and straight edges.
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2.2.1. Skeletons of polytopes. Let P be a 3-polytope (see Section C.1 for
basic terms and facts about polytopes).

Proposition 2.9. The skeleton of every 3-polytope is a 3-connected planar graph.

We describe the simple proof, because this is our first example of how a geomet-
ric representation implies a purely graph-theoretic property, namely 3-connectivity.

Proof. Planarity of GP can be proved by constructing an embedding called
the Schlegel diagram of the polytope. Let F be any facet of P , and let x be a point
that is outside P but very close to an interior point of F ; more precisely, assume
that the plane Σ of F separates x from P , but for every other facet F ′, x is on the
same side of the plane of F ′ as P . Let us project the skeleton of P from x to the
plane Σ. Then we get an embedding of GP in the plane (Figure 2.7).

Figure 2.7. Projecting the skeleton of a polytope into one of the facets.

To see that GP is 3-connected, it suffices to show that for any four distinct
nodes a, b, c, d there is a path from a to b which avoids c and d.

If a, b, c, d are not coplanar, then let Π be a plane that separates {a, b} from
{c, d}. We can connect a and b by a polygon consisting of edges of P that stays on
the same side of Π as a and b, and so avoids c and d.

If a, b, c, d are coplanar, let Π be a plane that contains them. One of the open
halfspaces bounded by Π contains at least one vertex of P . We can then connect
a and b by a polygon consisting of edges of P that stays on this side of Π (except
for its endpoints a and b), and so avoids c and d. �

The converse of this last proposition is an important and much more difficult
theorem [Steinitz 1922]:

Theorem 2.10 (Steinitz’s Theorem). A simple graph is isomorphic with the
skeleton of a 3-polytope if and only if it is 3-connected and planar.

Figure 2.8 illustrates the theorem. A bijection between the nodes of a simple
graph G and the vertices of a convex polytope P in R3 that gives an isomorphism
between G and the skeleton of P is called a Steinitz representation of the graph
G. We do not prove Steinitz’s Theorem right now, but constructions of represen-
tations by polytopes (in fact with special properties) will follow from the material
in sections 3.2, 5.2.2 and 16.2.

There may be many representations of a graph by a 3-polytope, but the set
of these representations, up to reflection, has nice properties (among others, it
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Figure 2.8. Representing a 3-connected planar map by a polytope.

is connected in the topological sense). In higher dimensions graphs that can be
represented as skeletons of polytopes are not characterized, and the set of rep-
resentations of one and the same graph can be very complicated. We refer to
[Richter-Gebert 1996] for an in-depth presentation of this problem.

The construction of the planar embedding of GP in the proof of Proposition 2.9
gives an embedding with straight edges. Therefore Steinitz’s Theorem also proves
the Fáry–Wagner theorem, at least for 3-connected graphs. It is easy to see that
the general case can be reduced to this by adding new edges so as to make the
graph 3-connected (see Exercise 2.1).

Finally, we note that the Steinitz representation is also related to planar duality.

Proposition 2.11. Let P be a convex polytope in R3 with the origin in its interior,
and let P ∗ be its polar. Then the skeletons GP are GP∗ are dual planar graphs. �

2.2.2. Voronoi and Delaunay diagrams. We define two related important
constructions. Both of them can be generalized to any dimension, but we start in
the plane, since this is the version leading to straight line embedded planar graphs.

Let S ⊆ R2 be a finite set. For every s ∈ S we define the Voronoi cell Vs
consisting of those points v ∈ V for which s ∈ S is a point of S closest to v. It is
easy to see that Voronoi cells are convex polygons, whose interiors are disjoint, and
which cover the whole plane; some cells will be unbounded (Figure 2.9, left). The
collection of Voronoi cells is the Voronoi diagram. Each cell contains a single point
of S, which we call its capital.

The intersection of two Voronoi cells is a convex subset of the perpendicular
bisector of the segment connecting their capitals, and hence this intersection may
be a semiline, a segment, a point, or the empty set. If it is a semiline or a segment,
we call it an edge of the diagram. The intersection of three cells can be a single
point or empty; if it is a single point, we call it a vertex. For every vertex x, the
capitals of those cells containing it are at the same distance from x, and so they
form a convex polygon, and the vertex is the center of the circumscribed circle of
this polygon.

This way, the Voronoi cells define a planar graph, together with a straight
line embedding in the plane, with the caveat that we need to create a “vertex at
infinity”, and think of each semiline edge as ending at this new vertex. We call this
graph G the Voronoi graph defined by S.

The dual graph G∗ of the Voronoi graph G, called the Delaunay graph on S, is
also very interesting. Its nodes are the points in the starting set S, and two of these
nodes u and v are connected by an edge if the two Voronoi cells share an edge.
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Figure 2.9. Left: the Voronoi and Delaunay diagrams of a set of
points in the plane, as duals of each other. (Two vertices of the
Voronoi graph are not shown: a vertex way down, and the “vertex
at infinity”. Right: the Delaunay graph and the circumscribed
circles of its countries.

The circle about any internal point y of this edge, going through the two nodes,
contains no further point of S in its interior or boundary: indeed, the cell defined
by such a point would contain y in its interior or on its boundary, so y could not
be in the cell of u, or there would be a third cell containing y.

This leads to an alternative definition of the Delaunay graph: we connect two
points of S by an edge if and only if there is a circle through both of them that
contains not third point of S in its interior or on its boundary. In particular, every
edge of the convex hull of S is subdivided by the points of S it contains, to give a
path in G∗.

Circles around a vertex x of the Voronoi graph that go through the nearest
points of S contain three or more points of S. These points form a convex polygon,
which is the country of the Delaunay graph corresponding to x under duality. So
every bounded country of the Delaunay graph has a circumscribed circle.

Remark 2.12. We can generalize these constructions to Euclidean spaces of any
dimension. For every finite set S ⊆ Rd, and every subset T ⊆ S, we say that T is a
Delaunay cell if there is a point x ∈ Rd such that the set of points of S closest to x
is exactly T . The Voronoi cell corresponding to this Delaunay cell is the set of all
such points x. The dimensions of a Voronoi cell and of the corresponding Delaunay
cell are inversely related: they sum to d+1. These cells have many nice geometric
properties (for example, they are convex polyhedra; see Exercise 2.13).

The definitions above can be generalized to any metric space (V, d), but we only
need a simplified form in this book. We define the Voronoi partition induced by a
finite set S ⊆ V as the partition that has a partition class Vs for each s ∈ S, and
every point v ∈ V is put in a class Vs for which s ∈ S is a point of S closest to v.
Ties can be broken arbitrarily. The partition classes in the Voronoi partitions will
not be so nice in general: see Figure 2.10 for the Euclidean and `1 (“Manhattan”)
distance in the plane. The construction is useful nevertheless.

Exercise 2.1. Let G be a simple planar graph. Prove that you can add edges to
G so that you make it 3-connected while keeping it simple and planar.
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Figure 2.10. Voronoi cells of a finite point set in the plane in the
Euclidean and in the Manhattan distance

Exercise 2.2. (a) Prove Euler’s Formula. (b) Find a relationship between the
numbers of nodes, edges and countries of a map in the projective plane and on
the torus.

Exercise 2.3. Let G be a planar map and H, a spanning subgraph of G. Let
H∗ denote the spanning subgraph of the dual map G∗ consisting of those edges
in E(G∗) that are not crossed by any edge of H. Prove that the number of
components in H and H∗ are related by c(H∗) = c(H)+ |E(H)|−|V (G)|+1.

Exercise 2.4. Let G be a simple 3-connected planar map. Prove that we can
assign each corner either to its country or to its node so that each country is
assigned to 2 corners, two nodes are not assigned to any corner, and each of the
remaining nodes is assigned to 2 corners.

Exercise 2.5. Construct a 2-connected simple planar graph on n nodes which
has an exponential (in n) number of different embeddings in the plane. (Recall:
two embeddings are considered different if there is a cycle that is the boundary
cycle of a country in one embedding but not in the other.)

Exercise 2.6. Prove that in every simple graph embedded in the projective plane
whose edges are 2-colored, there is at least one quiet node. No quiet node can be
guaranteed on the torus.

Exercise 2.7. (a) Let L be a finite set of lines in the plane, no two of which are
parallel, and not all going through the same point. Prove that there is a point
where exactly two lines in L go through.

(b) Let S be a finite set of points in the plane, not all on a line. Prove that there
is a line which goes through exactly two points in S.

Exercise 2.8. Let G be a triangulation of the plane. (a) Prove that G has an edge
which is contained in two triangles only. (b) Prove the Wagner–Fáry Theorem 2.8
based on (a).

Exercise 2.9. (a) Let L be a finite set of lines in the plane, not going through
the same point. Color these lines red and blue. Prove that there is a point where
at least two lines in L intersect and all the lines through this point have the same
color.

(b) Let S be a finite set of points in the plane, not all on a line. Color these points
red and blue. Prove that there is a line which goes through at least two points in
S and all whose points have the same color.

Exercise 2.10. If G is a k×k grid, then every set S of nodes separating G into
parts smaller that (1−c)k2 has at least

√
2ck nodes.

Exercise 2.11. The skeleton of every d-polytope is d-connected.
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Exercise 2.12. The skeleton of every d-polytope has a Kd+1 minor
[Grünbaum–Motzkin 1963]).

Exercise 2.13. Prove that Voronoi cells are convex polyhedra in every dimension,
and every face of a Voronoi cell is itself a Voronoi cell.

Exercise 2.14. Let S be a finite set in the x-y plane. Introduce a third coordinate
z, consider the set S′ of points (x, y, x2 +y2) in 3-space, where (x, y) ∈ S, and
the convex hull P = conv(S′). Prove that projecting those facets of P to the x-y
plane whose outer normal points “down”, you get exactly the bounded countries
of the Delaunay graph on S.





CHAPTER 3

Rubber Bands

3.1. Energy, forces, and centers of gravity

Let us start with an informal description. Let G be a connected graph. Replace
the edges by ideal rubber bands (satisfying Hooke’s Law). Think of the nodes in
a nonempty subset S ⊆ V as nailed to given positions in d-space (thinking of
the plane, d = 2, will be enough for a while), but let the other nodes settle in
equilibrium (Figure 3.1). (We are going to see that this equilibrium position is
uniquely determined.) The nodes in S will be called nailed, and the other nodes,
free. We call this equilibrium position of the nodes the rubber band representation
of G in Rd extending the representation of the nailed nodes. We represent the edges
by straight line segments (the rubber bands don’t get tangled).

Figure 3.1. Rubber band representation of a planar graph and
of the Petersen graph.

To make this precise, let ui = (ui1, . . . , uid)
T ∈ Rd be the position of node i ∈ V .

By definition, ui = ui is prescribed for i ∈ S, but arbitrary for the remaining nodes.
The energy of this representation is defined as

(3.1) E(u) =
∑
ij∈E
|ui−uj |2 =

∑
ij∈E

d∑
k=1

(uik−ujk)2.

We want to find the representation with minimum energy, subject to the boundary
conditions:

minimize E(u)

subject to ui = ui for all i ∈ S.(3.2)

Note that while we use phrases like energy, the representation is defined in exact
mathematical terms.

21
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Lemma 3.1. The function E : Rd×(V \S) → R is strictly convex.

Proof. In (3.1), every function (uik−ujk)2 is convex, so E is convex. Further-

more, moving along an (affine) line in Rd×(V \S), this function is strictly convex
unless uik−ujk remains constant along this line. If this applies to each coordinate
of each edge, then moving along the line means parallel translation of the vectors
ui, which is impossible if at least one node is nailed. �

It is trivial that if any of the vectors ui tends to infinity, then E(u) tends to
infinity (still assuming the boundary conditions 3.2 hold, where S is nonempty).
Together with Lemma 3.1, this implies that the representation with minimum en-
ergy is uniquely determined. If i ∈ V \S, then for the representation minimizing
the energy, the partial derivative of E(u) with respect to any coordinate of ui must
be 0:

(3.3)
∑

j∈N(i)

(ui−uj) = 0 (i ∈ V \S).

We can rewrite this as

(3.4) ui =
1

deg(i)

∑
j∈N(i)

uj .

This equation means that every free node is placed in the center of gravity of its
neighbors. Equation (3.3) has a nice physical meaning: the rubber band connecting
i and j pulls i with force uj−ui, so (3.3) states that the forces acting on i sum to
0 (as they should at the equilibrium). It is easy to see that (3.3) characterizes the
equilibrium position.

We will return to the 1-dimensional case of rubber band representations in
Chapter 4, studying harmonic functions on a graph. In those terms, equation (3.4)
asserts that every coordinate function is harmonic at every free node.

It will be useful to extend the rubber band construction to the case when the
edges of G have arbitrary positive weights (or “strengths”). Let cij > 0 denote the
strength of the edge ij. We define the energy function of a representation u by

(3.5) Ec(u) =
∑
ij∈E

cij |ui−uj |2.

The simple arguments above remain valid: Ec is strictly convex if at least one
node is nailed, there is a unique optimum, and for the optimal representation every
i ∈ V \S satisfies

(3.6)
∑

j∈N(i)

cij(ui−uj) = 0.

This can be rewritten as

(3.7) ui =
1∑

j∈N(i) cij

∑
j∈N(i)

cijuj .

Thus ui is no longer at the center of gravity of its neighbors, but it is still a convex
combination of them with positive coefficients. In particular, it is in the relative
interior of the convex hull of its neighbors.



3.2. RUBBER BANDS, PLANARITY AND POLYTOPES 23

3.2. Rubber bands, planarity and polytopes

3.2.1. How to draw a graph? The rubber band method was first analyzed
in [Tutte 1963]. In this classical paper he describes how to use “rubber bands” to
draw a 3-connected planar graph with straight edges and convex countries.

Let G be a 3-connected planar graph, and let p0 be any country of it. Let
C0 be the cycle bounding p0. Let us nail the nodes of C0 to the vertices of a
convex polygon P0 in the plane, in the appropriate cyclic order, and let the rest
find its equilibrium. We draw the edges of G as straight line segments connecting
the appropriate endpoints. Figure 3.2 shows the rubber band representation of the
skeletons of the five platonic bodies.

Figure 3.2. Rubber band representations of the skeletons of pla-
tonic bodies

By the above, we know that each node not on C0 is positioned at the center
of gravity of its neighbors. Tutte’s main result about this representation is the
following:

Theorem 3.2. If G is a simple 3-connected planar graph, then every rubber band
representation of G (with the nodes of a particular country p0 nailed to a convex
polygon) gives a straight-line embedding of G in the plane. In addition, each country
is a convex polygon.

Proof. Let u : V → R2 be this rubber band representation of G. Let ` be a
line intersecting the interior of the polygon P0, and let U0, U1 and U2 denote the
sets of nodes of G mapped on ` and on the two (open) sides of `, respectively. The
key to the proof is the following claim.

Claim 1. The sets U1 and U2 induce connected subgraphs of G.

Let us prove this for U1. Clearly the nodes of the outer cycle p0 in U1 form
a (nonempty) path P1. We may assume that ` does not go through any node
(by shifting it very little in the direction of U1) and that it is not parallel to any
line connecting two distinct positions (by rotating it with a small angle). Let
a ∈ U1 \V (C0), we show that it is connected to P1 by a path in U1. Since ua is
a convex combination of the positions of its neighbors, it must have a neighbor a1
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such that ua1 is in U1 and at least as far away from ` as ua. By our assumption
that ` is not parallel to any edge, either ua1 is strictly farther from ` than ua, or
ua1 = ua.

At this point, we have to deal with an annoying degeneracy. There may be
several nodes represented by the same vector ua (later it will be shown that this does
not occur). Consider all nodes represented by ua, and the connected component H
containing a of the subgraph of G induced by these nodes. If H contains a nailed
node, then it contains a path from a to P1, all in U1. Else, there must be an edge
connecting a node a′ ∈ V (H) to a node outside H (since G is connected). Since
the system is in equilibrium, a′ must have a neighbor a1 such that ua1 is farther
away from ` than ua = ua′ (here we use again that no edge is parallel to `). Hence
a1 ∈ U1, and thus a is connected to a1 by a path in U1.

Either a1 is nailed (and we are done), or we can find a node a2 ∈ U1 such that
a1 is connected to a2 by a path in U1, and ua2 is farther from ` than ua1 , etc. This
way we get a path Q in G that starts at a, stays in U1, and eventually must hit P1.
This proves the claim (Figure 3.3).

H

Figure 3.3. Left: every line cuts a rubber band representation
into connected parts. Right: Each node on a line must have neigh-
bors on both sides of the line.

Next, we exclude some possible degeneracies. (We are not assuming any more
that no edge is parallel to `: this assumption could be made for the proof of Claim
1 only.)

Claim 2. Every node u ∈ U0 has neighbors both in U1 and U2.

This is trivial if u ∈ V (C0), so suppose that u is a free node. If u has a neighbor
in U1, then it must also have a neighbor in U2; this follows from the fact that uu is
the center of gravity of the points representing its neighbors. So it suffices to prove
that not all neighbors of u are contained in U0.

Let T be the set of nodes u ∈ U0 with N(u) ⊆ U0, and suppose that this
set is nonempty. Consider a connected component H of G[T ] (H may be a single
node), and let S be the set of neighbors of H outside H. Since V (H)∪S ⊆ U0, the
set V (H)∪S cannot contain all nodes, and hence S is a cutset. Thus |S| ≥ 3 by
3-connectivity.

If a ∈ S, then a ∈ U0 by the definition of S, but a has a neighbor not in U0, and
so it has neighbors in both U1 and U2 by the argument above (see Figure 3.3). The
set V (H) induces a connected graph by definition, and U1 and U2 induce connected
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subgraphs by Claim 1. So we can contract these sets to single nodes. These three
nodes will be adjacent to all nodes in S. So we have contracted G to K3,3, which
is a contradiction, since G is planar. This proves Claim 2.

Claim 3. Every country has at most two nodes in U0.

Suppose that a, b, c ∈ U0 are nodes of a country p. Clearly p 6= p0. Let us create
a new node d and connect it to a, b and c; the resulting graph G′ is still planar.
On the other hand, the same argument as in the proof of Claim 1 (with V (H) = d
and S = {a, b, c}) shows that G′ has a K3,3 minor, which is a contradiction.

Claim 4. Let p and q be the two countries sharing an edge ab, where a, b ∈ U0.
Then V (p1)\{a, b} ⊆ U1 and V (p2)\{a, b} ⊆ U2 (or the other way around).

Suppose not, then p has a node c 6= a, b and q has a node d 6= a, b such that
(say) c, d ∈ U1. (Note that c, d /∈ U0 by Claim 3.) By Claim 1, there is a path
P in U1 connecting c and d (Figure 3.4). Claim 2 implies that both a and b have
neighbors in U2, and again Claim 1, these can be connected by a path in U2. This
yields a path P ′ connecting a and b whose inner nodes are in U2. By their definition,
P and P ′ are node-disjoint. But look at any planar embedding of G: the edge ab,
together with the path P ′, forms a Jordan curve that does not go through c and d,
but separates them, so P cannot exist.

a b

c d

a
b

d

cP

�✁
✂✄

P

Figure 3.4. Two adjacent countries having nodes on the same
side of ` in the rubber band representation (left), and the suppos-
edly disjoint paths in the planar embedding (right).

Claim 5. The boundary of every country q is mapped onto a convex polygon Pq.

This is immediate from Claim 4, since no edge of a country, extended to a line,
can intersect its interior.

Claim 6. The interiors of the polygons Pq (q 6= p0) are disjoint.

Let x be a point inside Pp0 , we want to show that it is covered by one Pq only.
Clearly we may assume that x is not on the image of any edge. Draw a line through
x that does not go through the position of any node, and see how many times its
points are covered by interiors of such polygons. As we enter Pp0 , this number
is clearly 1. Claim 4 says that as the line crosses an edge, this number does not
change. So x is covered exactly once.

Now the proof is essentially finished. Suppose that the images of two edges have
a common point (other than their common endpoints). Then two of the countries
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incident with them would have a common interior point, which is a contradiction
except if these countries are the same, and the two edges are consecutive edges of
this country. �

Before going on, let’s make a couple of remarks about this drawing method. The
key step, namely Claim 1, is very similar to a basic fact concerning convex polytopes,
mentioned in Appendix C.1, that every hyperplane intersecting the interior of the
polytope cuts the skeleton into connected parts. Note that the proof of Claim 1
did not make use of the planarity of G (see Exercise 3.4, and also Section 16.5).

Tutte’s method, as described above, is a very efficient procedure to find straight-
line embeddings of 3-connected planar graphs in the plane. These embeddings look
nice for many graphs (as our figures show), but they may have bad parts, like points
getting too close. Figure 3.5 shows a simple situation in which positions of nodes
get exponentially close to each other and to the midpoint of an edge. You may
play with the edge weights, but finding a good weighting adds substantially to the
algorithmic cost.

Figure 3.5. The rubber band representation can lead to crowding
of the nodes. Each node on the middle line will be placed at or
below the center of gravity of the triangle formed by the lower edge
and the node immediately above it. So the distance between the
k-th node from the top and the lower edge decreases faster than
3−k.

A reasonable way to exclude nodes being positioned too close is to re-
quire that their coordinates are integers. Then the question is, of course,
how to minimize these coordinates. In which rectangles [0, a]× [0, b] can ev-
ery planar graph on n nodes be squeezed in so that we still get a straight
line embedding? It turns out that this can be achieved with a, b = O(n)
[Fraysseix–Pach–Pollack 1990, Schnyder 1990], with several good bounds on the
appropriate pairs (a, b) [Chrobak–Nakano 1998].

Representing edges by straight lines is not always the most important format
of useful drawings. In some very important applications of planar embedding,
most notably the design of integrated circuits (chips), the goal is to embed the
graph in a grid, so that the nodes are drawn on gridpoints, and the edges are
drawn as zig-zagging grid paths. (Of course, we must assume that no degree is
larger than 4.) This way all nonzero distances between nodes and/or edges are
automatically at least 1 (the edge-length of the grid). Besides trying to minimize
the size or area of the grid in which the embedding lies, it is very natural (and
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practically important) to minimize the number of bends. The good news is that
this can be achieved within a very reasonable area (O(n2)) and with O(n) bends
[Tamassia 1987, Tamassia–Tollis 2014]. See the Handbook of Graph Drawing and
Visualization [Tamassia 2014] for details.

3.2.2. How to lift a graph? An old construction of Cremona and Maxwell
can be used to “lift” Tutte’s rubber band representation to a Steinitz representation.
We begin with analyzing the reverse procedure: projecting a convex polytope onto
a face. This procedure is similar to the construction of the Schlegel diagram from
Section 2.2, but we consider orthogonal projection instead of projection from a
point.

Let P be a convex 3-polytope, let F be one of its faces, and let Σ be the plane
containing H. Suppose that for every vertex v of P , its orthogonal projection onto
H is an interior point of F ; we say that the polytope P is straight over the face F .

Theorem 3.3. (a) Let P be a 3-polytope that is straight over its face F , and let
G be the orthogonal projection of the skeleton of P onto the plane of F . Then we
can assign positive strengths to the edges of G so that G will be the rubber band
representation of the skeleton with the vertices of F nailed.

(b) Let G be a 3-connected planar graph, and let T be a triangular country of G,
and let ∆ be a triangle in a plane Σ. Then there is a convex polytope P in 3-space
such that T is a face of P , and the orthogonal projection of P onto the plane Σ
gives the rubber band representation of G obtained by nailing T to ∆.

In other words (b) says that we can assign a number ηi ∈ R to each node i ∈ V
such that ηi = 0 for i ∈ V (T ), ηi > 0 for i ∈ V \V (T ), and the mapping

i 7→ vi =

(
ui
ηi

)
=

ui1ui2
ηi

 ∈ R3

is a Steinitz representation of G.

Example 3.4 (Triangular Prism). Consider the rubber band representation of
a triangular prism (or of a triangular frustum, a truncated tetrahedron) in Figure
3.6, left. If this is an orthogonal projection of a convex polyhedron, then the lines
of the three edges pass through one point: the point of intersection of the planes of
the three quadrangular faces. It is easy to see that this condition is necessary and
sufficient for the picture to be a projection of a triangular frustum. To see that it is
satisfied by a rubber band representation, it suffices to note that the inner triangle
is in equilibrium, and this implies that the lines of action of the forces acting on it
must pass through one point. �

Now we are ready to prove theorem 3.3.

Proof. (a) Let’s call the plane of the face F “horizontal”, spanned by the
first two coordinate axes, and the third coordinate direction “vertical”, so that the
polytope is “above” the plane of F . For each face p, let gp be a normal vector. Since
no face is vertical, no normal vector gp is horizontal, and hence we can normalize
gp so that its third coordinate is 1. Clearly for each face p, gp will be an outer
normal, except for p = F , when gp is an inner normal (Figure 3.6).
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gp

vi

ui

Figure 3.6. Left: The rubber band representation of a triangular
prism is the projection of a polytope. Right: Vertical projection
of a polytope into one of its faces.

Write gp =
(
hp

1

)
. Let ij be any edge of G, and let p and q be the two countries

on the left and right of ij. Then

(3.8) (hp−hq)
T(ui−uj) = 0.

Indeed, both gp and gq are orthogonal to the edge vivj of the polytope, and
therefore so is their difference, and

(hp−hq)
T(ui−uj) =

(
hp−hq

0

)T(
ui−uj
ηi−ηj

)
= (gp−gq)

T(vi−vj) = 0.

We have hT = 0, since the face T is horizontal.
Let R denote the counterclockwise rotation in the plane by 90◦, then it follows

that hp−hq is parallel to R(uj−ui), and so there are real numbers cij such that

(3.9) hp−hq = cijR(uj−ui).

We claim that cij > 0. Let k be any node on the boundary of p different from i
and j. Then uk is to the left from the edge ij, and hence

(3.10) (uk−ui)
TR(uj−ui) > 0.

Going up to the space, convexity implies that the point vk is below the plane of
the face q, and hence gT

qvk < gT
qvi. Since gT

pvk = gT
pvi, this implies that

(3.11) cij
(
R(uj−ui)

)T
(uk−ui) = (hp−hq)

T(uk−ui) = (gp−gq)
T(vk−vi) > 0.

Comparing with (3.10), we see that cij > 0.
To complete the proof of (a), we argue that the projection of the skeleton is

indeed a rubber band embedding with strengths cij , with F nailed. We want to
prove that every free node i is in equilibrium, i.e.,

(3.12)
∑

j∈N(i)

cij(uj−ui) = 0.

Using the definition of cij , it suffices to prove that∑
j∈N(i)

cijR(uj−ui) =
∑

j∈N(i)

(hpj −hqj ) = 0,

where pj is the face to the left and qj is the face to the right of the edge ij. But this
is clear, since every term occurs once with positive and once with negative sign.

Let us make a remark here that will be needed later. Using that not only
gp−gq, but also gp is orthogonal to vj−vi, we get that

0 = gT
p(vj−vi) = hT

p(uj−ui)+ηj−ηi,
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and hence

(3.13) ηj−ηi = −hT
p(uj−ui).

(b) The proof consists of going through the steps of the proof of part (a) in
reverse order: given the Tutte representation, we first reconstruct the vectors hp so
that all equations (3.8) are satisfied, then using these, we reconstruct the numbers
ηi so that equations (3.13) are satisfied. It will not be hard to verify then that we
get a Steinitz representation.

We need a little preparation to deal with edges on the boundary triangle. Recall
that we can think of Fij = cij(uj−ui) as the force with which the edge ij pulls its
endpoint i. Equilibrium means that for every free node i,

(3.14)
∑

j∈N(i)

Fij = 0.

This does not hold for the nailed nodes, but we can modify the definition of Fij
along the three boundary edges so that Fij remains parallel to the edge uj−ui and
(3.14) will hold for all nodes (this is the only point where we use that the outer
country is a triangle). The only complication is that if we write Fij = cij(uj−ui)
for the boundary edges, then we have to allow negative strengths cij ; this will cause
not trouble in the computations. The existence of such forces Fij is natural by a
physical argument: let us replace the outer edges by rigid bars, and remove the
nails. The whole framework will remain in equilibrium, so appropriate forces must
act in the edges ab, bc and ac to keep balance. To translate this to mathematics,
one has to work a little; this is left to the reader as Exercise 3.5.

We claim that we can choose vectors hp for all countries p so that

(3.15) hp−hq = RFij

if ij is any edge and p and q are the two countries on its left and right. This follows
by a “potential argument”, which will be used several times in our book. Starting
with hT = 0, and moving from country to adjacent country, equation 3.15 will
determine the value of hp for every country p. What we have to show is that we
do not run into contradiction, i.e., if we get to the same country p in two different
ways, then we get the same vector hp. This is equivalent to saying that if we walk
around a closed cycle of countries, then the total change in the vector hp is zero. It
suffices to verify this when we move around countries incident with a single node.
In this case, the condition boils down to∑

i∈N(j)

RFij = 0,

which follows by (3.14). This proves that the vectors hp are well defined.
Second, we construct numbers ηi satisfying (3.13) by a similar argument (just

working on the dual graph). We set ηi = 0 if i is a node of the unbounded country.
Equation (3.13) tells us what the value at one endpoint of an edge must be, if we
have it for the other endpoint.

One complication is that (3.13) gives two conditions for each difference ηi−ηj ,
depending on which country incident with it we choose. But if p and q are the two
countries incident with the edge ij, then

hT
p(uj−ui)−hT

q(uj−ui) = (hp−hq)
T(uj−ui) = (RFij)

T(uj−ui) = 0,
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since Fij is parallel to ui−uj and so RFij is orthogonal to it. Thus the two
conditions on the difference ηi−ηj are the same.

As before, equation (3.13) determines the values ηi, starting with ηa = 0. To
prove that it does not lead to a contradiction, it suffices to prove that the sum
of changes is 0 if we walk around a country p. In other words, if C is the cycle
bounding a country p (oriented, say, clockwise), then∑

−→
ij∈E(C)

hT
p(uj−ui) = 0,

which is clear. It is also clear that ηb = ηc = 0.
Now define vi =

(
ui

ηi

)
for every node i, and gp =

(
hp

1

)
for every country p. It

remains to prove that i 7→ vi maps the nodes of G onto the vertices of a convex
polytope, so that edges go to edges and countries go to facets. We start with
observing that if p is a country and ij is an edge of p, then

gT
pvi−gT

pvj = hT
p(ui−uj)+(ηi−ηj) = 0,

and hence there is a scalar αp so that all nodes of p are mapped onto the hyperplane
gT
px = αp. We know that the image of p under i 7→ ui is a convex polygon, and so

the same follows for the map i 7→ vi.

p
q

vi

vj

ui

uj

gp�x=✁p

Figure 3.7. Lifting a rubber band representation to a polytope.

To conclude, it suffices to prove that if ij is any edge, then the two convex
polygons obtained as images of countries incident with ij “bend” in the right way;
more exactly, let p and q be the two countries incident with ij, and let Qp and Qq
be two corresponding convex polygons (see Figure 3.7). We claim that Qp lies on
the same side of the plane gT

px = αp as the bottom face. Let vk be any vertex of the

polygon Qq different from vi and vj . We want to show that gT
pvk < αp. Indeed,

gT
pvk−αp = gT

pvk−gT
pvi = gT

p(vk−vi) = (gp−gq)
T(vk−vi)

(since both vk and vi lie on the plane gT
qx = αq),

=

(
hp−hq

0

)T

(vk−vi) = (hp−hq)
T(uk−ui) = (RFij)

T(uk−ui) < 0

(since uk lies to the right from the edge uiuj). �
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Theorem 3.3 proves Steinitz’s theorem in the case when the graph has a trian-
gular country. If this is not the case, then Proposition 2.1 implies that the graph
has a node of degree 3, which means that the dual graph has a triangular coun-
try. So we can represent the dual graph as the skeleton of a 3-polytope. Choosing
the origin in the interior of this polytope, and considering its polar, we obtain a
representation of the original graph.

3.3. Rubber bands and connectivity

Rubber band representations can be related to graph connectivity, and can be
used to give a test for k-connectivity of a graph [Linial–Lovász–Wigderson 1988].
It turns out that connectivity of the underlying graph is related to the degeneracy
of the representation—a notion various versions of which will be crucial in many
parts of this book.

3.3.1. Degeneracy: essential and nonessential. We start with a discus-
sion of what causes degeneracy in rubber band embeddings. Consider the two
graphs in Figure 3.8. It is clear that if we nail the nodes on the convex hull, and
then let the rest find its equilibrium, then there will be a degeneracy: the grey
nodes will all move to the same position. However, the reasons for this degeneracy
are different: In the first case, it is due to symmetry; in the second, it is due to
the node that separates the grey nodes from the rest, and thereby pulls them onto
itself.

One can distinguish the two kinds of degeneracy in another way: In the first
graph, the strengths of the rubber bands must be strictly equal; varying these
strengths it is easy to break the symmetry and thereby get rid of the degeneracy.
However, in the second graph, no matter how we change the strengths of the rub-
ber bands (as long as they remain positive), the grey nodes will always be pulled
together into one point.

Figure 3.8. Two reasons why two or more nodes end up on top
of each other: symmetry, or a separating node

Figure 3.9 illustrates a bit more delicate degeneracy. In all three pictures, the
grey points end up collinear in the rubber band embedding. In the first graph, the
reason is symmetry again. In the second, there is a lot of symmetry, but it does
not explain why the three grey nodes are collinear in the equilibrium. (It is not
hard to argue though that they are collinear: a good exercise!) In the third graph
(which is not drawn in its equilibrium position, but before it) there are two nodes
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separating the grey nodes from the nailed nodes, and the grey nodes will end up
on the segment connecting these two nodes. In the first two cases, changing the
strength of the rubber bands will pull the grey nodes off the line; in the third, this
does not happen.

Figure 3.9. Three reasons why three nodes can end up collinear:
symmetry, just accident, or a separating pair of nodes

3.3.2. Connectivity and degeneracy. Our goal is to prove that essential
degeneracy in a rubber band embedding is always due to low connectivity. We
start with the easy direction of the connection, relating connectivity and affine
rank, formalizing the examples from the previous section.

Lemma 3.5. Let G be a graph and S, T ⊆ V . Then for every rubber band repre-
sentation u of G with S nailed, rkaff

(
u(T )

)
≤ κ(S, T ).

Proof. There is a subset U ⊆ V with |U | = κ(S, T ) such that V \U contains
no (S, T )-paths. Let W be the union of connected components of G\U containing
a vertex from T . Then u, restricted to W , gives a rubber band representation of
G[W ] with boundary U . Clearly u(W ) ⊆ conv

(
u(U)

)
, and so

rkaff

(
u(T )

)
≤ rkaff

(
u(W )

)
= rkaff

(
u(U)

)
≤ |U | = κ(S, T ). �

The Lemma gives a lower bound on the connectivity between two sets S and
T . The following theorem asserts that if we take the best convex representation,
this lower bound is tight:

Theorem 3.6. Let G be a graph and S, T ⊆ V with κ(S, T ) = d+1. Then G has a
rubber band representation in Rd, with suitable rubber band strengths, with S nailed
such that rkaff

(
u(T )

)
= d+1.

This theorem has a couple of consequences about connectivity not between sets,
but between a set and any node, and between any two nodes.

Corollary 3.7. Let G be a graph, d ≥ 1 and S ⊆ V . Then G has a rubber band
representation in general position in Rd with S nailed if and only if no node of G
can be separated from S by fewer than d+1 nodes.

Corollary 3.8. A graph G is k-connected if and only if for every S ⊆ V with
|S| = k, G has a rubber band representation in Rk−1 in general position with S
nailed.

To prove Theorem 3.6, we choose generic edge weights.
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Figure 3.10. Three nodes accidentally on a line. Strengthening
the edges along the three paths pulls them apart.

Theorem 3.9. Let G be a graph and S, T ⊆ V with κ(S, T ) ≥ d+1. Choose
algebraically independent edgeweights cij > 0. Map the nodes of S into Rd in general
position. Then the rubber band extension of this map satisfies rkaff

(
u(T )

)
= d+1.

If the edgeweights are chosen randomly, independently and uniformly from
[0, 1], then the algebraic independence condition is satisfied with probability 1.

Proof. The proof will consist of two steps: first, we show that there is some
choice of the edgeweights for which the conclusion holds; then we use this to prove
that the conclusion holds for every generic choice of edge-weights.

For the first step, we use that by Menger’s Theorem B.2, there are d+1 disjoint
paths Pi connecting a node i ∈ S with a node i′ ∈ T . The idea is to make the
rubber bands on these paths very strong (while keeping the strengths of the other
edges fixed). Then these paths will pull each node i′ very close to i. Since the
positions of the nodes i ∈ S are affine independent, so will be the positions of the
nodes i′ (Figure 3.10).

To make this precise, let D be the diameter of the set {u(S)}. Fix any R > 0,
and define strengths cij of the rubber bands by

cij =

{
R, if ij is an edge of one of the paths Pr,

1, otherwise.

Let u be the rubber band extension of the given mapping of the nodes of S with
these strengths.

Recall that f minimizes the potential Ec (defined by (3.5)) over all representa-
tions of G with the given nodes nailed. Let v be the representation with vj = ui
if j ∈ Pi (in particular, vi = ui if i ∈ S); for any node j not on any Pi, let vj be
any point in conv{u(S)}. In the representation v the edges with strength R have
0 length, and so

ES(u) ≤ ES(v) ≤ D2m.

On the other hand, for every edge uv on one of the paths Pi,

ES(u) ≥ R|uu−uv|2,
and hence

|uu−uv| ≤
D
√
m√
R

.
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So these edges can be made arbitrarily short if we choose R large enough, and
hence every node i′ will be arbitrarily close to the corresponding nailed node i.
Since {ui : i ∈ S} are affine independent, this implies that the nodes in {ui′ : i ∈
T} = {ui : i ∈ S} are affine independent for a large enough value of R.

This completes the first step. Now we argue that this holds for all possible
choices of generic edge-weights. To prove this, we only need some general consider-
ations. The embedding minimizing the energy is unique, and so it can be computed
from the equations (3.6) (say, by Cramer’s Rule). What is important from this is
that the vectors ui can be expressed as rational functions of the edgeweights. Fur-
thermore, the value det

(
(1+uT

tiutj )di,j=0

)
is a polynomial in the coordinates of the

ui, and so it is also a rational function of the edgeweights. We know that this
rational function is not identically 0; hence it follows that it is nonzero for every
algebraically independent substitution. �

Remark 3.10. Instead of rubber band embeddings, it would suffice to assume that
each free node is placed in the convex hull of its neighbors [Cheriyan–Reif 1992].

3.3.3. Rubber bands and connectivity testing. Rubber band represen-
tations yield a (randomized) graph connectivity algorithm with good running time
[Linial–Lovász–Wigderson 1988]; however, a number of algorithmic ideas are needed
to make it work, which we describe in their simplest form. We refer to the paper
for a more thorough analysis.

Connectivity between given sets. We start with describing a test checking
whether or not two given k-tuples S and T of nodes are connected by k node-
disjoint paths. For this, we assign random weights cij to the edges, and map the
nodes in S into Rk−1 in general position. Then we compute the rubber band
representation extending this map, and check whether the points representing T
are in general position.

This procedure requires solving a system of linear equations, which is easy, but
the system is quite large, and it depends on the choice of S and T . With a little
work, we can save quite a lot.

Let G be a connected graph on V = [n] and S ⊆ V , say S = [k]. Given a map
u : S → Rk−1, we can compute its rubber band extension by solving the system
of linear equations

(3.16)
∑

j∈N(i)

cij(ui−uj) = 0 (i ∈ V \S).

This system has (n−k)(k−1) unknowns (the coordinates of nodes i ∈ S are con-
sidered as constants) and the same number of equations, and we know that it has a
unique solution, since this is where the gradient of a strictly convex function (which
tends to ∞ at ∞) vanishes.

At the first sight, solving (3.16) takes inverting an (n−k)(k−1)×(n−k)(k−1)
matrix, since there are (n−k)(k−1) unknowns and (n−k)(k−1) equations. How-
ever, we can immediately see that the coordinates can be computed independently,
and since they satisfy the same equations except for the right hand side, it suffices
to invert the matrix of the system once.

Below, we will face the task of computing several rubber band representations
of the same graph, changing only the nailed set S. Can we make use of some of the
computation done for one of these representations when computing the others?
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The answer is yes. First, we do something which seems to make things worse:
We create new “equilibrium” equations for the nailed nodes, introducing new vari-
ables for the forces that act on the nails. Let fi =

∑
j∈N(i) cij(uj−ui) be the force

acting on node i in the equilibrium position. Note that Y ei = fi = 0 for i /∈ S. Let
X and Y be the matrices of the vector labelings u and f . Let Lc be the symmetric
V ×V matrix

(Lc)ij =


−cij if ij ∈ E,∑
k∈N(i) cik, if i = j,

0, otherwise

(the weighted Laplacian of the graph). Then we can write (3.16) as XLc = Y .
To simplify matters a little, let us assume that the center of gravity of the node
positions is 0, so that XJ = 0. We also have Y J = XLcJ = 0. It is easy to check
that

(3.17) X = Y (Lc+J)−1

satisfies these equations (for more about this, see the “inverting the Laplacian”
trick in Section 4.3.2).

It is not clear that we are nearer our goal, since how do we know the matrix
Y (i.e., the forces acting on the nails)? But the trick is this: we can prescribe
these forces arbitrarily, as long as the conditions

∑
i∈S fi = 0 and fj = 0 for j /∈ S

are satisfied. Then the rows of X will give some position for each node, for which
XLc = Y . So in particular the nodes in V \S will be in equilibrium, so if we nail
the nodes of S, the rest will be in equilibrium. If Y has rank d, then so does X,
which implies that the vectors representing S will span the space Rd. Since their
center of gravity is 0, it follows that they are not on one hyperplane. We can
apply an affine transformation to move the points ui (i ∈ S) to any other affine
independent position if we wish, but this is irrelevant: what we want is to check
whether the nodes of T are in general position, and this is not altered by any affine
transformation.

To sum up, to check whether the graph is k-connected between S and T (where
S, T ⊆ V , |S| = |T | = k), we select random weights cij for the edges, select a
convenient matrix Y , compute the matrix X = Y (Lc+J)−1, and check whether
the rows with indices from T are affine independent. The matrix Lc+J is positive
definite, and it has to be inverted only once, independently of which sets are we
testing for connectivity. The matrix Y has dimensions (k−1)×n, but most of its
elements are zero; a convenient choice for Y is

Y =


1 0 . . . 0 −1 0 . . .
0 1 . . . 0 −1 0 . . .
...

. . .

0 0 . . . 1 −1 0 . . .

 .

and then the matrix multiplication Y (Lc+J)−1 is trivial.

Connectivity between all pairs. If we want to apply the previous algorithm for
connectivity testing, it seems that we have to apply it for all pairs of k-sets. Even
though we can use the same edgeweights and we only need to invert Lc+J once,
we have to compute X = Y (Lc+J)−1 for potentially exponentially many different
sets S, and then we have to test whether the nodes of T are represented in general
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position for exponentially many sets T . The following lemma shows how to get
around this.

Lemma 3.11. For every vertex v ∈ V we select an arbitrary k-subset S(v) ⊆ N(v).
Then G is k-connected if and only if S(u) and S(v) are connected by k node-disjoint
paths for every u and v.

Proof. The ”only if” part follows from the well-known property of k-connected
graphs that any two k-subsets are connected by k node-disjoint paths. The ”if” part
follows from the observation that if S(u) and S(v) are connected by k node-disjoint
paths, then u and v are connected by k openly disjoint paths. �

Thus the subroutine in the first part needs be called only O(n2) times. In fact,
we do not even have to check this for every pair (u, v), and further savings can be
achieved through randomization, using Exercises 3.11 and 3.12.

Numerical issues. The computation of the rubber band representation requires
solving a system of linear equations. We have seen (Figure 3.5) that for a graph with
n nodes, the positions of the nodes can get exponentially close in a rubber band
representation, which means that we might have to compute with exponentially
small numbers (in n), which means that we have to compute with linearly many
digits, which gives an extra factor of n in the running time. One way out is to
solve the system in a finite field rather than in R. Of course, this ”modular”
embedding has no physical or geometrical meaning any more, but the algebraic
structure remains!

For the analysis, we need the Schwartz–Zippel Lemma [Schwartz 1980,
Zippel 1979]:

Lemma 3.12. Given a polynomial over any field of degree k in m variables, the
probability that it vanishes for a random substitution, where each variable is chosen
uniformly from N possible values, is bounded by k/N . �

Let G be a graph and let S ⊆ V , |S| = k, and d = k−1. Let p be a prime and
ce ∈ Fp for e ∈ E. A modular rubber band representation of G (with respect to S,
p and c) is defined as an assignment i 7→ ui ∈ Fdp satisfying

(3.18)
∑

j∈N(i)

cij(ui−uj) = 0 (∀i ∈ V \S).

This is formally the same equation as for real rubber bands, but we work over Fp,
so no notion of convexity can be used. In particular, we cannot be sure that the
system has a solution. But things work if the prime is chosen at random.

Lemma 3.13. Let N > 0 be an integer. Choose uniformly a random prime p < N
and random weights ce ∈ Fp (e ∈ E).

(a) With probability at least 1−n2/N , there is a modular rubber band represen-
tation of G (with respect to S, p and c), such that the vectors ui (i ∈ S) are affine
independent. This representation is unique up to affine transformations of Fdp.

(b) Let T ⊆ V , |T | = k. Then with probability at least 1−n2/N , the represen-
tation uc in (a) satisfies rkaff({ui : i ∈ T}) = κ(S, T ).

Proof. The determinant of the system (3.18) is a polynomial of degree at most
n2 of the weights cij . The Schwartz–Zippel Lemma gives (a). The proof of (b) is
similar. �
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We sum up the complexity of this algorithm without going into fine details.
In particular, we restrict this short analysis to the case when k < n/2. We
have to fix an appropriate N ; N = n5 will do. Then we pick a random prime
p < N . Since N has O(log n) digits, the selection of p and every arithmetic op-
eration in Fp can be done in polylogarithmic time, and we are going to ignore
these factors of log n. We have to generate O(n2) random weights for the edges.
We have to invert (over Fp) the matrix Lc+J , this takes O

(
M(n)

)
operations,

where M(n) is the cost of multiplying two n×n matrices (currently known to be
O(n2.3727) [Vassilevska Williams 2012]). Then we have to compute Y (Lc+J)−1 for
a polylogarithmic number of different matrices Y (using Exercise 3.12(b) below).
For each Y , we have to check affine independence for one k-set in the neighbor-
hood of every node, in O

(
nM(k)

)
time. Up to polylogarithmic factors, this takes

O
(
M(n)+nM(k)

)
time.

Using much more involved numerical methods, solving linear equations involv-
ing the Laplacian and similar matrices can be done more efficiently. For details, we
refer to [Spielman 2011] and [Spielman–Teng 2014].

Exercise 3.1. Prove that minu Ec(u) (where the minimum is taken over all posi-
tions u with some nodes nailed) is a concave function of the rubber band strengths
c ∈ RE .

Exercise 3.2. Let x be the equilibrium position of a rubber band framework
with the nodes in S nailed, and let y be any other position of the nodes (but with
the same nodes nailed at the same positions). Then

Ec(y)−Ec(x) = Ec(y−x).

Exercise 3.3. Let G be a connected graph, ∅ 6= S ⊆ V , and u : S → Rd. Extend
u to u : V \S → Rd as follows: starting a random walk at j, let i be the (random)
node where S is first hit, and let uj denote the expectation of the vector ui. Prove
that u is the same as the rubber band extension of u.

Exercise 3.4. Let G be a connected graph, and let u be a vector-labeling of an
induced subgraph H of G (in any dimension). If (H,u) is section-connected, then
its rubber-band extension to G is section-connected as well.

Exercise 3.5. Let u be a rubber band representation of a planar map G in
the plane with the nodes of a country T nailed to a convex polygon. Define
Fij = ui−uj for all edges in E \E(T ). (a) If T is a triangle, then we can define
Fij ∈ R2 for ij ∈ E(T ) so that Fij = −Fji, Fij is parallel to uj−ui, and∑
i∈N(j) Fij = 0 for every node i. (b) Show by an example that (a) does not

remain true if we drop the condition that T is a triangle.

Exercise 3.6. Prove that every Schlegel diagram with respect to a face F can
be obtained as a rubber band representation of the skeleton with the vertices of
F nailed (the strengths of the rubber bands must be chosen appropriately).

Exercise 3.7. Let G be a 3-connected simple planar graph with a triangular
country p = abc. Let q, r, s be the countries adjacent to p. Let G∗ be the dual
graph. Consider a rubber band representation u : V → R2 of G with a, b, c nailed
down (both with unit rubber band strengths). Prove that the segments represent-
ing the edges can be translated so that they form a rubber band representation
of G∗−p with q, r, s nailed down (Figure 3.11).
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Figure 3.11. Rubber band representation of a dodecahedron with
one node deleted, and of an icosahedron with the edges of a triangle
deleted. Corresponding edges are parallel and have the same
length.

Exercise 3.8. A convex representation of a graph G (in dimension d, with bound-
ary S ⊆ V ) is a mapping of V → Rd such that every node in V \S is in the relative
interior of the convex hull of its neighbors. (a) The rubber band representation
extending any map from S ⊆ V to Rd is convex with boundary S. (b) Not every
convex representation is constructible this way.

Exercise 3.9. In a rubber band representation, increase the strength of an edge
between two unnailed nodes (while leaving the other edges invariant). Prove that
the length of this edge decreases.

Exercise 3.10. Prove that a 1-dimensional rubber band representation of a 2-
connected graph, with boundary nodes s and t, nondegenerate in the sense that
the nodes are all different, is an s-t-numbering (as defined in the Introduction).
Show that instead of the 2-connectivity of G, it suffices to assume that deleting
any node, the rest is either connected or has two components, one containing s
and one containing t.

Exercise 3.11. Let G be any graph, and let H be a k-connected graph with
V (H) = V . Then G is k-connected if and only if u and v are connected by k
openly disjoint paths in G for every edge uv ∈ E(H).

Exercise 3.12. Let G be any graph and k < n. (a) For t pairs of nodes chosen
randomly and independently, we test whether they are connected by k openly
disjoint paths. Prove that if G is not k-connected, then this test discovers this
with probability at least 1−exp(−2(n−k)t/n2). (b) For r nodes chosen randomly
and independently, we test whether they are connected by k openly disjoint paths
to every other node of the graph. Prove that if G is not k-connected, then this
test discovers this with probability at least 1−

(
(k−1)/n

)r
.

Exercise 3.13. Let G be a graph, and let Z be a matrix obtained from its
Laplacian LG by replacing its nonzero entries by algebraically independent tran-
scendentals. For S, T ⊆ V , |S| = |T | = k, let ZS,T denote the matrix obtained
from Z by deleting the rows corresponding to S and the columns corresponding
to T . Then det(ZS,T ) 6= 0 if and only if κ(S, T ) = k.



CHAPTER 4

Discrete Harmonic Functions

Having discussed the nice geometry of rubber band embeddings, let us have a
closer look at the one-dimensional case (or, if you prefer, at one of the coordinate
functions). This will allow us to make some arguments from the previous chapter
(“potential argument” and “inverting the Laplacian”) more general and precisely
stated.

Discrete harmonic functions are discrete analogues of harmonic functions in
analysis, where they play a fundamental role. A “true” harmonic function can be
defined as a twice differentiable function f : Rd → R (perhaps defined only in some

domain) satisfying the differential equation ∆f = 0, where ∆ =
∑d
i=1 ∂

2/∂x2
i is

the Laplace operator. It is a basic fact that such functions can be characterized by
the “mean value property”: their value at any point equals to their average on any
ball around this point. We take this second characterization as our starting point
for introducing an analogous notion of harmonic functions defined on the nodes of
an arbitrary graph.

Discrete harmonic functions play an important role in the study of random
walks (after all, the averaging in the definition can be interpreted as expectation
after one move). They also come up in the theory of electrical networks, and also
in statics. This provides a connection between these fields, which can be exploited.
In particular, various methods and results from the theory of electricity and statics,
often motivated by physics, can be applied to provide results about random walks,
and vice versa. From our point of view, their main applications will be in the theory
of discrete analytic functions in later chapters.

4.1. Basics

4.1.1. Definition, uniqueness and existence. Let G be a connected simple
graph. A function h : V → R is called harmonic at a node v ∈ V if

(4.1)
1

deg(v)

∑
u∈N(v)

h(u) = h(v)

(the value of h at a node v is the average of its values at the neighbors of v.) We
can also write this condition as

(4.2)
∑

u∈N(v)

(
h(v)−h(u)

)
= 0.

A node where a function is not harmonic is called a pole of the function. Figure 4.1
shows a couple of very simple functions harmonic at many nodes, with black nodes
denoting their poles.

If we consider h as a vector indexed by the nodes, and Lh is the vector obtained
by applying the Laplacian L = LG to h, then we can express (4.1) as (Lh)v = 0.

39
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Figure 4.1. (a) A harmonic function on a cycle, with two poles
(black nodes). (b) A harmonic function on a triangular grid, with
poles at the center and on the boundary.

It is useful to note that, since each column sum of L is zero,

(4.3)
∑
v∈V

(Lh)v = 1
TLh = 0.

So every function is harmonic “on the average”.
We can extend this notion to multigraphs by replacing (4.1) by

(4.4)
1

deg(v)

∑
uv=e∈E

h(u) = h(v).

Another way of writing this is

(4.5)
∑
u∈V

auv
(
h(v)−h(u)

)
= 0,

where auv is the multiplicity of the edge uv. We could further generalize this by
assigning arbitrary positive “strengths” βuv to the edges of G, and say that h is
harmonic at v (on the weighted graph (G, β)) if

(4.6)
∑
u∈V

βuv
(
h(v)−h(u)

)
= 0.

In what follows, we will restrict our arguments to simple graphs (to keep things
simple), but all of the results below could be extended to multigraphs and weighted
graphs in a straightforward way.

Every constant function is harmonic at each node. On the other hand, it was
observed very early [Katona–Korvin 1968] that this is all:

Proposition 4.1. Every nonconstant function on the nodes of a connected graph
has at least two poles.

This implies that if h : V → R is a nonconstant function, then Lh 6= 0, so the
nullspace of L is one-dimensional: it consists of the constant functions only.

Proof. Let S be the set where the function assumes its maximum, and let S′

be the set of those nodes in S that are connected to any node outside S. Then
every node in S′ must be a pole, since in (4.1), every value h(u) on the left had
side is at most h(v), and at least one is less, so the average is less than h(v). Since
the function is nonconstant, S is a nonempty proper subset of V , and since the
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graph is connected, S′ is nonempty. So there is a pole where the function attains
its maximum. Similarly, there is another pole where it attains its minimum. �

The proof above shows that every non-constant function on the nodes of a
graph assumes its maximum as well as its minimum on one of its poles. This can
be viewed as a (very simple) version of the Maximum Principle familiar from the
theories of harmonic and analytic functions.

For any two nodes there is a nonconstant harmonic function that is harmonic
everywhere else. More generally, we have the following theorem.

Theorem 4.2. For a connected simple graph G, nonempty set S ⊆ V and function
h0 : S → R, there is a unique function h : V → R extending h0 that is harmonic
at each node of V \S.

We call this function h the harmonic extension of h0. Note that if |S| = 1, then
the harmonic extension is a constant function (and so it is also harmonic at S, and it
does not contradict Proposition 4.1). If S = {a, b}, then a function that is harmonic
outside S is uniquely determined by two of its values, h(a) and h(b). Scaling the
function by a real number and adding a constant preserves harmonicity at each
node, so if we know how to construct the harmonic extension h with (say) h(a) =
0 and h(b) = 1, then g(v) = g0(a)+

(
g0(b)−g0(a)

)
h(v) describes the harmonic

extension of the function g0 : {a, b} → R. In this case equation (4.5) is equivalent
to saying that Fij = h(j)−h(i) defines a flow from a to b.

Proof. The uniqueness of the harmonic extension is easy by the argument in
the proof of Proposition 4.1. Suppose that h and h′ are two harmonic extensions of
h0. Then g = h−h′ is harmonic on V \S, and satisfies g(v) = 0 at each v ∈ S. If
g is the identically 0 function, then h = h′ as claimed. Else, either its minimum or
its maximum is different from 0. But we have seen that both the minimizers and
the maximizers contain at least one pole, which is a contradiction.

The existence is just the 1-dimensional case of the construction of the rubber
band extension in Section 3.1. �

There are several other ways of proving the existence; a few of these could be
based on the models below and on the linear algebra considerations in the next
sections.

4.1.2. Random walks. Random walks were considered in the Introduction,
but we need a few more definitions. Recall that a random walk on a graph G is a
random sequence (v0, v1, . . . ) of nodes constructed as follows: We pick a starting
point v0 from a specified initial distribution σ (often a specific node), we select a
neighbor v1 of it at random (each neighbor is selected with the same probability
1/ deg(v0)), then we select a neighbor v2 of this node v1 at random, etc. We denote
by σk the distribution of vk.

For any event A expressible in terms of the random walk (v0, v1, . . . ), started
from the distribution σ, we denote by Pσ(A) its probability. For example, Pu(vt =
u) is the probability that after t steps, the random walk started at u returns to the
starting node. Expectations Eσ(X) are defined similarly for random variables X
depending on the walk.

In the language of probability theory, a random walk is a finite time-reversible
Markov chain. There is not much difference between the theory of random walks
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on directed graphs and the theory of finite Markov chains; every Markov chain can
be viewed as random walk on a directed graph, if we allow weighted edges, and
every time-reversible Markov chain can be viewed as a random walk on an edge-
weighted undirected graph. The theory of random walks (finite Markov chains) has
a large literature, and we will not be able to provide here even an introduction.
The following discussion, based on well known and intuitive facts, can be followed
even by those not familiar with the subject. For example, we need the fact that,
with probability 1, a random walk on a connected graph hits every node infinitely
often.

Let π denote the probability distribution in which the probability of a node
is proportional to its degree: πv = deg(v)/(2m). This distribution is called the
stationary distribution of the random walk. It is easy to check that if v0 is selected
from π, then after any number of steps, vk will have the same distribution π. (This
explains the name “stationary distribution”).

Using the adjacency matrix A = AG and the diagonal matrix D = DG com-
posed of the degrees, we define the transition matrix of the random walk on G as
P = D−1A = I−D−1L. If we are at node i, then the probability of moving to
node j is Pij . The eigenvalues of P are the same as the eigenvalues of the symmet-

ric matrix I− L̂ = D1/2PD−1/2, so in particular they are real. (This shows why
the spectrum of the normalized Laplacian plays an important role in the study of
random walks.) The largest eigenvalue of the transition matrix P is 1, and it has
multiplicity 1 for connected graphs. It is straightforward to check that the right
eigenvector belonging to it is 1, and the left eigenvector is given by π.

Let us return to harmonic functions. Given a nonempty subset S ⊆ V and a
function h0 : S → R, we define

(4.7) h(v) = Ev
(
h0(av)

)
,

where av is the (random) node where a random walk first hits S (this node exists
with probability 1). Clearly h(v) = h0(v) for v ∈ S. Furthermore, for a node
v ∈ V \S we have

h(v) = Ev
(
h0(av)

)
=

∑
u∈N(v)

Pv(w
1 = u)Eu

(
h0(au)

)
=

1

deg(v)

∑
u∈N(v)

h(u).

This shows that h is harmonic on V \S.
As a special case, if S = {s, t}, h0(s) = 0 and h0(t) = 1, then h(v) is the

probability that a random walk starting at v visits t before s.

Remark 4.3. Random walks on infinite graphs have quite different problems.
Consider an infinite connected graph G with finite degrees, and specify a “root”
node r. For each v ∈ V , let h(v) denote the probability that starting a random
walk at v, we hit r at some time. Clearly h(r) = 1, and h is harmonic at every
node other than r.

If the function h is identically 1, then the random walk is recurrent. In this
case, it almost surely visits every node infinitely often. If it is not recurrent, then it
is called transient; it almost surely visits every node only a finite number of times.
(These properties seem to depend on the root, but in fact if the graph is recurrent
for one root, then it is recurrent for every other root.)

For a recurrent walk, the function h is a trivial harmonic function. For a
transient walk, we get an interesting function with a single pole. We can of course
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restrict the function to a finite induced subgraph, but then it will have more poles,
at all neighbors of the complementary node set.

Basic results in probability tell us that the grid graph on Zd (in which two
nodes are connected whenever their distance is 1) is recurrent for dimensions d ≤ 2,
but transient for d > 2 [Pólya 1921]. Random walks on infinite graphs is a very
important topic, connected to our theme in many ways, but this topic does not fit
in this book.

4.1.3. Electrical networks. In this third construction for harmonic func-
tions, we use facts from the physics of electrical networks like Ohm’s Law and
Kirchhoff’s two laws. This looks like stepping out of the realm of mathematics;
however, these results are all purely mathematical.

To be more precise, we consider these laws as axioms. Given a connected
network whose edges are conductors, and an assignment of potentials (voltages) to
a subset S of its nodes, we want to find an assignment of voltage differences Uij
and currents Iij to the edges ij so that Uij = −Uji, Iij = −Iji (so the values are
defined if we give the edge an orientation, and the values are antisymmetric), and
the following laws are satisfied:

Ohm’s Law: Uij = RijIij (where Rij > 0 is the resistance of edge e; this does
not depend on the orientation).

Kirchhoff’s Current Law:
∑
u∈N(v) Iuv = 0 for every node v /∈ S;

Kirchhoff’s Voltage Law:
∑
ij∈E(C) Uij = 0 for every cycle

−→
C (the order of

i and j is given by fixing a direction of traversing C).

Note that every cycle has two orientations, but because of antisymmetry, these
two oriented cycles give the same condition. Therefore, in a bit sloppy way, we can
talk about Kirchhoff’s Voltage Law for an undirected cycle. As a degenerate case,
we could require the Voltage Law for oriented cycles of length 2, consisting of an
edge and its reverse, in which case the law says that Uij+Uji = 0, which is just
another way of saying that U is antisymmetric.

The following reformulation of Kirchhoff’s Voltage Law will be useful for us:
there exist potentials p(i) ∈ R (i ∈ V ) so that Uij = p(j)−p(i). This sounds like a
statement in physics, but in fact it is a rather simple fact about graphs:

Proposition 4.4. Given a connected graph G and an antisymmetric assignment
Uij of real numbers to the oriented edges, there exist real numbers p(i) (i ∈ V ) so
that Uij = p(j)−p(i) if and only if

∑
ij∈E(C) Uij = 0 for every cycle C.

Proof. It is trivial that if a “potential” exists for a given assignment of voltages
Uij , then Kirchhoff’s Voltage Law is satisfied. Conversely, suppose that Kirchhoff’s
Voltage Law is satisfied. We derive a couple of consequences.

Claim 1. If W is any closed walk on the graph, then
∑
ij∈E(W ) Uij = 0.

This follows by induction on the length of the walk. Consider the first time
when we encounter a node already visited. If this is the end of the walk, then the
walk is a single oriented cycle, and the assertion follows by Kirchhoff’s Voltage Law.
Otherwise, this node splits the walk into two closed walks, and since the sum of
voltages is zero for each of them by induction, it is zero for the whole walk.

Claim 2. If W1 and W2 are open walks with the same starting nodes and the same
ending nodes, then

∑
ij∈E(W1) Uij =

∑
ij∈E(W2) Uij.
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Indeed, concatenating W1 with the reversal of W2 we get a closed walk whose
total voltage is

∑
ij∈E(W1) Uij−

∑
ij∈E(W2) Uij , and this is 0 by Claim 1.

Now let us turn to the construction of the potentials. Fix any node v as a root,
and assign to it an arbitrary potential p(v). For every other node u, consider any
walk W from v to u, and define p(u) =

∑
ij∈E(W ) Uij . This value is independent

of the choice of W by Claim 2. Furthermore, for any neighbor u′ of u, considering
the walk W +uu′, we see that p(u′) = p(u)+Uuu′ , which shows that p is indeed a
potential for the voltages U . �

To check Kirchhoff’s Voltage Law for every cycle in the graph is a lot of work;
but these equations are not independent, and it is enough to check it for a basis of
these equations. There are several useful ways to select a basis; here we state one
that is particularly useful, and another one as Exercise 4.1.

Corollary 4.5. Let G be a 2-connected planar graph and let Uij be an antisymmet-
ric assignment of real numbers to the oriented edges. There exist real numbers p(i)
(i ∈ V ) so that Uij = p(j)−p(i) if and only if Kirchhoff’s Voltage Law is satisfied
by the boundary cycle of every bounded country.

Proof. We want to show that Kirchhoff’s Voltage Law is satisfied by every cy-
cle C. Fix any embedding of the graph in the plane, and (say) the counterclockwise
orientation of C. Let us sum Kirchhoff’s Voltage Law corresponding to countries
contained inside C, with the counterclockwise orientation of each; the terms cor-
responding to internal edges cancel (by antisymmetry), and we get Kirchhoff’s
Voltage Law for C. �

We have given these simple arguments in detail, because essentially the same
argument is used repeatedly in the book (already used in Section 3.2), and we
are not going to describe it every time; we will just refer to it as the “potential
argument”. We could formulate and prove Proposition 4.4 and Corollary 4.5 for
an arbitrary abelian group instead of the real numbers. The group of complex
numbers, and the group of vectors in a linear space, will be used several times.

The main result from the theory of electrical networks we are going to use is that
given a connected graph with voltages assigned to a nonempty set of nodes, there
is always a unique assignment of potentials to the remaining nodes and currents to
the edges satisfying Ohm’s and Kirchhoff’s Laws.

Returning to the proof of Theorem 4.2, consider the graph G as an electrical
network, where each edge represents a conductor with unit resistance. Given a set
S ⊆ V and a function h0 : S → R, let a current flow through the network while
keeping each v ∈ S at potential h0(v). Then the potential h(v) defined for all nodes
v is an extension of h0, and it is harmonic at every node v ∈ V \S. Indeed, the
current through an edge uv is h(u)−h(v) by Ohm’s Law, and hence by Kirchhoff’s
Current Law,

∑
j∈N(i)

(
h(j)−h(i)

)
= 0 for every node i.

As a special case, if we send unit current from node s to node t, then the
potentials h of the nodes satisfy the equation Lh = 1t−1s.

4.1.4. Rubber bands. We have seen that harmonic functions arise as 1-
dimensional special cases of rubber band extensions. Let us discuss a further prop-
erty for this model.
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Figure 4.2. Stretching two nodes of a graph with edges replaced
by rubber bands. The figure should be one-dimensional, but it is
vertically distorted so that the graph can be seen.

Consider the case of stretching just two nodes s and t to a unit distance apart
(Figure 4.2). We see that they pull our hands with a force of

(4.8) F (s, t) =
∑

u∈N(s)

(h(u)−h(s)) =
∑

u∈N(t)

(h(t)−h(u))

(by basic physics, both of our hands feel the same force, in opposite directions).
Considering the energy balance gives further important information. Imagine that
we slowly stretch the graph until nodes s and t will be at distance 1. When they
are at distance x, the force pulling our hands is xF (s, t) (everything scales by a
factor of x), and hence the energy we have to spend is

1∫
0

xF (s, t) dx =
1

2
F (s, t).

This energy accumulates in the rubber bands. By a similar argument, the energy

stored in the rubber band uv is
(
h(v)−h(u)

)2
/2. By conservation of energy, we

get the equation

(4.9)
∑
uv∈E

(
h(v)−h(u)

)2
= F (s, t).

(It is easy to prove identities (4.8) and (4.9) for harmonic functions without any
reference to physics.)

4.1.5. Relating different models. A consequence of the uniqueness prop-
erty in Theorem 4.2 is that the harmonic functions constructed in sections 4.1.2,
4.1.3 and 4.1.4 are the same. As an application of this idea, we show an interesting
identity [Nash-Williams 1959, Chandra et al. 1989].

Considering the graph G as an electrical network, where every edge has resis-
tance 1, we define the effective resistance R(s, t) between nodes s and t by sending
a unit current from s to t, and measuring the voltage between s and t. Considering
the graph G as a rubber band structure in equilibrium, with two nodes s and t
nailed down at 1 and 0, let F (s, t) denote the force pulling the nails (cf. (4.10)).
Doing a random walk on the graph, let comm(s, t) denote the commute time be-
tween nodes s and t (i.e., the expected time it takes to start at s, walk until you
first hit t, and then walk until you first hit s again).

Theorem 4.6. Let G be a connected graph and s, t ∈ V . The effective resistance
R(s, t), the force F (s, t), and the commute time comm(s, t) are related by the equa-
tions

R(s, t) =
1

F (s, t)
=

comm(s, t)

2m
.
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Proof. Consider the function h ∈ RV satisfying h(s) = 0, h(t) = 1 and har-
monic for v 6= s, t (we know that this exists and it is uniquely determined). By
(4.8), we have F (s, t) =

∑
j∈N(s) h(j).

By the discussion in Section 4.1.3, h(v) is equal to the potential of v if we fix
the potential of s and t as above. By Ohm’s Law, the current through an edge sj
is h(j)−h(s) = h(j). Hence the current through the network is

∑
j∈N(s) h(j) =

F (s, t), and the effective resistance is R(s, t) = 1/F (s, t).
The assertion about commute time is a bit more difficult to prove. We know

that h(u) is the probability that a random walk starting at u visits b before a.
Hence p =

(
1/ deg(s)

)∑
u∈N(s) h(u) = F (s, t)/ deg(s) is the probability that a

random walk starting at s hits t before returning to s.
Let T be the first time when a random walk starting at s returns to s and

let S be the first time when it returns to s after having visited t. We know from
the theory of random walks that E(T) = 2m/deg(s) and by definition, E(S) =
comm(s, t). Clearly T ≤ S and T = S means that the random walk starting at s
hits t before returning to s. Thus P(T = S) = p. If T < S, then after the first
T steps, we have to walk from s until we reach t and then return to s. Hence
E(S−T | T < S) = E(S), and so

E(S−T) = pE(S−T | T = S)+(1−p)E(S−T | T < S) = (1−p)E(S).

This gives

2m

deg(s)
= E(T) = E(S)−E(S−T) = pE(S) =

F (s, t)

deg(s)
comm(s, t).

Simplifying, we get the identity in the theorem. �

As a further application of this equivalence between our three models, we de-
scribe what can be said if an edge is deleted.

Theorem 4.7. Let G be a connected graph, and let us connect two nodes i and j
by a new edge. Then for any two nodes s, t ∈ V ,

(a) The ratio comm(s, t)/m does not increase.

(b) (Raleigh Monotonicity) The effective resistance R(s, t) does not increase.

(c) If nodes s and t are nailed down at 0 and 1, the force F (s, t) does not
decrease.

Proof. The three statements are equivalent by Theorem 4.6; we prove (c). By
(4.9), it suffices to prove that the equilibrium energy does not decrease. Consider the
equilibrium position of G′, and delete the new edge. The contribution of this edge
to the energy was nonnegative, so the total energy decreases. The current position
of the nodes may not be in equilibrium; but the equilibrium position minimizes the
energy, so when they move to the equilibrium of G′, the energy further decreases.

�

4.2. Estimating harmonic functions

4.2.1. Harmonic flows. Suppose (for simplicity) that S = {s, t}, and let
h : V → R be a function with h(s) = 0, h(t) = 1, and harmonic outside S. Then
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(4.5) tells us that assigning f(e) = h(v)−h(u) to every edge e = uv, we get a flow
from s to t, which we call a harmonic flow. The value of this flow is

(4.10) F (s, t) =
∑

v∈N(s)

f(sv) =
∑

v∈N(t)

f(vt).

It will be convenient to normalize differently and consider the flow f̂ = f/F (s, t);
this has value 1.

An s-t flow that is, at the same time, a potential, will be called a harmonic
flow. The potential constructed from a harmonic function with poles s and t is
a harmonic flow, and vice versa. The dimension of the linear space of s-t flows
is m−n+2, and the dimension of the linear space of potentials is n−1. Since
(m−n+2)+(n−1) > m, these two spaces have a nonzero intersection. This gives
yet another proof that harmonic functions with poles s and t exist.

But considering functions on the edges, not only on the nodes, gives more.

Theorem 4.8. Let G be a connected graph and s, t,∈ V . Then

(4.11) R(s, t) = min
∑
e∈E

g(e)2,

where g : E → R ranges over all functions satisfying
∑
e∈C g(e) ≥ 1 for every s-t

cut C. Furthermore,

(4.12) F (s, t) = min
∑
e∈E

g(e)2,

where g : E → R ranges over all functions satisfying
∑
e∈E(P ) g(e) ≥ 1 for every

s-t path P . In both optimization problems, the optimizing function g is a harmonic
s-t flow.

We can restate these formulas as follows. For g : E → R+, let cg(s, t) be the
minimum capacity of an s-t cut (viewing g as a capacity function on the edges), and
let dg(s, t) be the minimum length of an s-t path (viewing g as a length function
on the edges). Then

(4.13) R(s, t) = min
g: E→R+

|g|2

cg(s, t)2
and F (s, t) = min

g: E→R+

|g|2

dg(s, t)2
.

We can also write this as

(4.14) R(s, t) = max
g: E→R+

dg(s, t)
2

|g|2
and F (s, t) = max

g: E→R+

cg(s, t)
2

|g|2
.

Proof. We prove the first identity; the second one can be proved similarly, or
by referring to a general duality result (Proposition C.2 in the Appendix). Let g be
an optimizer in (4.11). We may assume that g ≥ 0 (else, we can replace it by |g|).
We replace each undirected edge e by two, oppositely directed edges e′ and e′′, and
consider g(e) = g(e′) = g(e′′) as the capacity of each of them. The condition on
g says that every s-t cut has total capacity at least 1. By the Max-Flow-Min-Cut
Theorem, the graph carries an s-t flow f of value 1 with 0 ≤ f ≤ g. We may
assume that min{f(e′), f(e′′)} = 0. Replacing g with g′(e) = max{f(e′), f(e′′)} we
get a function satisfying the conditions of the theorem, and decrease the objective
function, unless g′ = g. If we delete one of e′ and e′′ for which f = 0, we get an
orientation of G on which g defines a flow of value 1.
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So g minimizes
∑
e g(e)2 over all s-t flows of value 1. Such flows form an affine

subspace A ⊆ RE . The minimizer is the closest point of A to the origin; hence it is
orthogonal to A. Shifting A to the origin we get the space of all circulations; the
orthogonal complement of this space is the space A0 of all potentials. So g is both
an s-t flow of value 1 and a potential, i.e., a harmonic flow.

We can write g(uv) = h(v)−h(u) for every edge uv, and h is a harmonic
function with poles at s and t. By the electrical networks model, we have R(s, t) =

h(t)−h(s). Switching to the rubber band model,
∑
e g(e)2 =

∑
e

(
h(v)−h(u)

)2
is

twice the energy stored in the rubber bands, when s and t are stretched to a distance
of R(s, t). By our discussion of the rubber band model, this is F (s, t)R(s, t)2 =
R(s, t). �

4.2.2. Combinatorial bounds. Choosing appropriate functions g in (4.13)
or (4.14), we can prove useful combinatorial bounds. Let us start with an important
example.

Example 4.9. Consider the grid formed by the lattice points (i, j) with |i|, |j| ≤ k.
Identify the boundary to a single node t, and let s = (0, 0). We show how to use
the inequalities in the previous section to prove

(4.15) R(s, t) ∼ 1

4
ln k.

To this end, let us define

g(e) =
1

r+1
(e ∈ E),

where r is the distance of e from s in the grid graph. (We had to add 1 so that
the edges incident with s get finite weight.) This value of g(e) is not the harmonic
flow from s to t, which would be more complicated to express. To motivate, notice
that (in the whole grid) there are 4r+4 edges at distance r from s, forming a cut
Cr of total weight is 4, independently of r. So from the point of view of these cuts,
g “looks like” and s-t-flow of value 4.

We need to do some computations. First, E contains k of the cuts C0, . . . , Ck−1,
and is covered by the cuts C0, . . . , C2k−1, and hence

|g|2 ≥
k−1∑
r=0

(4r+4)
1

(r+1)2
= 4

k∑
j=1

1

j
= 4Hk,

and similarly,

|g|2 ≤ 4

2k∑
j=1

1

j
≤ 4Hk+4.

It is clear that every s-t path contains an edge at distance r from s for every r, and
the shortest path contains exactly one of each, so

dg(s, t) = Hk.

Finally, we have

(4.16) cg(s, t) = 4.

The proof of this is elementary, but takes a bit more work, and is left to the reader
as Exercise 4.9.
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Now by (4.13),

R(s, t) ≤ |g|2

cg(s, t)2
≤ 4Hk+4

16
=
Hk+1

4
,

and by (4.14),

R(s, t) ≥ dg(s, t)
2

|g|2
≥ H2

k

4Hk+4
>
Hk−1

4
.

These estimates prove (4.15). �

Let us return to general graphs, and formulate a corollary of Theorem 4.8.

Corollary 4.10. Let C1, . . . , Ck be edge-disjoint cuts separating s and t. Then

(4.17) R(s, t) ≥
k∑
j=1

1

|Cj |
.

Proof. Let

g(e) =


1

|Cj |
, if e ∈ Cj for some j,

0, otherwise.

Then

|g|2 =
∑
e∈E

g(e)2 =

k∑
j=1

∑
e∈Cj

1

|Cj |2
=

k∑
j=1

1

|Cj |
.

Since every s-t path intersects every cut Cj , we have

dg(s, t) ≥
k∑
j=1

1

|Cj |
,

and so

R(s, t) ≥

(∑k
j=1 1/|Cj |

)2

∑k
j=1 1/|Cj |

=

k∑
j=1

1

|Cj |
. �

As a further application, we prove a bound on the “smoothness” of a harmonic
function.

Corollary 4.11. Let G be a graph, and let h : V → R+ be harmonic outside a set
S ⊆ V . Let u, v ∈ V \S such that uv ∈ E and h(u) ≤ h(v), and let C1, . . . , Ct be
edge-disjoint cuts in G\uv separating u from S′ = {x ∈ S : h(x) ≤ h(u)}. Then

h(v)−h(u) ≤
( t∑
j=1

1

|Cj |

)−1

h(u).

Proof. Recalling the rubber band model, we can think of each node x ∈ S as
nailed at h(x). Then |h(u)−h(v)| is the length to which uv is stretched. We may
assume that h(u) < h(v). Let G′ = (V ′, E′) be the union of those paths from u
to a nailed node along which h is monotone decreasing. We may assume that all
nodes of V \V ′ are nailed; in particular, v is nailed.

We claim that deleting the edges in E \E′, the length to which uv is stretched
is increasing. This follows if we show that all nodes of V ′ move down. Suppose
that this is not the case, and let w ∈ V ′ be node that moves up the most, say by a
distance of s. Then all its neighbors in V ′ move up by at most s, so they will pull
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down at least as much as before. In addition, any deleted edge pulled w upwards.
It follows that equality must hold, so all neighbors of w must move up by the same
distance s. Since w is on a path from u to a nailed node x, this implies that x must
move up by s, which is impossible as x is nailed.

By a similar argument, we may assume that h(x) = 0 for all nodes in S′. It
follows by (4.17) that the force with which G′ pulls u down is

FG′(s, u) =
1

RG′(s, u)
≤
( k∑
i=1

1

|Ci|

)−1

h(u)

(note: G′ is stretched to a length of h(u)). This is counteracted by the force on the
edge uv, which is h(v)−h(u). �

We conclude with a special case showing that the bound in the previous example
is nontrivial. We return to the planar grid, but more generally than before we
consider a simple closed lattice polygon P , and the subgraph G of the grid formed
by all edges and nodes on or inside P . Let h0 : V (P ) → [0, 1] be given, and let
h be the harmonic extension of h0 to the interior of P . The following Corollary
shows that far from the boundary, h is “smooth”. (Such a result does not remain
true in dimension 3, see Exercise 4.11.)

Corollary 4.12. Let uv ∈ E, and let t be the graph distance of uv from P . Then

|h(v)−h(u)| ≤ 6

ln t
.

Proof. Let Cj be the cut formed by all edges with one endpoint at Manhattan
distance j and the other at Manhattan distance j−1 from u. (The Manhattan
distance is the graph distance in the whole grid graph, which may be smaller than
the graph distance in G.) Then |Cj | ≤ 6j, and the cuts C1, . . . , Ct separate u from
P . So Corollary 4.11 implies that

h(v)−h(u) ≤
( t∑
j=1

1

|Cj |

)−1

≤
( t∑
j=1

1

6j

)−1

<
6

ln t
. �

4.3. Inverting the Laplacian

In the proof of the existence of harmonic functions with given poles, we had
to invert the Laplacian—in a sense. It will be useful to discuss the solution of an
equation

(4.18) Lx = a.

First, for this to be solvable, we must have 1
Ta = 0; indeed, 1Ta = 1

TLx = 0.
Second, we may assume that 1Tx = 0; indeed, if x is a solution, then x+α1 is a
solution for every real number α, and from this family of solutions, it suffices to
find the one with 1

Tx = 0. Now if 1Tx = 1
Ta = 0, or equivalently Jx = Ja = 0,

then

(4.19) (L+J)−1a = (L+J)−1Lx = (L+J)−1(L+J)x = x,

thus giving an explicit solution of (4.18).
As an important special case of this simple computation, let G be an electrical

network with unit resistances on the edges, and let us send a unit current from
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node s to node t. Then the potentials x of the nodes will satisfy the equation
Lx = es−et, and hence x = (L+J)−1(es−et). The effective resistance is

(4.20) R(s, t) = xs−xt = (es−et)T(L+J)−1(es−et).
We describe two (related) algebraic methods to produce certain “inverses” of

the Laplacian.

4.3.1. Poisson’s formula and Green’s function. We can rewrite formula
(4.7) as follows. Let αv,S(u) denote the probability that the first point in S of
a random walk starting at v is u (where S ⊂ V is a nonempty set). We call
αv,S : S → R+ the hitting distribution (from v on S). Using this distribution, the
harmonic extension of a function h0 on S can be expressed as

(4.21) h(v) =
∑
u∈S

αv,S(u)h0(u).

This equation can be regarded as a discrete version of Poisson’s Formula.
Set T = V \S. To keep our notation a bit simpler, we write (in this section)

fT for the restriction f |T of a function f to a set T . We are looking for a function
h : V → R such that

(4.22) (Lh)T = 0 and hS = h0.

Let us partition the Laplacian of G as

(4.23) L =

(
LT LTS
LST LS

)
,

(where the first block of rows and columns corresponds to nodes in T ; note that
LST = −AST ). The matrix LT will play an important role, and we need two simple
properties of it: LT is invertible and its inverse is nonnegative. Both properties
mentioned can be proved in (slightly) larger generality, and we will need them
elsewhere in this more general form.

Lemma 4.13. Let M ∈ RV×V be a positive semidefinite matrix whose nullspace
is one-dimensional and it is spanned by a vector with nonzero coordinates. Then
every proper principal minor of M is positive definite.

Proof. Let MT denote the principal minor of M formed by the rows and
columns indexed by elements of T ⊂ V . The matrix MT is trivially positive semi-
definite. If MTx = 0 for some 0 6= x ∈ RT , then for the vector y =

(
x
0

)
∈ RV , we

have yTMy = xTMTx = 0. Since M is positive semidefinite, this shows that y is in
the nullspace of M . But y cannot be parallel to the vector spanning the nullspace
of M , a contradiction. �

Lemma 4.14. Let M be a positive definite matrix whose off-diagonal entries are
nonpositive. Then M−1 ≥ 0.

Proof. We may assume that the largest eigenvalue of M is 1. Then its diagonal
entries are at most 1, and hence B = I−M is positive semidefinite and all entries
of it are nonnegative. Since M is positive definite, all eigenvalues of B are strictly
less than 1, and hence the series expansion

M−1 = (I−B)−1 = (I+B+B2 + . . . )

is convergent. Since all entries of all terms in the last sum are nonnegative, the
same holds for M−1. �
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Coming back to solving equation (4.22) for the function h, we see that the
restriction hS is given, and to get the restriction hT , we only have to solve the
equation

LThT +LTShS = 0.

Since LT is invertible by Lemma 4.13, this system can be solved for hT , and we get
that

(4.24) hT = −L−1
T LTShS

is the unique harmonic extension of hS .
The matrix L−1

T , considered as a function in two variables, is a discrete analogue
of Green’s function in analysis, and we’ll call it the (discrete) Green function of the
graph G, on the set T . (To relate this to the Green function in analysis, think of
T as an open domain and of S, as its boundary. It is easy to see that nodes of S
that are not adjacent to T play no role in the arguments below.) We denote L−1

T

by GT or by G if T is understood.
Formula (4.24) expresses hT as a linear combination of the values of hS :

(4.25) h(v) =
∑
u∈S

∑
w∈T∩N(u)

Gvwh(u) (v ∈ T ).

We have seen such an expression using the hitting probabilities on S. Comparing the
two, and using the uniqueness of harmonic extensions, we get that the probability
that a random walk starting at a node v ∈ T first hits the set S at node u is given
by

(4.26) αv,S(u) = −(GLTS)vu =
∑

w∈N(u)∩T

Gvw.

Generalizing equation (4.25), the Green function provides an important formula
to express the values of an arbitrary function in terms of its harmonicity defect on
T and its values on S:

Lemma 4.15. For every function f : V → R and v ∈ T ,

f(v) =
∑
w∈T
Gvw

(
(Lf)(w)+

∑
u∈S∩N(w)

f(u)
)
.

We can write the formula more compactly:

(4.27) fT = G(Lf)T −GLTSfS ,
or less compactly:

(4.28) f(v) =
∑
w∈T
Gvw(Lf)(w)+

∑
u∈S

∑
w∈T∩N(u)

Gvwf(u).

If f is the harmonic extension of fS , then the first term vanishes, and the second
gives (4.25).

Proof. From the definition of the partition of L, we have

(Lf)T = LT fT +LTSfS .

Applying G from the left,

G(Lf)T = GLT fT +GLTSfS = fT +GLTSfS .
Rearranging, we get (4.27). �
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Let us conclude with a nice application of the Green function, raised by Grass-
berger (private correspondence). Let G be a simple graph, and fix a node v ∈ V (G).
For two nodes i, j ∈ N(v), let σij denote the probability that a random walk start-
ing at v and leaving through the edge vi, first returns to v through the edge vj.

Corollary 4.16. For any two distinct nodes i, j ∈ N(v), we have σij < σii.

Proof. Let T = V (G)\{v} and G = L−1
T the corresponding Green function.

We claim that

(4.29) σij = Gij .

Indeed, let us split v into deg(v) nodes i′ (i ∈ N(v)), to get a graph G′. So
ii′ ∈ E(G′). Let S = {i′ : i ∈ N(v)}. This operation does not change the Green
function on T . The probability σij can be interpreted as the probability that a
random walk on G′ starting at i hits S at j′. By (4.26), we have

σij =
∑

w∈N(j′)∩T

Giw = Gij ,

proving (4.29).
Since (σij : j ∈ N(v)) is a probability distribution, we have

(4.30)
∑

j∈N(v)

Gij = 1 (i ∈ V ),

It also follows that the matrix (σij)i,j∈N(v) is symmetric and positive definite.
Let i ∈ N(v), and let us pivot in G on the entry (i, i), and then delete the

i-th row and column. The resulting matrix is the inverse of the matrix LV \{v,i},
which is a positive definite matrix with nonpositive offdiagonal entries, and hence
its inverse is nonnegative by Lemma 4.14. This implies that

(4.31) GiiGjk ≥ GjiGik
for all i, k, j ∈ N(v). Note that strict inequality holds for k = j, since G is positive
definite. Summing over all k ∈ N(v), and using (4.30), we get the Corollary. �

4.3.2. Generalized inverses, random walks and resistance. The Lapla-
cian L is a singular matrix, and hence it does not have an inverse. But, as every
matrix, it has a pseudoinverse. While there are different notions of pseudoinverses,
in this short section we’ll mean that introduced by E.H. Moore, A. Bjerhammar
and R. Penrose. The pseudoinverse A−1 for an arbitrary matrix A can be defined
by the conditions

(4.32) AA−1A = A, A−1AA−1 = A−1,

and

(4.33) AA−1, A−1A are symmetric.

It is not very hard to prove that a matrix A−1 with these properties always exists,
and is uniquely determined (Exercise 4.12). We shall need this construction for the
Laplacian of a connected graph G only, in which case it is almost trivial: writing

L =

n∑
k=2

µkvkv
T
k,
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where µ1 = 0 < µ2 ≤ · · · ≤ µn are the eigenvalues of the Laplacian, and v1, . . . , vn
are the corresponding eigenvectors, the matrix

L−1 =

n∑
k=2

1

µk
vkv

T
k

satisfies the conditions of the pseudoinverse, which is straightforward to check. It
is also easy to compute that

(4.34) L−1L = LL−1 = I−v1v
T
1 = I− 1

n
J.

To compute the pseudoinverse of L, we don’t have to find the spectral decom-
position of L. It suffices to use again that L+J is an invertible matrix with spectral
decomposition

L+J = nv1v
T
1 +

n∑
k=2

µkvkv
T
k,

and its inverse is

(L+J)−1 =
1

n
v1v

T
1 +

n∑
k=2

1

µk
vkv

T
k =

1

n2
J+L−1.

Hence

(4.35) L−1 = (L+J)−1− 1

n2
J.

(We could use in these arguments a matrix L+cJ with any nonzero c instead of
L+J ; it would lead to similar formulas.)

We can go a little further: since L is positive semidefinite, we can raise its
nonzero eigenvalues to any real power, and define

Lt =

n∑
k=2

µtkvkv
T
k

for t ∈ R. This way we get a family of symmetric matrices, so that L1 = L, Lt is a
continuous function of t, and Lt+s = LtLs for s, t ∈ R. These matrices can be used
to construct an interesting geometric representation, which encodes the effective
resistances in the graph (cf. also equation (4.20) above):

Proposition 4.17. Let G be a connected graph, with a unit resistance on each
edge. Let ui ∈ RV (i ∈ V ) be the columns of L−1/2. Then

R(i, j) = (L−1)ii+(L−1)jj−2(L−1)ij = |uj−ui|2.
for any two nodes i and j.

Proof. Let us push a unit current from i to j, by keeping i and j at appropriate
voltages. Let xk be the voltage of node k. Only the differences of these voltages
matter, so we may assume that 1x = 0. Then the Kirchhoff node equations say
that Lx = ej−ei, and using (4.34), we get that

x = L−1(ej−ei).
So

R(i, j) = xj−xi = (ej−ei)TL−1(ej−ei)L−1
ii +L−1

jj −2L−1
ij ,

which we can also write as

R(i, j) = |L−1/2(ej−ei)|2 = |uj−ui|2. �
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These constructions work for edge-weighted Laplacians as well.

Remark 4.18. For invertible matrices, their adjoint is a scalar multiple of their
inverse. The adjoint can be defined for singular matrices; is the generalized inverse
of the Laplacian related to its adjoint? Not really. Since L has rank n−1, the
adjoint is nonzero. However, from the equation LLadj = det(L)I = 0 we see
that every column and (by symmetry) every row of Ladj is a multiple of 1, and so
Ladj = cJ . The only interesting information contained in the adjoint is the constant
c, which is the number of spanning trees in the graph (Exercise 4.6).

Exercise 4.1. Let G be a connected graph and T , a spanning tree of G. For
each edge e ∈ E \E(T ), let Ce denote the cycle of G consisting of e and the path
in T connecting the endpoints of e. Prove that if Kirchhoff’s Voltage Law holds
for these cycles Ce, then it holds for all cycles.

Exercise 4.2. Prove that for every connected graph G, the effective resistances
R(i, j) as well as their square roots satisfy the triangle inequality: for any three

nodes a, b and c, R(a, c) ≤ R(a, b)+R(b, c), and
√
R(a, c) ≤

√
R(a, b)+

√
R(b, c).

Exercise 4.3. Let G be a connected graph and let ui ∈ RV (i ∈ V ) be the i-th

column of L−1/2. Prove that for any three nodes i, j, k ∈ V , the triangle uiujuk
is not obtuse. When does it have a right angle?

Exercise 4.4. A function f : V → R is subharmonic at a node v ∈ V if

(4.36)
1

deg(v)

∑
u∈N(v)

h(u) ≥ h(v).

Let S ⊆ V be a nonempty set, and let f : V → R be subharmonic at every
node of V \S. Let v ∈ V \S, and let av ∈ S be a random node from the hitting
distribution on S (starting at v). Prove that

f(v) ≤ Ev(f(av)).

Exercise 4.5. Show by examples that the commute time comm(a, b) can both
increase and decrease when we add an edge to the graph.

Exercise 4.6. Let G be a connected graph, and let T (G) denote the number of
spanning trees of G. Let L′ be the matrix obtained by deleting from L a row
and the corresponding column. (a) Prove that det(L′) = T (G). (b) Prove that
det(L+J) = n2T (G). (c) Use these facts to prove Cauchy’s Formula: T (Kn) =
nn−2.

Exercise 4.7. Let G′ denote the graph obtained from the graph G by identifying
nodes a and b. Prove that R(a, b) = T (G′)/T (G).

Exercise 4.8. Let G be a graph and e, f ∈ E, e 6= f . Prove that T (G)T (G\
{e, f}) ≤ T (G\e)T (G\f).

Exercise 4.9. To every edge e of the standard grid in the plane, let us assign the
weight g(e) = 1/(r+1), where r is the distance of e from the origin. Let S be a
set of edges that blocks every infinite path from the origin. Prove that g(S) ≥ 4.

Exercise 4.10. LetA be an irreducible positive definite matrix whose off-diagonal
entries are nonpositive. Prove that all entries of A−1 are positive.

Exercise 4.11. Show by an example that the smoothness property stated in
Corollary 4.12 does not remain valid for the 3-dimensional grid.

Exercise 4.12. Prove that if the rows of a matrix A are linearly independent,
then AAT is nonsingular, and A−1 = AT(AAT)−1 satisfies the conditions for the
pseudoinverse of A.
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Exercise 4.13. Prove that every matrix has a unique pseudoinverse.

Exercise 4.14. Prove that for a connected d-regular graph G, the pseudoinverse
of L can be used to express hitting times by the following formula:

Hij = dn
(
(L−1)ij−(L−1)ii

)
.

Extend this formula to non-regular graphs, using the pseudoinverse of the scaled

Laplacian matrix L̂ = D−1/2LD−1/2 instead of L−1.

Exercise 4.15. We have seen that for every graph G one can define a family of
symmetric matrices Lt (t ∈ R) so that L1 = L, Lt is a continuous function of t,
and Lt+s = LtLs for s, t ∈ R. Prove that such a family of symmetric matrices is
unique.

Exercise 4.16. Let M be a positive definite n×n matrix whose off-diagonal
entries are nonpositive. Let N be a submatrix of M−1 formed by rows 1, . . . , k, i
and columns 1, . . . , k, j, where k < i, j ≤ n. Prove that det(N) ≥ 0.



CHAPTER 5

Coin Representation

One of the deepest representation results for planar graphs is the “coin represen-
tation” (representation by touching circles) [Koebe 1936]. This result has numerous
versions, extensions, and applications. It gives a Steinitz representation by a very
special polytope (the Cage Theorem), and it has close relations with the Riemann
Mapping Theorem in complex analysis.

5.1. Koebe’s theorem

We say that a family of (circular) disks is nonoverlapping, if their interiors are
disjoint. Such a family gives rise to a tangency graph: we represent each member
of the family by a node, and connect two nodes if the corresponding disks are
touching. It is natural to turn this into a geometric representation: we represent
each disk by its center, and each edge by the segment connecting the corresponding
centers. Trivially, this edge passes trough the point of tangency of the two circles,
and different edges do not intersect except if they have a common endpoint. So we
get a planar map (Figure 5.1). Koebe’s Theorem will provide a converse to this
easy observation.

Figure 5.1. Tangency graph of a set of disks

The same graph can, of course, be represented by many systems of disks. For
example, a cycle can be represented by any necklace of pearls—these may be equal,
or different, and laid out in many different ways (Figure 5.2).

If the graph is a triangulation, then the representation is “essentially unique”,
as we will see. But even in this case, we can modify the set of disks: for example, we
can apply inversion to all of them with respect to a further circle C (see Appendix
A.4.2 for notions and results concerning circles, relevant throughout this chapter).
If the center of C is not covered by any of the disks, then this inversion results in
another representation by a family of disks. If the center of C is in the interior of
one of the disks (call this D), then we get a similar picture, except that the other

57
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Figure 5.2. Different representations of a 10-cycle by touching disks

disks will be contained in the interior of the image D′ of D (Figure 5.3). We say
that we have a coin representation with D turned inside out. We are going to make
good use of this version of the coin representation in Section 5.3.

Figure 5.3. Representation of a planar graph by touching disks,
and a representation of the same graph, where the exterior of one
of the disks plays the role of its “body”.

After these remarks, we are ready to state the fundamental theorem of Koebe.

Theorem 5.1 (Koebe’s Theorem). Every planar graph can be represented as
the tangency graph of a family of nonoverlapping circular disks.

Such a family of circular disks is called a Koebe representation, or coin rep-
resentation of the graph. We’ll prove this theorem after formulating a stronger
version.

Koebe’s Theorem can be strengthened and generalized in various ways. To
motivate the extension we are going to discuss next, consider a bounded triangular
face p = abc of the tangency map G of a family F of non-overlapping circles,
where a is the center of the circle Ca etc. Let Dp denote the inscribed circle of
p, touching the edges of the triangle at points u, v and w (Figure 5.4). Then
|a−u| = |a−v| (as these segments are tangents to Dp from the same point), and
similarly |b−u| = |b−w| and |c−v| = |c−w|. So the circle C ′a about a with radius
|a−u| = |a−v|, and the circles C ′b and C ′c defined analogously are mutually tangent.
It is easy to see that this implies that C ′a = Ca, C ′b = Cb and C ′c = Cc. The circle
Dp intersects each of these circles orthogonally.

Now consider another bounded triangular country q = abd of G, sharing the
ab with abc. The previous argument implies that the inscribed circle Dq of q
must also touch the edge ab at u, and it is also tangent to Dp at this point. If
all countries are triangular, then the family F∗ of inscribed circles of bounded
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Figure 5.4. Left: A triangle in the tangency graph and its in-
scribed circle. Right: For two triangles sharing an edge, the in-
scribe circles touch the edge at the same point.

countries is well defined, and its tangency graph is the dual of G (with capital of
the unbounded country omitted). We can also include the circle inscribed in the
unbounded country, but its “center” should be thought of as the “point at infinity”.

What happens if not all countries are triangles? A non-triangular country may
not even have an inscribed circle (touching all edges). The main result below will
imply that every 3-connected planar graph G has a special representation as the
tangency graph of a family of circles in which all countries have inscribed circles.

To be precise, we define a double circle representation of a planar map G as
two families of circles in the plane, (Ci : i ∈ V ) and (Dp : p ∈ V ∗), so that
for every edge ij, bordering countries p and q, the following holds: the circles
Ci and Cj are tangent at a point xij ; the circles Dp and Dq are tangent at the
same point xij ; and the circles Dp and Dq intersect the circles Ci and Cj at this

point orthogonally. Furthermore, the interiors of the circular discs Ĉi bounded

by the circles Ci are disjoint and so are the disks D̂j , except that the circle Dp∞

representing the unbounded country contains all the other circles Dp in its interior.
The conditions in the definition of a double circle representation imply other

useful properties. The proof of these facts is left to the reader as an exercise
(cf. Figure 5.5).

Proposition 5.2. Let (Ci : i ∈ V ; Dp : p ∈ V ∗) be a double circle representation
of a 3-connected planar graph G. Then (a) Every country p is bounded by a convex
polygon, and the circle Dp touches every edge of this polygon. (b) For every bounded
country p, the circles Dp and Ci (i ∈ V (p)) cover p. (c) If i ∈ V is not incident

with p ∈ V ∗, then Ĉi and D̂p are disjoint.

The main theorem in this chapter asserts that such representations do exist.

Theorem 5.3. Every 3-connected planar graph has a double circle representation
in the plane.

The double circle representation is not unique (we can apply circle-preserving
transformations to it), but to make it unique, we only need to fix the circles repre-
senting the nodes of a triangular country:

Corollary 5.4. Let G be a 3-connected planar graph with a triangular country abc.
Fixing three mutually tangent openly disjoint disks in the plane to represent a, b
and c, there is a unique extension to a double circle representation of G with abc
as the unbounded country.
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Figure 5.5. Left: a double circle representation K4 and its dual
(another complete graph on 4 nodes). For the circle representing
the capital of the unbounded country, the exterior domain should
be considered as the disk it “bounds”. Right: a piece of a double
circle representation of a planar graph and its dual.

In the next sections, we will prove these basic results.

5.1.1. Angles and radii. Let G be a 3-connected planar map. We transform
G so that a triangular country p∞ in G becomes the unbounded country; if G has
no triangular country, then we interchange the roles of G and G∗ (see Proposition
2.1). Let a, b, c be the nodes of p∞. For every node i ∈ V , let F (i) denote the set
of bounded countries containing i, and for every country p, let V (p) denote the set
of nodes on the boundary of p. Let U = V ∪V ∗ \p∞, and let J denote the set of
pairs ip with p ∈ V ∗ \p∞ and i ∈ V (p).

Let us start with assigning a positive real number ru to every node u ∈ U .
Think of this as a guess for the radius of the circle representing u (we do not guess
the radius for the circle representing p∞; this will be easy to add at the end). For
every ip ∈ J , we define

(5.1) αip = arctan
rp
ri

and αpi = arctan
ri
rp
.

We can think of these numbers as guesses for the angles of the right triangle formed
by the centers of circles representing a node, an adjacent dual node, and the inter-
section point of these circles. It is clear that

(5.2) αip+αpi =
π

2
.

Now suppose that the circles with radii ru form a proper double circle repre-
sentation, in which the triangle abc is regular. Consider a node i ∈ V . For every
country p incident with i, 2αip is the angle of the corner of p at i (Figure 5.6).
Since these corners fill out the available angle around i, we have

(5.3)
∑
p∈F (i)

αip =

{
π, if i ∈ V \{a, b, c},
π/6, if i ∈ {a, b, c}.

We can derive similar conditions for the countries:

(5.4)
∑

i∈V (p)

αpi = π (p ∈ V ∗ \p∞).

The key to the construction of a double circle representation is that these conditions
are sufficient.
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�ip 

✁pi 

ri 

rp 

Figure 5.6. A right triangle in the double circle representation
and its parameters

Lemma 5.5. Suppose that the radii ru > 0 (u ∈ U) are chosen so that the angles
defined by (5.1) satisfy (5.3)and (5.4). Then there is a double circle representation
with these radii.

Proof. Construct two right triangles with legs ri and rp for every ip ∈ J , one
with each orientation, and glue these two triangles together along their hypotenuse
to get a kite Kip. Starting from node a of p∞, put down all kites Kap (p ∈ F (a))
in the order of the corresponding countries in a planar embedding of G. By (5.3),
these will fill an angle of π/3 at a. Now proceed to a bounded country p1 incident
with a, and put down all the remaining kites Kp1i in the order in which the nodes
of p1 follow each other on the boundary of p1. By (5.4), these triangles will cover a
neighborhood of p1. We proceed similarly to the other bounded countries containing
i1, then to the other nodes of p1, etc. The conditions (5.3) and (5.4) guarantee that
we tile a regular triangle.

Let Ci be the circle with radius ri about the position of node i constructed
above, and define Dp analogously. We still need to define Dp∞ . It is clear that p∞
is drawn as a regular triangle, and hence we necessarily have ra = rb = rc. We
define Dp∞ as the inscribed circle of the regular triangle abc.

It is clear from the construction that we get a double circle representation of
G. �

Of course, we cannot expect conditions (5.3) and (5.4) to hold for an arbitrary
choice of the radii ru (equation (5.2) is valid for any choice of positive real numbers
ru). In the next sections we will develop a method to construct radii satisfying
the conditions in Lemma 5.5; but first we need two simple lemmas, going in this
direction, but not far enough.

For a given assignment of radii ru (u ∈ U), consider the violation of the condi-
tions in Lemma 5.5. To be precise, for u ∈ U , we define its defect as follows:

(5.5) δu =



∑
p∈F (u)

αup−π, if u ∈ V \{a, b, c},∑
p∈F (u)

αup−
π

6
, if u ∈ {a, b, c},∑

i∈V (u)

αpu−π, if u ∈ V ∗ \p∞.
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(These defects may be positive or negative.) While of course an arbitrary choice
of the radii ru will not guarantee that all these defects are 0, the following lemma
shows that this is true at least “on the average”:

Lemma 5.6. For every assignment of radii, we have∑
u∈U

δu = 0.

Proof. From the definition,

∑
u∈U

δu =
∑

i∈V \{a,b,c}

 ∑
p∈F (i)

αip−π

+
∑

i∈{a,b,c}

 ∑
p∈F (i)

αip−
π

6


+

∑
p∈V ∗\p∞

 ∑
i∈V (p)

αpi−π

 .

Every pair ip ∈ J contributes αip+αpi = π/2. Since |J | = 2m−3, we get

(2m−3)
π

2
−(n−3)π−3

π

6
−(f−1)π = (m−n−f+2)π

By Euler’s formula, this proves the lemma. �

Next we prove that conditions (5.3) and (5.4), considered as linear equations
for the angles αip, can be satisfied. (We do not claim here that the solutions are
obtained in the form (5.1).)

Lemma 5.7. Let G be a planar map with a triangular unbounded country p∞ = abc.
Then there are real numbers 0 < βip < π/2 (ij ∈ J) satisfying∑

p∈F (i)

βip =

{
π, if i ∈ V \{a, b, c},
π/6, if i ∈ {a, b, c}.

and ∑
i∈V (p)

(π
2
−βip

)
= π (p ∈ V ∗ \p∞).

Proof. Consider the Tutte rubber band embedding of the graph, with a, b, c
nailed to the vertices of a regular triangle. For i ∈ V (p), let βpi denote the angle
of the polygon p at the vertex i. Then the conclusions are easily checked. �

5.1.2. An almost-proof. To prove Theorem 5.3, we want to prove the exis-
tence of an assignment of radii so that all defects are zero. Let us start with an
arbitrary assignment; we measure its “badness” by its total defect

D =
∑
u∈U
|δu|.

How to modify the radii so that we reduce the total defect? The key observation
is the following. Let i be a node with positive defect δi > 0. Suppose that we
increase the radius ri, while keep the other radii fixed. Then αip decreases for
every country p ∈ F (i), and correspondingly αpi increases, but nothing else changes.
Hence δi decreases, δp increases for every p ∈ F (i), and all the other defects remain
unchanged.
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Since the sum of (signed) defects remains the same by Lemma 5.6, we can say
that some of the defect of node i is distributed to its neighbors (in the graph (U, J)).
(It is more difficult to describe in what proportion this defect is distributed, and
we will try to avoid to have to explicitly describe this).

It is clear that the total defect does not increase, and if at least one of the
countries incident with i had negative defect, then in fact the total defect strictly
decreases.

The same argument applies to nodes in V ∗. Thus if the graph (U, J) contains
a node with positive defect, which is adjacent to a node with negative defect, then
we can decrease the total defect.

Unless we already have a double circle packing, there certainly are nodes in U
with positive defect and other nodes with negative defect. What if these positive-
defect nodes are isolated from the negative-defect nodes by a sea of zero-defect
nodes? This is only a minor problem: we can repeatedly distribute some of the
defect of positive-defect nodes, so that more and more zero-defect nodes acquire
positive defect, until eventually we reach a negative-defect node.

Thus if we start with an assignment of radii that minimizes the total defect,
then all defects must be 0, and (as we have seen) we can construct a double circle
representation from this.

Are we done? What remains to be proved is that there is a choice of positive
radii that minimizes the total defect. This kind of argument about the existence of
minimizers is usually straightforward based on some kind of compactness argument,
but in this case it is more awkward to prove this existence directly. Below we
give a different proof, whose idea is less transparent, but where the existence of a
minimizer will be easy to prove.

5.1.3. A more sophisticated objective function. The proof of Theorem
5.3 to be described here is from [Colin de Verdière 1991]. It might help to follow
the argument below if we point out that we work with the variables xi = ln ri.

Proof of Theorem 5.3. For x ∈ R, define

φ(x) =

x∫
−∞

arctan(et) dt.

It is easy to verify that the function φ is monotone increasing, strictly convex, and

(5.6)
π

2
|x|+ < φ(x) < 1+

π

2
|x|+

for all x ∈ R.
Let x ∈ RU . Using the numbers βip from Lemma 5.7, consider the function

Φ(x) =
∑
ip∈J

(
φ(xp−xi)−βip(xp−xi)

)
.

It follows from the convexity of φ that Φ is convex; it is not strictly convex, because
it is constant if all differences xp−xi remain constant. But it is easy to see that
this is the only direction in which it is not strictly convex: if we fix xa = 0, then it
will be a strictly convex function of the remaining variables.
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Furthermore, Φ(x)→∞ if xa = 0 but |x| → ∞. This follows easily from (5.6):

Φ(x) =
∑
ip∈J

(
φ(xp−xi)−βip(xp−xi)

)
≥
∑
ip∈J

(π
2
|xp−xi|+−βip(xp−xi)

)
=
∑
ip∈J

(
βpi|xp−xi|+ +βip|xp−xi|−

)
≥
∑
ip∈J

min
{
βip, βpi

}
|xp−xi|

(where βpi = π/2−βip). Since βip, βpi > 0, each term is nonnegative, and any given
term tends to infinity if the corresponding difference |xi−xp| tends to infinity. If xa
remains 0 but |x| → ∞, then (due to the connectivity of G♦), at least one difference
|xi−xp| must tend to infinity, and so Φ(x)→∞.

It follows from these properties of Φ that it attains its minimum at some point
y ∈ RU , and here

(5.7)
∂Φ

∂xu
(y) = 0 (u ∈ U).

We define the radii ri = eyi (i ∈ U), and the values αip according to (5.1). To com-
plete the proof, it suffices to check that these radii and angles satisfy the conditions
of Lemma 5.5.

Let i ∈ V , then

∂

∂xi
Φ(y) = −

∑
p∈F (i)

φ′(yp−yi)+
∑
p∈F (i)

βip = −
∑
p∈F (i)

arctan(eyp−yi)+
∑
p∈F (i)

βip,

and so by (5.7),

(5.8)
∑
p∈F (i)

αip =
∑
p∈F (i)

arctan
rp
ri

=
∑
p∈F (i)

arctan(eyp−yi) =
∑
p∈F (i)

βip.

Using the definition of the numbers β, this proves (5.3). Condition (5.4) follows by
a similar computation. �

Proof of Corollary 5.4. The existence of the representation follows by The-
orem 5.3. In the proof above, the fact that Φ is strictly convex (if xa = 0 is fixed)
implies that the minimizer of Φ is unique, and grad Φ(x) = 0 happens at this unique
point only. The computation in the proof above shows that every double circle rep-
resentation (with ra = rb = rc fixed) gives a point x where grad Φ(x) = 0, which
shows that the double circle representation is essentially unique. It is not hard
to extend this argument to the case when we fix three arbitrary mutually tangent
disks to represent the nodes of the unbounded country. �

Remark 5.8. The proof described above provides an algorithm to compute a
double circle representation (up to an arbitrary precision). It is in fact quite easy
to program: We can use an “off the shelf” optimization algorithm for smooth convex
functions to compute the minimizer of F and through it, the representation.

5.2. Formulation in space

5.2.1. Double cap representation. We can lift the Koebe or double circle
representation of a graph from the plane to the sphere. The advantage will be that
we do not have to deal with the exceptional unbounded country, and there will be
a perfect duality between a graph and its dual. The price we pay is that we have
to leave the more familiar realm of plane geometry for spherical geometry.
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Figure 5.7. A planar map, its representation by touching circles,
and a stereographic projection of the latter to the sphere.

On the sphere, we represent the nodes of the graph and those of its dual by
“caps”. It will be convenient to specialize some notions from Appendix C.4 to
the ordinary 2-dimensional sphere. A circle on a sphere cuts the sphere into two
regions; together with one of the regions, the circle forms a cap. The cap may cover
a hemisphere or even more; if it covers less than a hemisphere, we call it proper. A
great circle (like the equator) bounds two hemispheres, which are not proper caps
by this definition. Every other circle bounds one proper and one improper cap.

Note that in connection with a cap, we can talk about more than one notions
of “center”. To be more precise, let S be the unit sphere, and let C be a cap on
S with boundary circle C ′. The circle C ′ is the intersection of the sphere with a
plane, and in this plane it has a center a. The line through the origin orthogonal to
this plane intersects the cap at a point c, which we call the center of the cap C. If
C is proper, then there is another useful point p ∈ ` to consider, which is the point
from which the portion of the sphere that is visible is exactly the cap C. The circle
C ′ is the “horizon” from p. Clearly a, c and p are on one line through the origin,
and by elementary geometry, |a| · |p| = |c|2 = 1. We call p the pole of the cap C.

We define a double cap representation of a planar map G as two families of caps
on a sphere S, (Ci : i ∈ V ) and (Dp : p ∈ V ∗), so that for every edge ij, bordering
countries p and q, the following holds: the interiors of the caps Ci are disjoint, and
so are the interiors of the caps Dp; the caps Ci and Cj are tangent at a point uij ;
the caps Dp and Dq are tangent at the same point uij ; and the boundary circles of
Dp and Dq intersect the boundary circles of Ci and Cj orthogonally.

Such a double cap representation provides an embedding of the graph in the
sphere, by representing each node i by the center of the cap Ci, and connecting
adjacent nodes i and j by an arc of a large circle through the tangency point uij .
Similarly we get an embedding of the dual graph. Note that in this spherical setting,
the primal and dual graphs are completely interchangeable.

Similarly as in the plane, these conditions imply other useful properties of the
sphere and the embedding: Every country p is bounded by a convex spherical
polygon, and the cap Dp touches every edge of p. Every country p is covered the
caps Dp and Ci (i ∈ V (p)). If i ∈ V is not incident with p ∈ V ∗, then Ci and Dp

are disjoint.
We have not excluded caps covering more than a hemisphere in the definition

of a double cap representation; if all caps in a double cap representation are proper,
we call the representation proper.
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Theorem 5.9. Every 3-connected planar map G has a proper double cap represen-
tation on the sphere.

Proof. Let G be a 3-connected planar map, and let p∞ be its unbounded
country. Let (Ci : i ∈ V ) and Dp : p ∈ V ∗) be a double circle representation of G
in the plane. Take any sphere S touching the plane, and project the plane onto the
sphere by inverse stereographic projection. Let (C ′i : i ∈ V ) and D′p : p ∈ V ∗) be
the images of the circles in the double circle representation; these are circles by the

fundamental properties of stereographic projection. We define caps (Ĉi : i ∈ V )

and D̂p : p ∈ V ∗) with boundaries C ′i and D′p, respectively: we assign the cap not
containing the North pole to every circle except to Dp∞ , to which we assign the
cap containing the north pole. This way we get two families of caps on the sphere.

Clearly the cap Ĉi is the image of the disk bounded by Ci, and similar assertion

holds for D̂p, except that D̂p∞ is the image of the exterior of Dp∞ (plus the north

pole). Hence the caps Ĉi are nonoverlapping, and so are the caps D̂j . All the
properties of the double cap representation follow easily from the corresponding
properties of the double circle representation.

If we want a proper representation, all we have to do is to choose the sphere S

appropriately: we let it touch the plane at the center c of Dp∞ , in which case D̂p∞

will be a cap centered at the north pole. The size of this cap depends on the radius

of S. If the radius of S is half of the radius of Dp∞ , then D̂p∞ is just the northern

hemisphere. We choose the radius of S a bit smaller than this, so that D̂p∞ be
contained in the interior of the northern hemisphere, but just barely. All other caps

D̂p, as well as the caps Ĉi for i /∈ V (p∞) are properly contained in the complement

of the interior of D̂p∞ , and so if D̂p∞ is sufficiently close to the whole northern

hemisphere, then these caps will be proper. A cap Ĉi for i ∈ V (p∞) contains
neither the North pole nor the South pole (since the South pole is the center of the
circle Dp∞ , which is orthogonal to Ci and hence its center is an exterior point of

Ci). This implies that Ĉi is smaller than a hemisphere, and so the representation
is proper. �

5.2.2. The Cage Theorem. One of the nicest consequences of the coin rep-
resentation (more exactly, the double cap representation in Theorem 5.9) is the
following theorem [Andre’ev 1970a], which is a far reaching strengthening of the
Steinitz Representation Theorem.

Theorem 5.10 (The Cage Theorem). Every simple 3-connected planar graph
can be represented as the skeleton of a convex 3-polytope such that every edge of it
touches a given sphere.

Proof. The nice picture of a double cap representation translates into polyhe-
dral geometry as follows. Let (Ci : i ∈ V ) and (Dp : p ∈ V ∗) be a proper double
cap representation of G. Let ui be the pole of Ci, and let vp be the pole of Dp.
Let ij ∈ E, and let pq be the corresponding edge of G∗. The points ui and uj
are contained in the tangent line of the sphere that is orthogonal to the circles C ′i
and C ′j at their common point uij ; this line is clearly the common tangent of the

circles D′p and D′q at uij . The plane vT
pu = 1 intersects the sphere in the circle D′p,

and hence it contains it tangents, in particular the points ui and uj , along with all

points uk where k is a node of the facet p. Since the cap D̂p is disjoint from Ĉk if
k is not a node of the facet p, we have vT

puk < 1 for every such node.
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This implies that the polytope P = conv{ui : i ∈ V } is contained in the
polyhedron P ′ = {u ∈ R3 : vT

pu ≤ 1 ∀p ∈ V ∗}. Furthermore, every inequality

vT
pu ≤ 1 defines a facet Fp of P with vertices ui, where i is a node of p. Every ray

from the origin intersects one of the countries p in the drawing of the graph on the
sphere, and therefore it intersects Fp. This implies that P has no other facets, and
thus P = P ′. It also follows that every edge of P connects two vertices ui and uj ,
where ij ∈ E, and hence the skeleton of P is isomorphic to G and every edge is
tangent to the sphere. �

Figure 5.8. A convex polytope in which every edge is tangent to
a sphere creates two families of circles on the sphere.

Let us note that, conversely, every polytope P whose edges are tangent to the
unit sphere creates a double cap representation of its skeleton. It is convenient to
assume that the center of the sphere is in the interior of P ; this can be achieved
by an appropriate projective transformation of the space (we come back to this in
Section 5.2.3).

Each node in V is represented by the cap of points you see on the sphere when
looking from the corresponding vertex, and each facet is represented by the cap its
plane cuts off the sphere (Figure 5.8). Elementary geometry tells us that the caps
representing adjacent nodes touch each other at the point where the edge touches
the sphere, and the two caps representing the adjacent countries also touch each
other at this point, and they are orthogonal to the first two circles. Furthermore,
the interiors (smaller sides) of the horizon-circles are disjoint, and the same holds
for the facet-circles.

5.2.3. Möbius transformations. We have seen that the double circle repre-
sentation of a planar graph is uniquely determined, once a triangular country of G
or G∗ is chosen as the unbounded country, and the circles representing the nodes
of this triangular country are fixed. Similar “essential uniqueness” holds true for
double cap representations on the unit sphere.

To formalize what we mean by that, observe that we can apply an arbitrary
circle-preserving transformation of the sphere to any double cap representation, to
get another one. But these modifications are the only ones to worry about; this is
asserted by the following spherical version of Corollary 5.4.

Proposition 5.11. The double cap representation of a 3-connected planar graph
is unique up to circle-preserving transformations of the sphere.
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Proof. Let (Ci, Dp : i ∈ V, p ∈ V ∗) and (C ′i, D
′
p : i ∈ V, p ∈ V ∗) be two

double cap representations of the same 3-connected planar graph G. One of G
and G∗ has a triangular country; let (say) p∞ = abc be triangular country of G.
We can apply a circle preserving transformation to the representation (C ′i, D

′
p) to

obtain that C ′a = Ca, C ′b = Cb and C ′c = Cc (see Exercise 5.6). This implies
that Dp∞ = D′p∞ . Choosing the center of Dp∞ as the north pole, and applying
stereographic projection, we get two double circle representations of G in the plane
with p∞ as the unbounded country and with the same circles representing a, b and
c in both. Uniqueness of the extension to a double circle representation (Corollary
5.4) implies that these are the same, and hence (Ci, Dp : i ∈ V, p ∈ V ∗) and
(C ′i, D

′
p : i ∈ V, p ∈ V ∗) are the same. �

A nice application of this last fact is a proof of the following theorem
[Mani 1971]:

Corollary 5.12. Every 3-connected planar graph G has a representation as the
skeleton of a polytope P such that every automorphism of the graph extends to an
isometry of the polytope.

Proof. Consider the double cap representation of G. If α is an automorphism
of G, then relabeling the nodes according to α gives another representation of G,
using the same caps, just representing different nodes. This representation can
be obtained by applying a cycle preserving transformation α to the sphere, and
by Proposition 5.11, this transformation is uniquely determined. It follows that
transformations of the form α, where α is an automorphism of G, form a finite
subgroup of the group of cycle preserving transformations. It is well known that
every such finite transformation group is conjugate to a group of isometries, which
means that after an appropriate circuit-preserving transformation, automorphisms
will extend to isometries. �

While the double cap representation of a planar graph is “essentially unique”,
we can make good use of the richness of Möbius transformations, by “normalizing”
the representation in an appropriate way. A natural normalization goal is that the
center of gravity of the centers of the caps should be the origin. The reason why
such a normalization is nontrivial is that when applying a Möbius transformation,
the caps are mapped onto caps, but the centers of the caps are not necessarily
mapped onto the centers of their images. In general, it is difficult to compute the
appropriate transformation directly; to prove its existence, we have to use topology.
The topological argument, on the other hand, has the advantage that it applies to
a number of similar normalization demands without any essential change.

As a preparation, let us discuss the topological tool we need. Brouwer’s Fixed
Point Theorem implies that if we have a continuous map f : B → B whose
restriction to the boundary sphere S is the identity, then the center of B is in the
range of f . We need an extension of this fact to the case when f is only defined
in the interior B′ of B. Suppose that the range of f : B′ → B does not cover
the origin. Trivially, the extension of f to the boundary of B as the identity map
cannot be continuous; the next lemma say that it is quite a bit discontinuous.

Lemma 5.13. Let f : B′ → B be a continuous map, and suppose that the origin
is not in the range of f . Then there are points xk ∈ B′ (k = 1, 2, . . . ) and y ∈ S
such that xk → y and f(xk)0 → −y.
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Proof. Since the range of f does not contain the origin, the mapping ft(x) =
−tf(x)0 is well defined for 0 < t < 1 and x ∈ B′, and it is a continuous map
tB → tB. So by Brouwer’s Fixed Point Theorem, it has a fixed point pt, satisfying

pt = −tf(pt)
0.

We may select a sequence of numbers tk ∈ (0, 1) such that tk → 1 and ptk →
y ∈ B. Since |ptk | = |tkf(ptk)0| = tk → 1, we have y ∈ S. Furthermore,
f(ptk)0 = −(1/tk)ptk → −y. �

Lemma 5.14. Let {C1, . . . , Cn} be a family of nonoverlapping caps on the sphere S.
Then there is a Möbius transformation τ of the sphere such that v1 + · · ·+vn = 0,
where vi is the center of τ(Ci).

Proof. Excluding trivial cases, we assume that n ≥ 3. For every interior point
x of the unit ball, we define a conformal (circle-preserving) transformation τx of the
unit sphere. For x = 0, we define τx = idS . If x 6= 0, then we take a tangent plane
T at x0, and project the sphere stereographically onto T , shrink the plane from
center x0 by a factor of 1−|x|, and project it back stereographically to the sphere.
It is easy to check that this construction has the following property: if xk ∈ B is a
sequence of points such that xk → y ∈ S, then τxk

(z)→ y for every z ∈ S, z 6= y.
Let vi(x) denote the center of the cap τx(Ci) (warning: this is not the image of

the center of Ci in general!), and let f(x) = (1/n)
(
v1(x)+ · · ·+vn(x)

)
. We want

to show that the range of f contains the origin. Suppose not, then by Lemma 5.13,
there are points xk ∈ B′ and y ∈ S such that xk → y and f(xk)0 → −y as k →∞.

Let us think of y as the north pole and −y as the south pole. From the
properties of τx it follows that if Ci does not contain the south pole, then vi(xk)→ y
as k → ∞; if the south pole is on the boundary of Ci, then vi(xk) tends to the
equator. So with at most two exceptional values of i, we have yTvi(xk) → 1,
and it there are two exceptional values i and j, then yTvi(xk),yTvj(xk) → 0. So
yTf(xk) > 0 if k is large enough, which contradicts the fact that f(xk)0 → −y. �

Remark 5.15. The topological proof above is quite robust: instead of the center
of gravity, it applies to other “centers” satisfying some natural conditions. To be
more precise, consider a continuous function f : S×· · ·×S → B (n factors of
the unit sphere S) with the property that yTf(y1, . . . ,yn) > 0 if yi = y for at
least n−2 indices i. Let {C1, . . . , Cn} be a family of nonoverlapping caps on the
sphere S (n ≥ 4). Then there is a Möbius transformation τ of the sphere such that
f(v1, . . . ,vn) = 0, where vi is the center of τ(Ci). (See Exercise 5.13 for a slightly
stronger statement.)

5.3. Circle packing and the Riemann Mapping Theorem

Koebe’s Circle Packing Theorem and the Riemann Mapping Theorem in com-
plex analysis are closely related. More exactly, we consider the following general-
ization of the Riemann Mapping Theorem, also due to Koebe:

Theorem 5.16 (Circle Domain Theorem). Every connected open domain on
the sphere whose boundary has a finite number of connected components is confor-
mally equivalent to a domain obtained from the sphere by removing a finite number
of disjoint disks and points.
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The Circle Packing Theorem and the Circle Domain Theorem are mutually
limiting cases of each other [Koebe 1936], [Rodin–Sullivan 1987]. The exact proof
of this fact has substantial technical difficulties, but it is not hard to describe the
idea.

1. To see that the Circle Domain Theorem implies the Circle Packing Theorem,
let G be a connected map on the sphere. We may assume that G and its dual G∗ are
3-connected, and their arcs are smooth curves (these assumptions are not essential,
just convenient). Let ε > 0, and let U denote the open ε-neighborhood of G∗. By
Theorem 5.16, there is a conformal map of U onto a domain D′ which is obtained by
removing a finite number of disjoint caps and points from the sphere (the removed
points can be considered as degenerate caps). If ε is small enough, then these caps
are in one-to-one correspondence with the nodes of G. We normalize using Lemma
5.14 and assume that the center of gravity of the cap centers is 0 (Figure 5.9 shows
this correspondence drawn in the plane).

Figure 5.9. The Koebe Circle Domain Theorem, applied to a
small neighborhood of the edges of a planar map, yields a touching
disk representation of the dual map.

Letting ε → 0, and selecting a suitable subsequence, we may assume that the
cap representing any given node v ∈ V converges to a cap Cv. One can argue that
these caps are nondegenerate, caps representing different nodes tend to nonover-
lapping caps, and caps representing adjacent nodes tend to caps that are touching.

Figure 5.10. Coin representation of a triangular grid, and of the
graph obtained by adding a new node (the black node on the top),
the latter converging to a conformal mapping of a triangle onto a
disk.

2. In the other direction, let us warm up by describing how to get a conformal
map from a regular triangle to a circular disk. (Here we argue in the planar setting.)
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We subdivide the interior of the triangle into “many” small triangles to get piece
of a triangular grid (Figure 5.10). This graph G has an obvious representation by
touching circular disks. The union of these disks approximates the original triangle,
so nothing is gained here.

However, if we add a new node v and connect it to all the boundary nodes of G,
we get a triangulation. Representing this triangulation as a tangency graph, with
the circle representing v turned inside out, we get the picture on the right: we can
think of it as the middle picture distorted so that the outer disks touch the circle
C representing the new node. We can map the full triangle into the interior of C
by mapping each little triangle affinely to the corresponding triangle on the right.
Refining the grid, we get a sequence of maps that (with some care) converge to a
conformal map of the interior of the triangle to the interior of the circle.

Turning to the general case, and returning to the spherical formulation, let U =
S2 \K1 \· · ·\Kn, where K1, . . . ,Kn are disjoint closed connected sets which do not
separate the sphere. We may assume that no Ki is a single point (these are trivial
to handle). Let ε > 0. It is not hard to construct a family C(ε) of nonoverlapping
caps such that the radius of each cap is less than ε and their tangency graph G is
a triangulation of the sphere.

Let Hi denote the subgraph of G consisting of all edges intersecting Ki. If ε is
small enough, then the subgraphs Hi are node-disjoint, and each Hi is nonempty.
It is also easy to see that the subgraphs Hi are connected.

Let us contract in G each subgraph Hi to a single node wi. The spherical map
G′ obtained this way can be represented as the tangency graph of a family of caps
{Du(ε) : u ∈ V (G′)}. We can normalize so that the center of gravity of the centers
of Dw1(ε), . . . , Dwn(ε) is the origin.

Now let ε → 0. By selecting and appropriate subsequence, we may assume
that each Dwi

= Dwi
(ε) tends to a cap Dwi

(0). Furthermore, we have a map fε
that assigns to each node u of Gε the center of the corresponding cap Du. One
can prove (but this is nontrivial) that these maps fε, in the limit as ε → 0, give a
conformal map of U onto S2 \Dw1(0)\· · ·\Dwn(0).

5.4. Applications of coin representations

5.4.1. Planar separators. Koebe’s Theorem has several important applica-
tions. We start with a simple proof of a version of the Planar Separator Theorem
2.7 [Lipton–Tarjan 1979]:

Theorem 5.17. Every planar graph G on n nodes contains a set S ⊆ V such that
|S| ≤

√
2n, and every connected component of G\S has at most 3n/4 nodes. �

This version and the proof to be presented is due to [Miller et al. 1997]; see
[Spielman–Teng 1996b] for an improved analysis of the method.

We need the notion of the “statistical center”, which is important in many
other studies in geometry. Let S ⊆ Rd be a set of n points in Rd. A point c ∈ Rd
is a statistical center of S if every closed halfspace containing c contains at least
n/(d+1) elements of S. (We could say open halfspace instead of closed without
changing this notion.) For d = 1, this point is just the median of a finite set of real
numbers. This is unique if the set has an odd number of elements, otherwise the
allowable values form an interval.

Lemma 5.18. Every finite set of points in Rd has a statistical center.
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Proof. Let B be a ball containing all points in S, and let H be the family of
intersection of B with those closed halfspaces that contain more than dn/(d+1)
points of S. Then all members of H are closed, bounded and convex. Furthermore,
the intersection of any d+1 of these still contains an element of S, so in particular it
is nonempty. Thus by Helly’s Theorem, the intersection of all sets inH is nonempty.
We claim that any point c ∈ ∩H satisfies the conclusion of the lemma.

If H be any open halfspace containing c, then Rd \H /∈ H, which means that
H contains at least n/(d+1) points of S. If H is a closed halfspace containing c,
then it can be enlarged slightly to an open halfspace H ′ that intersects S in exactly
the same set. We know already that H ′ contains at least n/(d+1) elements of S,
and hence so does H. �

Proof of Theorem 5.17. Let (Ci : i ∈ V ) be a Koebe representation of G on
the unit sphere, and let ui be the center of Ci on the sphere, and ρi, the spherical
radius of Ci.

We want to make the origin a statistical center of the points ui. This takes
a little care, since a set may have more than one statistical center. It is easy to
see that statistical centers of the set form a convex set, and we can consider the
center of gravity of all statistical centers; let us call this (just for this argument)
the central statistical center. It is also easy to see that the central statistical center
depends continuously on the position of the points of S, and satisfies the conditions
formulated in Remark 5.15. So we can transform the Koebe representation into
one whose central statistical center is the origin. This also implies that all caps Ci
are proper.

Take any plane H through 0. Let S denote the set of nodes i for which Ci
intersects H, and let H separate V \S into two sets S1 and S2. Clearly there is no
edge between S1 and S2, and so the subgraphs G1 and G2 are disjoint and their
union is G\S. Since 0 is a statistical center of the ui, it follows that |S1|, |S2| ≤
3n/4.

It remains to make sure that S is small. To this end, we choose H at random,
and estimate the expected size of S.

What is the probability that H intersects Ci? Since the caps Ci are proper,
we have ρi < π/2 for every i. By symmetry, instead of fixing Ci and choosing H
at random, we can fix H and choose the center of Ci at random. Think of H as
the plane of the equator, then Ci will intersect H if and only if its center is at a
latitude at most ρi (North or South). The area of this belt around the equator is,
by elementary geometry, 4π sin ρi, and since the total area of the sphere is 4π, the
probability that the center of Ci falls into here is sin ρi. It follows that the expected
number of caps Ci intersected by H is

∑
i∈V sin ρi.

To get an upper bound on this quantity, we use the fact that the surface area
of the cap Ci is 4π sin(ρi/2)2, and since these caps are disjoint,

(5.9)
∑
i∈V

(
sin

ρi
2

)2

< 1.

Using that sin ρi ≤ 2 sin ρi
2 , we get by Cauchy-Schwarz

∑
i∈V

sin ρi ≤
√
n

(∑
i∈V

(sin ρi)
2

)1/2

≤ 2
√
n

(∑
i∈V

(
sin

ρi
2

)2
)1/2

< 2
√
n.
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So the expected size of S is less than 2
√
n, and so there is at least one choice of H

for which |S| < 2
√
n. �

5.4.2. Laplacians of planar graphs. The Planar Separator theorem, dis-
cussed in the last section, was first proved by direct graph-theoretic arguments, and
other elegant graph-theoretic proofs are available [Alon–Seymour–Thomas 1984].
However, for the following theorem on the eigenvalue gap of the Laplacian (Fiedler
value) of planar graphs [Spielman–Teng 1996a], there is no proof known avoiding
Koebe’s theorem. Informally, the theorem says that planar graphs are poor ex-
panders; see Section B.3 for more on the significance of the eigenvalue gap.

Theorem 5.19. For every connected planar graph G on n nodes and maximum
degree D, the second smallest eigenvalue of LG is at most 8D/n.

Proof. By Raleigh’s formula, the second smallest eigenvalue of LG is given by

λ2 = min
x6=0∑
i xi=0

∑
ij∈E(xi−xj)2∑

i∈V x
2
i

,

Let Ci : i ∈ V be a Koebe representation of G on the unit sphere, and let ui be
the center of Ci, and ρi, the spherical radius of Ci. By Lemma 5.14 may assume
that

∑
i ui = 0.

Let ui = (ui1, ui2, ui3), then xi = uik must be taken into account in this formula
for k = 1, 2, 3, which implies that∑

ij∈E
(uik−ujk)2 ≥ λ2

∑
i∈V

u2
ik

holds for every coordinate k, and summing over k, we get

(5.10)
∑
ij∈E
|ui−uj |2 ≥ λ2

∑
i∈V
|ui|2 = λ2n.

On the other hand, we have

|ui−uj |2 = 4

(
sin

ρi+ρj
2

)2

= 4
(

sin
ρi
2

cos
ρj
2

+sin
ρj
2

cos
ρi
2

)2

≤ 4
(

sin
ρi
2

+sin
ρj
2

)2

≤ 8
(

sin
ρi
2

)2

+8
(

sin
ρj
2

)2

,

and so by (5.9) ∑
ij∈E
|ui−uj |2 ≤ 8D

∑
i∈V

(
sin

ρi
2

)2

≤ 8D.

Comparison with (5.10) proves the theorem. �

Among other applications of Koebe’s Theorem of similar nature, we men-
tion a bound on the cover time of the random walk on a planar graph
[Jonasson–Schramm 2000].
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5.5. And more...

5.5.1. General convex domains and bodies. Let H be a family of closed
convex domains in the plane, such that their interiors are disjoint. If we represent
each of these domains by a node, and connect two of these nodes if the corresponding
domains touch, we get a GH, which we call the tangency graph of the family. It is
easy to see that if no four of the domains touch at the same point, then this graph
is planar.

In what follows, we restrict ourselves to the case when the members of H are
all homothetical copies of a centrally symmetric convex domain. It is natural in
this case to represent each domain by its center.

Figure 5.11. Straight line embedding of a planar graph from
touching centrally symmetric convex figures.

In [Schramm 1991] the following deep converse of this construction was proved.

Theorem 5.20. For every smooth strictly convex domain D, every maximal planar
graph can be represented as the tangency graph of a family of homothetical copies
of D. �

In fact, Schramm proves the more general theorem that if we assign a smooth
convex domain Di to each node i of a triangulation G of the plane, then there is
a family D = (D′i : i ∈ V ) of nonoverlapping convex domains such that D′i is
positively homothetical to Di and the tangency graph of D is G.

The smoothness of the domain is a condition that cannot be dropped. For
example, K4 cannot be represented by touching squares. A strong result about
representation by touching squares, also due to Schramm, will be stated and proved
in Chapter 6.

The Cage Theorem 5.10 has a far-reaching generalization to general convex
bodies [Schramm 1992].

Theorem 5.21 (Caging the Egg). For every smooth strictly convex body K in
R3, every 3-connected planar graph can be represented as the skeleton of a polytope
in R3 such that every one of its edges touch K. �

5.5.2. Polyhedra in hyperbolic space. If we have a double cap representa-
tion of a planar graph, we can read off another interesting polyhedral representation,
not of the graph itself, but of its medial graph, and not in Euclidean space, but in
hyperbolic space.
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Let (Ci : i ∈ V ) and (Dp : p ∈ V ∗) form a proper double cap representation
of G on the sphere S. Let B be the ball bounded by S. We can represent each cap
Ci as the intersection of a ball Ai with S, where the boundary sphere A′i of Ai is
orthogonal to S. Similarly, we can write Dp = Bp∩S, where Bp is a ball whose
boundary sphere B′p is orthogonal to S.

Let P denote the set of points in B that are not contained in any Ai and Bp.
This set is open and nonempty (since it contains the origin). The balls Ai and Bp
cover the sphere S, and even their interiors do so with the exception of the points
xij where two caps Ci and Cj touch. It follows that P is a domain whose closure

P contains a finite number of points of the sphere S. It also follows that no three
of the balls Ai and Bp have a point in common except on the sphere S. Hence
those points in the interior of S that belong to two of the spheres A′i form circular
arcs that go from boundary to boundary, and it is easy to see that these arcs are
orthogonal to S. For every incident pair (i, p) (i ∈ V, p ∈ V ∗) there is such an
“edge” of P . The “vertices” of P are the points xij , which are all on the sphere S,
and together with the “edges” as described above they form a graph isomorphic to
the medial graph G./ of G.

All this translates very nicely, if we view the interior of S as a Poincaré model
of the 3-dimensional hyperbolic space. In this model, spheres orthogonal to S are
“planes”, and hence P is a polyhedron. All the “vertices” of P are at infinity, and
P is a Steinitz representation of G+ in hyperbolic space. Every dihedral angle of
P is π/2.

Conversely, a representation of G+ in hyperbolic space as a polyhedron with
dihedral angles π/2 and with all vertices at infinity gives rise to a double cap
representation of G.

What about representing not the medial graph, but an arbitrary planar graph
by such a polyhedron in hyperbolic space? This is not always possible any more.
[Andre’ev 1970a, Andre’ev 1970b] gave a general necessary and sufficient condition
for the existence of a representation of a planar graph by a polyhedron in hyperbolic
3-space with “vertices” at infinity and with prescribed dihedral angles. From this
condition, he was able to derive Theorems 5.10 and 5.3.

5.5.3. Other angles. The double circle representation of G gives a represen-
tation of the lozenge graph G♦ by circles such that adjacent nodes correspond to
orthogonal circles. We may want to extend Koebe’s Theorem to construct represen-
tations of more general graphs by orthogonal circles: circles representing adjacent
nodes must intersect at 90◦, other pairs should be disjoint or intersect at an angle
larger than 90◦ (i.e., their centers must be farther apart) (Figure 5.12).

More generally, we may want to prescribe the angle at which two circles repre-
senting adjacent nodes meet. Circles touching from the outside correspond to 180◦,
orthogonal circles, to 90◦. Most results in this generality concern planar triangu-
lations. We quote the main result, due to [Andre’ev 1970a, Andre’ev 1970b] and
[Thurston 1997], without proof. See also [Bobenko–Springborn 2004] for a proof
along the lines of the proof of Koebe’s Theorem given above.

Theorem 5.22. Let G be a simple planar triangulation different from K4. Let
an angle 0 ≤ ψij ≤ π/2 be assigned to every edge ij. Suppose that the following
conditions hold:

(i) If ijk is a triangle in G such that ψij+ψjk+ψki ≥ π, then ijk is a country;
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Figure 5.12. Representing a planar graph by orthogonal circles.

(i) If ijkl is a quadrilateral in G such that ψij+ψjk+ψil+ψli = 2π, then ijkl
is the boundary of the union of two countries.

Then G has a representation by circles (Ci : i ∈ V ) on the 2-sphere such that
for every edge ij, the circles Ci and Cj intersect at an angle of ψij. �

In the special case when all prescribed angles are π/2, a necessary and sufficient
condition was proved in [Kotlov–Lovász–Vempala 1997].

Theorem 5.23. Let G be a simple planar triangulation different from K4. Then
G has a representation by orthogonal proper caps on the sphere if and only if no 3-
or 4-cycle separates it into two parts with at least two nodes. �

Exercise 5.1. Let G be a connected planar map with a triangular unbounded
country abc. With the notation of Section 5.1.1, define J [S] = {ip ∈ J : i, p ∈ S}
(S ⊆ U), and f(S) = 1

2
|J [S]|−|S|+ 5

6
|S∩{a, b, c}|. Prove that (a) f(∅) = f(U) =

0; (b) f(S) < 0 for every set ∅ ⊂ S ⊂ U .

Exercise 5.2 (Continued). Prove that if (ru : u ∈ U) and (r′u : u ∈ U) are
two assignments of positive radii such that they give rise to the same defect at
every node, then there is a constant C > 0 such that r′i = Cri for all i.

Exercise 5.3 (Continued). (a) Prove that
∑
u∈S δu > f(S)π for every set

∅ ⊂ S ⊂ U . (b) Prove that if (du : u ∈ U) is a vector of real numbers such
that

∑
u du = 0 and

∑
u∈S du > f(S)π for every set ∅ ⊂ S ⊂ U , then there is an

assignment of positive radii whose defects are δu = du for all u ∈ U . (c) Give a
new proof of Theorem 5.3 based on these assertions.

Exercise 5.4. Prove that every double circle representation of a planar graph is
a rubber band representation with appropriate rubber band strengths.

Exercise 5.5. Prove that in every double cap representation of a 3-connected
planar graph on the sphere, at most one cap is improper.

Exercise 5.6. Prove that for three mutually tangent caps C1, C2 and C3 on the
sphere, and three other mutually tangent caps C′1, C′2 and C′3, there is a Möbius
transformation that maps Ci onto C′i (i = 1, 2, 3).

Exercise 5.7. Show by an example that the bound in Lemma 5.18 is sharp.

Exercise 5.8. Let H be a family of convex domains in the plane with smooth
boundaries and disjoint interiors. Then the tangency graph of H is planar.
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Exercise 5.9. Construct a planar graph G whose nodes cannot be represented
by squares in the plane so that the interiors of the squares are disjoint and two
squares share a boundary point if and only if the corresponding nodes of G are
adjacent.

Exercise 5.10. Prove that every simple planar graph can be represented as the
tangency graph of a family of triangles [de Fraysseix et al. 1994].

Exercise 5.11. Let H be a family of homothetical centrally symmetric convex
domains in the plane with smooth boundaries and disjoint interiors. Prove that
the centers of the domains give a straight line embedding in the plane of its
tangency graph (Figure 5.11).

Exercise 5.12. Prove that in a representation of a 3-connected planar graph
by orthogonal circles on the sphere the “interiors” can be chosen so that the
corresponding caps cover the whole sphere.

Exercise 5.13. Let f : S×· · ·×S → B (n factors of the unit sphere S) be a
continuous function with the property that yTf(y1, . . . ,yn) > 0 if either yi = y for
all i, or yi = y with the exception of one index i = i1, for which yi1 = −y, or yi =
y with the exception of two indices i = i1, i2, for which yTyi1 = yTyi2 = 0. Let
{C1, . . . , Cn} be a family of nonoverlapping caps on the sphere S (n ≥ 4). Prove
that there is a Möbius transformation τ of the sphere such that f(v1, . . . ,vn) = 0,
where vi is the center of τ(Ci).

Exercise 5.14. Let G be a simple planar map, and consider the graph H =
G∪G♦, obtained from G♦ by adding the edges of the original graph. Let us
prescribe an angle of 90◦ to the edges of G♦, and 0◦ to the edges of the original
graph. Show that a representation of H by circles with these prescribed angles
yields a double circle representation of G.

Exercise 5.15. Let G be a connected planar graph on n nodes with maximum
degree D. Prove that the second largest eigenvalue of the transition matrix of the
random walk on G is at least 1−8D/n.

Exercise 5.16. Show by an example that Theorem 5.21 does not remain valid if
we drop the conditions of smoothness and strict convexity.





CHAPTER 6

Square Tilings

We can also represent planar graphs by squares, rather then circles, in the
plane. There are in fact two quite different ways of doing this: the squares can
correspond to the edges, a classic result [Brooks et al. 1940], or the squares can
correspond to the nodes, a more recent result [Schramm 1993].

6.1. Electric current through a rectangle

The classical paper [Brooks et al. 1940] used a physical model of electrical cur-
rents to show how to relate square tilings to planar graphs. The ultimate goal was
to construct tilings of a square with squares whose edge-lengths are all different.
This will not be our concern (but see Exercise 6.2); we will allow squares of the
same size and also the domain to be tiled can be any rectangle, not necessarily a
square.

Consider a tiling T of a rectangle R with a finite number of squares, whose
sides are parallel to the coordinate axes. We can associate a planar map with this
tiling as follows. Let us call a maximal horizontal segment composed of edges of
the squares a long edge. Represent every long edge by a single node. Each square
“connects” two horizontal segments, and we can represent it by an edge connecting
the two corresponding nodes, directed top-down. We get a directed graph GT
(Figure 6.1), with a single source s (representing the upper edge of the rectangle)
and a single sink t (representing the lower edge).

It is easy to see that graph GT is planar: it can be obtained by first consid-
ering the midpoints of the horizontal edges of the squares, connecting two of them
horizontally if they are neighbors along a long edge, and vertically if they belong
to opposite edges of the same square. This graph is clearly planar, and contracting
the horizontal edges, we get GT .

A little attention must be paid to points where four squares meet; we call these
points 4-fold corners. Suppose that squares A,B,C,D share a corner p, where
A is the upper left, and B,C,D follow counterclockwise. In this case, we may
consider the lower edges of A and B to belong to a single long edge, or to belong
to different long edges. In the latter case, we may or may not imagine that there
is an infinitesimally small square sitting at p, which may “connect” A with C or
B with D (Figure 6.2). What this means is that we have to declare if the four
edges of GT corresponding to A, B, C and D are adjacent to the same node,
two nonadjacent nodes, or two adjacent nodes. We can orient this horizontal edge
arbitrarily. Deciding between these four possibilities will be called “resolving” the
4-fold corner p.

If we assign the edge length of each square to the corresponding edge, we get a
flow f from s to t: If a node v represents a segment I, then the total flow into v is
the sum of edge lengths of squares attached to I from the top, while the total flow
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Figure 6.1. Constructing a graph with a harmonic function from
a tiling of a rectangle by squares.

Figure 6.2. Possible resolutions of four squares meeting at a point.

out of v is the sum of edge length of squares attached to I from the bottom. Both
of these sums are equal to the length of I.

Let h(v) denote the distance of node v from the upper edge of R. Since the
edge-length of a square is also the difference between the y-coordinates of its upper
and lower edges, the function h is harmonic:

h(i) =
1

deg(i)

∑
j∈N(i)

h(j)

for every node different from s and t (Figure 6.1).
It is not hard to see that this construction can be reversed.

Theorem 6.1. For every connected planar map G with two specified nodes s and
t on the unbounded country, there is a unique tiling T of a rectangle such that
(resolving the 4-fold corners appropriately) G ∼= GT .

Proof. Consider the harmonic function f : V → R with f(s) = 0 and f(t) = 1
(obtained, say, as the 1-dimensional rubber band embedding with s and t nailed; in
Figure 6.3, this is the vertical coordinate of each node). We assign a square to each
edge uv with f(v) > f(u), of side length f(v)−f(u). This square will be placed
so that its lower edge is at height f(u), and its upper edge, at height f(v). To
find the horizontal position of these squares, we start from node s: we line up the
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Figure 6.3. A planar graph and the tiling generated from it.

squares corresponding to the edges incident with s along the bottom line, in the
order as these edges emanate from s. We go through the nodes in the increasing
order of the values of f . Getting to a node v, those edges entering v from below
have squares assigned to them whose top edges are at height f(v), and these edges
form a segment Iv of length

|Iv| =
∑

u∈N(v)
f(u)<f(v)

(
f(v)−f(u)

)
.

Since by the harmonic property of f we also have

|Iv| =
∑

u∈N(v)
f(u)≥f(v)

(
f(u)−f(v)

)
,

so we can line up the squares corresponding to edges exiting v upwards, along Iv,
in the order given by the embedding in the plane. When we get to t, we have filled
up the rectangle. �

Figure 6.4. The dodecahedron graph, its rubber band embedding
on the line (horizontally distorted to show the structure), and a
square tiling generated from it.
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6.2. Tangency graphs of square tilings

Let R be a rectangle in the plane, and consider a tiling of R by squares. Let us
add four further squares attached to each edge of R from the outside, sharing the
edge with R. We want to look at the tangency graph of this family of squares.

Since the squares do not have a smooth boundary, the conclusion of Exercise
5.8 does not apply, and the tangency graph of the squares may not be planar. Let
us try to draw the tangency graph in the plane by representing each square by its
center and connecting the centers of touching squares by a straight line segment.
Similarly as in the preceding section, we get into trouble when four squares share
a vertex. In this case we can specify arbitrarily one diametrically opposite pair
as “infinitesimally overlapping”, and connect the centers of these two square but
not the other two centers. We call this a resolved tangency graph of the family of
squares.

Every resolved tangency graph is planar, and it is easy to see that it has exactly
one country that is a quadrilateral (namely, the unbounded country), and its other
countries are triangles; briefly, it is a triangulation of a quadrilateral (Figure 6.5).
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Figure 6.5. The resolved tangency graph of a tiling of a rectangle
by squares. The numbers indicate the edge lengths of the squares.

Under some connectivity conditions, this fact has the following converse
[Schramm 1993].

Theorem 6.2. Every planar map in which the unbounded country is a quadrilat-
eral, all other countries are triangles, and is not separated by a 3-cycle or 4-cycle,
can be represented as a resolved tangency graph of a square tiling of a rectangle.

Schramm proved a more general theorem, in which separating cycles were al-
lowed; the prize to pay was that degenerate squares with edge-length 0 had to be
allowed. It is easy to see that a separating triangle forces everything inside it to
degenerate in this sense, and so we do not loose anything interesting by excluding
these. Separating 4-cycles may or may not force degeneracy (Figure 6.6), and it
does not seem easy to tell when they do.
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degenerate

square

Figure 6.6. A separating 4-cycle that causes degeneracy and one
that does not.

Before proving Theorem 6.2, let us make a detour to a well-known game. The
following folklore fact is easy to prove:

Proposition 6.3. Let G be a planar map in which the unbounded country is a
quadrilateral abcd and all other countries are triangles. Let us 2-color the nodes
with black and white, so that a and c are black and b and d are white. Then either
there is an all-black a-c path, or an all-white b-d path, but not both.

Proof. From the planarity of G it is immediate that if an all-black a-c path
exists, then it separates b and d, and so it excludes an all-white b-d path. To prove
that one of these paths exists, let us start a walk through the map, avoiding the
nodes. We enter through the edge ab, so that we have a black node to the left
and a white node to the right, and leave through another edge that has differently
colored endpoints (clearly again black on the left and white on the right). Going
on similarly, we maintain that we cross only edges having a black endnode to our
left and a white endnode to our right. It is easy to see that we never return to
a triangle which we left earlier, and so we must return to the unbounded country
through one of the edges bc or ad: Exiting through cd is impossible, since then we
would have the wrong colors on our left and right (Figure 6.7, left).

Suppose (say) that we exit through bc; then the black-black edges of those
triangles that we cross form a walk from a to c, which contains a black a-c path. �

Figure 6.7. Left: Walking through a 2-colored triangulation of a
square. Right: The game of Hex as a special case of the situation
in Proposition 6.3.

The reader familiar with basic algebraic topology will notice that the proof
above is very similar to one of the (algorithmic) proofs of Sperner’s Lemma. In fact
it would be easy to derive Proposition 6.3 from Sperner’s Lemma.
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A special case of this proposition is the fact that in every game of Hex, one or
the other player wins, but not both (Figure 6.7, right).

Proof of Theorem 6.2. Let G be the planar map with unbounded country
abcd. It will be convenient to set V ′ = V \{a, b, c, d}. Recall that V ′(P ) denotes
the set of inner nodes of the path P . For a path P and two nodes u and v on
the path, let us denote by P (u, v) the subpath of P consisting of all nodes strictly
between u and v. Later on we will also need the notation P [u, v) for the subpath
formed by the nodes between u and v, with u included but not v, and P [u, v] for
the subpath with both included.

We consider the node-path and node-cut polyhedra, where a and c are the spe-
cial nodes and b and d are deleted, or vice versa (see Appendix C.2.1). Proposition
6.3 implies that the a-c node-cut polyhedron of G\{b, d} is the same as the b-d
node-path polyhedron of G\{a, c}, and vice versa. Another way of saying this is
that the b-d node-path polyhedron of G\{a, c} is the blocker of the a-c node-path
polyhedron of G\{b, d}.

Let P be the set of a–c paths in G\{b, d} and Q, the set of b–d paths in
G\{a, c}. The a-c node-cut polyhedron is described by the linear constraints

xu ≥ 0 (u ∈ V ′)(6.1)

x
(
V ′(P )

)
≥ 1 (P ∈ P).(6.2)

Consider the solution x of (6.1)–(6.2) minimizing the objective function
∑
u x

2
u,

and let R2 be the minimum value. By Proposition C.2, y = (1/R2)x minimizes the
same objective function over the blocker (which is the b-d node-path polyhedron
of G\{a, c}), and the optimum value is 1/R2. Let us rescale the optimizers to get
z = 1

Rx = Ry. Then we have

z
(
V ′(P )

)
≥ 1

R
(P ∈ P)(6.3)

z
(
V ′(Q)

)
≥ R (Q ∈ Q)(6.4) ∑

u∈V ′
z2
u = 1.(6.5)

It will be convenient to define za = zb = zc = zd = 0.
We assign the length ẑij = 1

2 (zi+zj) to every edge ij. Using this, we can
define (as usual) the length ẑ(P ) of path as the sum of lengths of its edges, and
the distance dz(u, v) of two nodes as the minimum length of any path connecting
them. Inequalities (6.3) and (6.4) say that dz(a, c) ≥ 1/R and dz(b, d) ≥ R, and
the minimality of x and y implies that we have equality here. It is easy to see that
dz(i, j) = ẑij for every edge ij, so the edge is a shortest path between its endpoints.

We know that y is in the a-c node-path polyhedron, and it is a minimal vector
in there, so it is in the a-c node-path polytope, and it can be written as a convex
combination of indicator vectors 1P of sets V ′(P ), where P is an a–c path. It
follows that z can be written as

(6.6) z =
∑
P∈P

λP1P ,
∑
P

λP = R, λP ≥ 0.

Similarly, we have a decomposition

(6.7) z =
∑
Q∈Q

µQ1Q,
∑
Q

µQ =
1

R
, µQ ≥ 0.
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Let P ′ = {P ∈ P : λP > 0}, and define Q′ analogously. Obviously, a node
u ∈ V ′ has zu > 0 if and only if it is contained in one of the paths in P ′, which
must then be equivalent to be contained in one of the paths in Q′ (we’ll prove later
that all nodes have zu > 0).

From conditions (6.3)-(6.5) we can derive some simple but powerful properties
of the paths in P ′ andQ′. It is trivial from the topology ofG that |V (P )∩V (Q)| ≥ 1
for P ∈ P ′ and Q ∈ Q′. On the other hand, (6.5) implies that

1 =
∑
u∈V ′

z2
u =

(∑
P

λP1P

)T(∑
Q

µQ1Q

)
=
∑
P,Q

λPµQ|V (P )∩V (Q)|

≥
∑
P,Q

λPµQ =
(∑
P

λP

)(∑
Q

µQ

)
= 1.

We must have equality here, which implies that

(6.8) |V (P )∩V (Q)| = 1 (P ∈ P ′, Q ∈ Q′).

For any path Q ∈ Q′, we have

(6.9) ẑ(Q) = zT1Q =
∑
P∈P′

λP1
T
P1Q =

∑
P∈P′

λP |V ′(P )∩V ′(Q)| =
∑
P∈P′

λP = R.

Similarly, for every P ∈ P ′, we have

(6.10) ẑ(P ) =
1

R
.

So the paths in P ′ and Q′ are shortest paths with respect to the metric dz. It
follows that they are chordless, and also for every path P ∈ P ′ and u, v ∈ V (P ), the
subpath P [u, v] is a shortest path between its endpoints. We get by the same kind
of argument that the common nodes of any two paths P, P ′ ∈ P ′ are encountered
by the two paths in the same order.

A consequence of (6.9) is that a b-d path Q satisfies ẑ(Q) = R (so it is a shortest
b-d path) if and only if |V (P )∩V (Q)| = 1 for every P ∈ P ′.

We say that a P ′ ∈ P ′ is to the right of P ∈ P ′, if every node of P ′ is either
a common point of P and P ′, or is separated from b by P . Clearly this defines a
partial ordering of P ′. In this case we say that P and P ′ do not cross. We can
similarly define noncrossing paths in Q′, and a partial ordering.

We continue with two somewhat more elaborate properties of the paths in P ′
and Q′. The first of these arguments could be omitted at the cost of making the
arguments later less transparent. However, under the name of “uncrossing”, this
method is a standard and powerful step in many proofs in graph theory, and it is
worth describing.

Claim 1.We can choose the decompositions in (6.6) and (6.7) so that the families
P ′ and Q′ are pairwise non-crossing.

In other words, “to the right” defines a total order on P ′. Similarly, we get a
total order on Q′.

To prove the Claim, let P, P ′ ∈ P ′ be a pair of paths that are crossing. Using
that their common nodes are in the same order along both, we can construct two
other a-c paths P0 and P ′0, consisting of the common nodes and those nodes of
each path that are to the left (resp. to the right) of the other path (Figure 6.8,
left). Clearly ẑ(P )+ ẑ(P ′) = ẑ(P0)+ ẑ(P ′0), and since P and P ′ satisfy (6.3) with
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equality, so do P0 and P ′0. Let ε = min{λP , λP ′}, and let us decrease λP and λP ′

by ε and increase λP0 and λP ′0 by ε. This gives another decomposition in (6.6). So
one of P and P ′ (say, P ′) drops out of P ′, and P0 and P ′0 enter it (they may have
been there already, in which case only their weight increases).

This describes the main step, but we want to repeat this procedure to get rid
of all crossings; to this end, we have to justify that we are making progress. This
is not quite obvious, since we have replaced two paths by (possibly) three, creating
new crossings with the other paths. Looking more carefully, we see that

(a) the remaining path P and the new paths P0 and P ′0 are mutually noncross-
ing, and

(b) if a further path in P ′ crosses either one of P0 and P ′0, then it crosses at
least one of P and P ′; and if it crosses both P0 and P ′0, then it crosses both P and
P ′.

From these observations it follows that the sum∑
P1,P2∈P′ crossing

λP1λP2

decreases at the above operation, and so if we start with a decomposition minimizing
this sum, then the family P ′ will consist of non-crossing paths. We argue for Q′
similarly. This proves the Claim.
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Figure 6.8. Left: uncrossing two paths. Right: every node has
positive weight.

Let u ∈ V ′. Every path in P ′ either goes through u or it separates u from
exactly one of b or d in the topology of the plane. Let P−u , Pu and P+

u denote the
sets of paths in P ′ separating u from b, passing through u, and separating u from d,
respectively. Clearly the sets P−u , Pu and P+

u form intervals in the ordering of P ′.
We define the partition Q′ = Q−u ∪Qu∪Q+

u analogously: the paths in Q− separate
u from a etc. If Q ∈ Q′ is any path through u, then it is easy to tell which paths
in P ′ separate u from b: exactly those whose unique common node with Q lies on
the subpath Q[b, u).

Clearly λ(Pu) = µ(Qu) = zu. We can express the distance of a node u ∈ V ′
with zu > 0 from b as

(6.11) dz(b, u) =
zu
2

+λ(P−u ).
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Indeed, choosing any Q ∈ Qu, a path P ∈ P ′ belongs to P−u if and only if it
intersects Q(b, u), and such paths contribute λP to zv for a single node v on Q(b, u).

Claim 2. Every node i ∈ V ′ satisfies zi > 0.

Suppose that there are nodes with zi = 0, and let H be a connected component
of the subgraph induced by these nodes. There are no separating 3- and 4-cycles
by the hypothesis of the theorem, hence H has at least five neighbors in V \V (H).
Each neighbor v of H has weight zv > 0, and so it is contained in a path Pv ∈ P ′
as well as in a path Qv ∈ Q′. The path Pv is disjoint from H and separates H
either from b or from d, and similarly, the path Qv separates H from either a or
c. Thus there are two neighbors u and v of H so that both Pu and Pv separate H
from (say) b, and both Qu and Qv separate h from (say) a. We choose the same
path for Pu and Pv if possible, and similarly for Qu and Qv, but (6.8) implies that
we cannot succeed in both cases. So we may assume that Qu 6= Qv.

The rest of the argument consists of analyzing the topology around H. If
Pu = Pv, then we may assume that u comes before v along the path Pu. The path
Qv separates u from a, so Pu meets Qv before u, and then meets it again at v,
contradicting (6.8).

Suppose that Pu 6= Pv. Then, as before, it follows that Pu[a, u) meets Qv.
Since Pu and Qv have only one intersection point, it follows that Qv is disjoint
from Pu[u, c]. Similarly, Pv is disjoint from Qu[u, d].

The paths Pu and Qu cross each other at u and split the interior of abcd into
four open parts (Figure 6.8, right). The subgraph H is contained in the part T
incident with the edge cd, and since v is a neighbor of H and not on the paths Pu
and Qu, it must also be in T . Now the path Pv[a, v] must enter T through a node
of Pu(u, c], since it is disjoint from Qu[u, d]. Similarly, the path Qv[b, v] must enter
T though Qu(u, d]. But then Pv[a, v] and Qv[b, v] must have an intersection point
outside T , different from v, contradicting (6.8).

After all this preparation, we can describe the squares representing G. We
start with the rectangle R with one vertex at (0, 0) and the opposite vertex at
(R, 1/R). Every node u ∈ V ′ will be represented by a square Su centered at
pu = (dz(a, u), dz(b, u))T and having edge length zu. We represent node a by the
square Sa of side length R attached to the top of R. We represent b, c and d
similarly by squares attached to the other edges of R.

Claim 3. Let i, j ∈ V . If i and j are adjacent, then Si and Sj are tangent. If i
and j are nonadjacent, then Si and Sj are either disjoint or tangent along a single
vertex.

The Claim is easily checked when i and/or j belong to {a, b, c, d}, so suppose
that i, j ∈ V ′.

First, let ij ∈ E(P ), where (say) P ∈ P ′. Assume that P encounters i before
j. Then dz(a, j) = dz(a, i)+ ẑij (since P is a shortest path). On the other hand,
let (say) dz(b, j) ≥ dz(b, i), and let Q ∈ Q′ go through i and Q′ ∈ Q′ go through
j. Then Q′′ = Q[b, i]∪{ij}∪Q′[j, d] is a b-d path, and since Q′′ intersects P in at
least two nodes, it is not a shortest b-d path. Thus z(Q′′) > R, which implies that

dz(b, i) = ẑ(Q[b, i]) > R− ẑ(Q′[j, d])− ẑij = ẑ(Q′[b, j])− ẑij = dz(b, j)− ẑij .
So |dz(b, j)−dz(b, i)| < ẑij . This proves that the squares Si and Sj are tangent
along horizontal edges.
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Second, let ij ∈ E(G), and assume that ij is an not an edge of any path in
P ′∪Q′. It is clear that Pi∩Pj = ∅, since for any path in P ′ passing through both
i and j, the edge ij would be a chord. Since Pi and Pj are intervals in the ordering
of P ′, it follows that (say) Pi is completely to the left of Pj . Since i and j are
adjacent, no path in P ′ can separate i and j, and hence ∩P−j = P−i ∪Pi. Applying

(6.11) for both i and j, we see that

dz(b, j)−dz(b, i) =
zj
2
− zi

2
+λ(P−j )−λ(P−i ) =

zj
2
− zi

2
+λ(Pi)(6.12)

=
1

2
(zi+zj).

Finally, assume that i and j are nonadjacent nodes. If there is a path Q ∈ Q′
going through both i and j, encountering (say) i before j, then

dz(b, j) = dz(b, i)+dz(i, j) > dz(b, i)+
zi+zj

2

and hence Si and Sj are disjoint. We conclude similarly is there is a path in P ′
through both i and j. We are left with the case when Pi∩Pj = Qi∩Qj = ∅. As
in the previous proof, we may assume that Pi is completely to the left of Pj , but
we can only conclude that ∩P−j ⊆ P

−
i ∪Pi, and so the computation in (6.12) gives

an inequality only: dz(b, j)−dz(b, i) ≥ 1
2 (zi+zj). Similarly, |dz(a, j)−dz(a, i)| ≥

1
2 (zi+zj). If strict inequality holds in both directions, then Si and Sj are disjoint;
if equality holds in both cases, then Si and Sj have a vertex in common. This
proves Claim 3.

Consider G as drawn in the plane so that node i is at the center pi of the
square Si, and every edge ij is a straight segment connecting pi and pj . This gives
a planar embedding of G. Indeed, we know from Claim 3 that every edge ij is
covered by the squares Si and Sj . This implies that edges do not cross, except
possibly in the degenerate case when four squares Si, Sj , Sk, Sl share a vertex (in
this clockwise order around the vertex), and ik, jl ∈ E. Since the squares Si and
Sj are touching along their vertical edges, we have ij ∈ E. Similarly, jk, kl, li ∈ E,
and hence i, j, k, l form a complete 4-graph. But this is impossible in a triangulation
of a quadrilateral that has no separating triangles.

Next, we argue that the squares Si (i ∈ V \{a, b, c, d}) tile the rectangle R =
[0, R]× [0, 1/R]. It is easy to see that all these squares are contained in the rectangle
R, and they are non-overlapping by Claim 3. The total area covered by the squares
is
∑
i∈V ′ z

2
i = 1, which is just the area of R, so they must cover R.

Finally, we show that an appropriately resolved tangency graph of the squares
Si is equal to G. By the above, it contains G (where for edges of type (iii), the
4-corner is resolved so as to get the edge of G). Since G is a triangulation of the
outside quadrilateral, the containment cannot be proper, so G is the whole tangency
graph. �

Exercise 6.1. Figure out how to resolve the common points of four squares in
the tiling in Figure 6.2 in order to get the dodecahedron graph.

Exercise 6.2. Verify that the graph in Figure 6.9 gives rise to a tiling of a square
by different size squares. (This construction provides the minimum number of
different squares tiling a square.)

Exercise 6.3. Prove that if G is a resolved tangency graph of a square tiling of
a rectangle, then every triangle in G is a country.
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Figure 6.9. Tiling a square with the smallest number of different squares.

Exercise 6.4. Construct a resolved tangency graph of a square tiling of a rec-
tangle that contains a quadrilateral with a further node in its interior.

Exercise 6.5. Let G be a maximal planar graph with at least 4 nodes, with
unbounded country abc. Let us 2-color the nodes different from a, b and c with
black and white. Prove that either there is a black node connected by black paths
to each of a, b and c, or there is a white node connected by white paths to each
of a, b and c, but not both.





CHAPTER 7

Discrete Analytic Functions

We have seen in Chapter 4 that the notion of harmonic functions in analysis has
an analogue in graph theory, and this analogue has proved very useful in the study
of electrical networks, rubber band embeddings, random walks, and elsewhere. In
this chapter we discuss an extension of analytic functions to graphs; for this to be
meaningful, we have to consider graphs embedded in orientable surfaces (maps).

In analysis, a complex analytic function is just a pair of real harmonic functions
connected by the Cauchy-Riemann equations. We know what harmonic functions
are on graphs, but what is the “right” analogue of the Cauchy-Riemann equations?

The motivation comes from numerical analysis. In order to do numerical com-
putations with an analytic function, we have to restrict its domain to a finite set,
most naturally to a large piece of a fine enough grid. Then we can mimic dif-
ferentiation by taking the difference of values on adjacent gridpoints, integration
by summation along grid paths etc. In this setting, important properties, like the
Cauchy–Riemann equations and the Cauchy Integral Theorem, will only remain ap-
proximately true. Ferrand and later Duffin suggested to turn this around: use only
approximate values of the function on the grid, but require that appropriate forms
of (say) the Cauchy Integral Theorem should hold exactly. The resulting theory
of discrete analytic functions on the grid leads to interesting results, even though
some properties of analytic functions seem to be irrevocably lost (for example, the
product of analytic functions will be no longer analytic).

In fact, we study two different, but closely related notions: discrete analytic
functions, and discrete holomorphic forms (in graph theory terms, these will be
called rotation-free circulations). We have seen that no nonconstant function can
be harmonic everywhere on a finite graph, and accordingly discrete analytic func-
tions are best defined on countable graphs embedded in the plane; on the other
hand, discrete holomorphic forms can be best studied on finite graphs embedded
in compact orientable surfaces.

Discrete analytic functions on the square grid were introduced in the
1940’s [Ferrand 1944] and studied quite extensively later on [Duffin 1956],
[Duffin 1968], [Duffin–Peterson 1968], [Zeilberger 1977b], [Zeilberger–Dym 1977].
For the case of a general map, the notion of discrete analytic functions
is implicit in the classic paper [Brooks et al. 1940] (cf. also Section 6.1 in
this book) and more recent work [Benjamini–Schramm 1996a]. These func-
tions were formally introduced by [Mercat 2001], and applications were given
in [Benjamini–Lovász 2002], [Benjamini–Lovász 2003] and, perhaps most impor-
tantly, in [Smirnov 2010b][Chelkak–Smirnov 2012], where they were used in the
proof of the conformal invariance of the Ising model on the square grid (to
be discussed in more detail in Chapter 8). Similar, but different theories of
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discrete analytic functions (not discussed here) were developed in [Isaacs 1952],
[Dynnikov–Novikov 2003], [Kiselman 2005].

7.1. Warmup: discrete analytic functions on the grid

7.1.1. Grid graphs and lattice domains. We consider the square grid as
a (countable) map in the complex plane, whose node set is the set G of Gaussian
integers (complex numbers a+bi, where a, b ∈ Z), and two such nodes are connected
by an edge if and only if their difference is ±1 or ±i. We are going to denote, with
a little abuse of notation, this graph by G. Its dual graph G∗ can be obtained from
G by shifting it by (1+ i)/2. Let Gr (r = 0, 1) denote the set of Gaussian integers
a+bi with a+b ≡ r (mod 2). Note that Gr is a grid itself, where we consider
two lattice points adjacent if they are nearest, which in this case means that their
difference is ±(1+ i) or ±(1− i).

The graph G is bipartite, with bipartition G0∪G1; sometimes we are going to
call the nodes in G0 “black”, and those in G1, “white”. So the origin is black.
We can also 2-color the bounded countries of G (the nodes of G∗) with black and
white (like on a chessboard); to be specific, let each square get the same color as
its Southwest corner.

We will also need to define an orientation of these graphs. There are two natural
orientations we can consider: we can orient each edge so that the country on its
left is black (say), or we can orient it from the black endnode to the white endnode.
We call these two orientations the cyclic and acyclic orientation, respectively. If we
start with the acyclic orientation of G, and define the orientation of G∗ as described
in Chapter 2, then we get the cyclic orientation of G∗ (Figure 7.1, left).

Figure 7.1. Left: A cyclic orientation of the planar grid and the
corresponding acyclic orientation of its dual. Right: a lattice do-
main D and the graphs GD and G∗D. Note that the doubled edge
is not an edge of GD, so GD is not an induced subgraph of G.

The subset of the plane bounded by a simple closed polygon in G will be called
a lattice domain (Figure 7.1, right). The vertices and edges of the lattice graph G
in a lattice domain D form a subgraph GD. Note that GD is not necessarily an
induced subgraph of G; but G∗D, consisting of all nodes representing squares whose
interior if contained in the interior of D, is an induced subgraph of G∗. This is the
tangency graph of its squares (which we do not resolve into a triangulation, unlike
in Chapter 6): we connect the centers of two squares contained in D if and only if
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they share an edge. This graph G∗D can be obtained from the dual graph of G by
removing the node representing the unbounded country of G.

7.1.2. Discrete analytic functions. A discrete analytic function is a func-
tion f : G→ C, satisfying the equation

(7.1) f(z+ i)−f(z+1) = i
(
f(z+1+ i)−f(z)

)
for every z ∈ G. This equation has a nice geometric meaning: the diagonals of the
image of any lattice square under a discrete analytic function are orthogonal and
of equal length. We can write this equation as

(7.2) f(z)+ if(z+1)+ i2f(z+ i+1)+ i3f(z+ i) = 0.

Dividing (7.1) by i−1, we get

(7.3)
f(z+ i+1)−f(z)

i+1
=
f(z+ i)−f(z+1)

i−1
.

This latter equation can be thought of as a discrete version of the fact that the
directional derivative of a complex analytic function is the same in all directions;
in other words, it gives a discrete version of the Cauchy–Riemann equation.

We can allow more general discrete analytic functions, namely functions defined
on the lattice points in a lattice domain. In this case, we stipulate equation (7.1)
for all lattice squares contained in this domain.

Discrete analytic functions form a linear space over C, i.e., linear combinations
of them is discrete analytic again. It is trivial to check that every linear function,
when restricted to Gaussian integers, is a discrete analytic function. Furthermore,
the restriction of any quadratic polynomial to the Gaussian integers is a discrete
analytic function. It suffices to verify this for the function z2, which is straightfor-
ward:

(z+1)2−(z+ i)2 = 2(i−1)z+2 = i
(
(z+ i+1)2−z2

)
,

verifying (7.1) (see Figure 7.2).

Figure 7.2. The image of the standard grid under the discrete
analytic function z 7→ z2. Every vertex other than the origin is the
image of two lattice points, negatives of each other.

In contrast to the previous example, the restriction of the function f(z) = z3

to the Gaussian integers is not discrete analytic. In fact, substituting z = 0 in
(7.1), we get i3−13 = −i−1 on the left, while i((1+ i)3−03) = −2(1+ i) on the
right. This shows that the product of two discrete analytic functions is not discrete
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analytic in general. This fact, which is in strong contrast to the continuous case, is
a major difficulty in this theory.

Some other operations on “true” analytic functions do work out quite well. Let
f be a function on the Gaussian integers. Let P = (z0, z1, . . . , zk) be a walk on the
grid, i.e., zk+1−zk ∈ {±1,±i}. We define the “line integral”∫

P

f(z) dz =

k−1∑
j=0

f(zj+1)+f(zj)

2
(zj+1−zj).

The nice fact about this integral is that for analytic functions, it is independent of
the path P , depends on its endpoints only. More precisely, let P and P ′ be two
walks on the grid, with the same beginning node and endnode. Then

(7.4)

∫
P

f(z) dz =

∫
P ′

f(z) dz.

This is equivalent to saying that

(7.5)

∫
P

f(z) dz = 0

if P is a closed walk. It suffices to verify this for the case when P is a simple polygon,
which we can recognize as a discrete version of the Cauchy Integral Theorem. The
proof is quite easy: the case when P is the boundary of a single square is just a
rearrangement of equation (7.3). For a general lattice polygon P , (7.5) follows by
summing over all lattice squares in the interior of P .

It follows that we can write
∫ v
u
f(z) dz, without specifying the path from u to

v along which we integrate. Furthermore, it is straightforward to verify that for a
fixed u,

∫ v
u
f dz is a discrete analytic function of v.

For a “true” analytic function, its real and imaginary parts are harmonic func-
tions. For discrete analytic functions, this connection is a bit more complicated.
Let f be a discrete analytic function on the grid G, and let fr denote its restriction
to Gr (r = 0, 1). It is easy to see that the functions f0 and f1 determine each other
up to an additive constant.

The function fr is a harmonic on Gr. Indeed, for z ∈ G0 (say) we have

f0(z+ i+1)−f0(z) = i
(
f0(z+1)−f0(z+ i)

)
,

f0(z+ i−1)−f0(z) = i
(
f0(z+ i)−f0(z−1)

)
,

f0(z− i−1)−f0(z) = i
(
f0(z−1)−f0(z− i)

)
,

f0(z− i+1)−f0(z) = i
(
f0(z− i)−f0(z+1)

)
.

Summing these equations, we get

f0(z+ i+1)+f0(z+ i−1)+f0(z− i−1)+f0(z− i+1)−4f0(z) = 0,

which means that f0 is harmonic at z.
Conversely, let f0 be a harmonic function on G0. By the potential argument,

we can find a function f1 on G1 such that

f1(z+1)−f1(z+ i) = −i
(
f0(z+ i+1)−f0(z)

)
f1(z+ i)−f1(z−1) = −i

(
f0(z+ i−1)−f0(z)

)
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for every z ∈ G0. It is easy to see that f1 is harmonic as well, and f0∪f1 is a
discrete analytic function on the grid.

Let us also notice that a complex valued harmonic function is simply a pair
of real valued harmonic functions (its real and imaginary parts). Furthermore, the
real part of f1 is related to the imaginary part of f0, and vice versa. Hence it
suffices to study analytic functions that are real on G0 and imaginary on G1. We
can forget about the factor i on G1, and consider a pair of functions f : G0 → R
and g : G1 → R such that the following version of the Cauchy–Riemann equations
holds:

g(z+1)−g(z+ i) = f(z+ i+1)−f(z)(7.6)

g(z+ i)−g(z−1) = f(z+ i−1)−f(z)

We call the pair (f, g) an analytic pair on the grid.
We can define discrete analytic functions on the nodes of GD for some lattice

domain D, instead of all lattice points. Condition (7.1) is then required only for
lattice squares contained in D. Properties of discrete analytic functions discussed
above extend to this more general setting easily.

Further constructions like analytic polynomials on the grid, and some properties
of discrete analytic functions, similar and not similar to properties of “true” analytic
functions, are described in Exercises 7.1–7.6.

7.1.3. Strongly analytic functions. Smirnov [Smirnov 2001] introduced a
class of functions satisfying a stronger condition than analycity. Consider a lattice
domain D and the graph GD with the cyclic orientation. We say that a function g
defined on D is strongly analytic, if

g(v)−g(u) ‖
√
v−u

for every edge uv ∈ GD. (Note that the sign of the square root plays no role, but
the orientation of the edge is important:

√
v−u is orthogonal to

√
u−v.) Strongly

analytic means that g(z+1)−g(z) is real if z ∈ G0, and imaginary otherwise;
g(z+ i)−g(z) is parallel to 1+ i if z ∈ G0, and to 1− i otherwise (Figure 7.3, left).
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Figure 7.3. Left: directions of differences along edges of a
strongly analytic function. Right: the image of a lattice square
under a strongly analytic function. (The quadrilateral may be ro-
tated by any multiple of 45◦.)

It is easy to figure out the shape of the image of a (say, black) square (Figure
7.3, right). The image of a lattice square (assuming it is nondegenerate) is always
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concave, but never self-intersecting; if its two shorter edges (at the concave angle)

have lengths a and b, then the two longer ones have a+
√

2b (next to b) and b+
√

2a
(next to a). In particular, the sums of squared length of opposite edges are equal:

(a+
√

2b)2 +a2 = (b+
√

2a)2 +b2 = 2a2 +2
√

2ab+2b2. Three vertices of it form
a triangle with one angle of 45◦, and the fourth point is the orthocenter of this
triangle. It also follows that the diagonals of the quadrilateral are perpendicular
and of equal length. Checking the directions of the diagonals too, we see that

g(z+ i)−g(z+1) = i
(
g(z+ i+1)−g(z)

)
,

which implies that every strongly analytic function is analytic (justifying the name).

Example 7.1. Consider the function z 7→ z on G; this is analytic, but not strongly
analytic. We get further analytic functions by adding a complex number a at every
lattice point in G1. If |a| = 1, then it is easy to check that the concave quadrilateral
(0, 1+a, 1+ i, i+a) (the image of the lattice square (0, 1, 1+ i, i) has the property
that its opposite edges are perpendicular, and so are its diagonals. By elementary
geometry, it follows that the angles of this quadrilateral are, in order, 45◦, 225◦, 45◦,
45◦. If we divide all function values by 1+a, then the edges of this quadrilateral
will be parallel, in order, to 1, 1− i, i, 1+ i. Thus this function is strongly analytic.
In formula:

g(z) =


z

1+a
if z ∈ G0,

z+a

1+a
if z ∈ G1

(|a| = 1).

See Figure 7.4. �

Figure 7.4. The image of the grid under a strongly analytic function.

Exercise 7.1 tells us that prescribing the values of a discrete analytic function on
the coordinate axes determines the function uniquely. Analogously, if we prescribe
the value of a function at the diagonal points x+xi, then it has a unique extension
g to a strongly analytic function. Indeed, if we know the values at the opposite
vertices of a square (say at z and z+ i+1), then g(z+1) and g(z+ i) are determined
by the directions of the corresponding edges. Hence we can define g recursively
farther and farther away from the diagonal. Example 7.1 above is the extension of
the function g(x+xi) = 1+i

1+ax.
Strongly analytic functions form a linear space over R, but not over C. In fact,

they generate the linear space of all discrete analytic functions over C (Exercise
7.9). Many interesting properties of such functions are proved in [Smirnov 2010b],
[Chelkak–Smirnov 2011] and [Chelkak–Smirnov 2012]. See Exercises 7.1 and 7.10
for further important properties of strongly analytic functions.
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7.2. Discrete analytic functions on planar graphs

We want to define analytic functions not only on the grid, but on more general
planar maps. Definition (7.1) does not generalize (unless all countries are quadri-
laterals, a case to which we will come back), but (7.6) does suggest a reasonable
generalization.

Let G be a planar map and let G∗ be its dual, with a reference orientation. We
call a pair of functions f : V → R and g : V ∗ → R an analytic pair, if the discrete
Cauchy–Riemann equation is satisfied for every edge:

(7.7) g
(
ls(e)

)
−g
(
rs(e)

)
= f

(
hd(e)

)
−f
(
tl(e)

)
.

Relation (7.7) implies a number of further properties; for example, it follows that
f is harmonic. Indeed, let uv1, . . . , uvk be the edges incident with u ∈ V , in
counterclockwise order, and let pj be the country in the corner of uvj and uvj+1

(we assume, for simplicity of presentation, that the edges are all oriented away from
u). Then

(7.8)

k∑
j=1

(
f(vj)−f(u)

)
=

k∑
j=1

(
g(pj)−g(pj−1)

)
= 0.

But this is bad news, since we have seen that no nonconstant function can
be harmonic at all nodes of a finite graph. We can get around this obstacle in
two ways: either we allow “singularities” at some locations, or we consider infinite
graphs. The first approach is quite easy if we disregard the edges of the unbounded
country (see Exercise 7.11). We are going to focus on the second.

To this end, we have to redefine (for this section only) what we mean by planar
maps. A planar map means an (infinite) graph G that is embedded in the plane
so that every country is an open topological disk whose closure is compact, and
every bounded piece of the plane meets a finite number of edges and nodes only. In
particular, this implies that V and E are countable, every node has finite degree,
and every country has a finite number of edges. Such a map has a dual G∗ =
(V ∗, E∗), which can be represented as another planar map. The lozenge graph G♦

and other simple manipulations on planar graphs can be defined in a straightforward
way.

In this more general setting, the definition (7.7) can be required for every edge
without forcing the function to be trivial; recall the examples from Section 7.1.

Note that for an analytic pair (f, g), the function f determines g up to an
additive constant; furthermore, for such a g to exist it is necessary and sufficient
that f is harmonic. Indeed, (7.7) defines a function on the edges of G∗. The
computation in (7.8), followed backwards, tells us that this function adds up to
zero around each country of G∗, and so the “potential argument” gives us the
existence of g.

In this sense, the theory of discrete analytic functions on planar maps is just
another formulation of the theory of harmonic functions on such maps. However,
the existence of the function on the dual map, which is harmonic as well, leads to
a richer theory.

It is often convenient to think of the two functions f and g above as a sin-
gle function f defined on V ∪V ∗ = V ♦, and allow complex values. We say that
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f : V ♦ → C is analytic, if

(7.9) f
(
ls(e)

)
−f
(
rs(e)

)
= i
(
f(hd(e))−f(tl(e))

)
for every edge e ∈ E. As we noted for the grid before, the complex version is not
substantially more general than the real. Indeed, (7.9) only relates the real part
of f |V to the imaginary part of f |V ∗ and vice versa. In other words, a complex
analytic function f can be decomposed as the sum of two very special analytic
functions f1 and f2: here f1 is real on V and imaginary on V ∗, and f2 is the other
way around.

Example 7.2 (Rubber bands). Let G be a toroidal map. We consider the
torus as R2/Z2, endowed with the metric coming from the Euclidean metric on R2.
Let us replace each edge by a rubber band, and let the system find its equilibrium.
Topology prevents the map from collapsing to a single point: every non-contractible
cycle remains non-contractible. In mathematical terms, we are minimizing the
energy

∑
e∈E `(e)

2, where the length `(e) of the edge e is measured in the given
metric, and we are minimizing over all continuous mappings of the graph into the
torus homotopic to the original embedding.

It is not hard to see that the minimum is attained. Clearly, the edges are
mapped onto geodesic curves (which become straight line segments if we “roll out”
the torus). A nontrivial fact is that if G is a simple 3-connected toroidal map, then
the rubber band mapping is an embedding. This can be proved along the lines of
the proof of Theorem 3.2, and it also follows from Theorem 7.4 below.

Rolling out the torus, we get a doubly periodic embedding of an infinite graph

Ĝ in the plane. From the minimality of the energy it follows that every node is
at the center of gravity of its neighbors. So considering the points of the plane as

complex numbers, the embedding defines a function on V (Ĝ) that is harmonic at

every node, and hence it is one component of an analytic pair on Ĝ (Figure 7.5). �

Figure 7.5. Periodic rubber band maps obtained from toroidal graphs

It is rather straightforward to extend these notions to planar maps with
weighted edges. We weight the edges of G by ω ∈ RE+; this defines a weighting

of the edges of G∗ by ω∗e = 1/ωe∗ . We call a function f : V ♦ → C analytic for
the edge-weighted graph G, if the weighted version of the discrete Cauchy–Riemann
equation

(7.10) f
(
hd(e)

)
−f
(
tl(e)

)
= iωe

(
f(rs(e))−f(ls(e))

)
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is satisfied for every edge e ∈ E. Again, we can consider instead two real-valued
functions R(f) : V → R and I(f) : V ∗ → R, and (completely independently)
other two, namely I(f) : V → R and R(f) : V ∗ → R. Both pairs satisfy the real
version of the Cauchy–Riemann equations.

7.2.1. Integration and critical functions. Let f and g be two analytic
functions on the nodes of the lozenge graph G♦ of a weighted graph in the plane.
We define integration along a path P = (v0, v1, . . . , vk) in G♦:∫

P

f dg =

k−1∑
j=0

f(vj)+f(vj+1)

2

(
g(vj+1)−g(vj)

)
.

This can also be written as

2

∫
P

f dg = f(v0)g(v0)+

k−1∑
j=0

∣∣∣∣f(vj) f(vj+1)
g(vj) g(vj+1)

∣∣∣∣−f(vk)g(vk).

The nice fact about this integral is that it depends on the endpoints of the path
only. By the usual argument, it suffices to verify that this integral is zero when
P the boundary of a country of G♦, which is a straightforward computation. It
follows that we can write

∫ v
u
f dg. It is also easy to check the rule of integration by

parts: for u, v ∈ V ♦,

(7.11)

v∫
u

f dg = f(v)g(v)−f(u)g(u)−
v∫
u

g df.

These have been the good news. Now the bad news: for two analytic functions
f and g, and a fixed starting node u, the function F (v) =

∫ v
u
f dg is not analytic

in general. A simple computation gives the “analyticity defect” of an edge uv and
dual edge e = pq:

F (v)−F (u)− iωuv(F (p)−F (q)) = i(f(v)−f(u))
[
g(v)+g(u)−g(q)−g(p)

]
.

(7.12)

Assuming that the function g is such that the factor in brackets in (7.12) is zero
for every edge:

(7.13) g
(
ls(e)

)
+g
(
rs(e)

)
= g
(
hd(e)

)
+g
(
tl(e)

)
,

the integral function F will be analytic. We call such a function g critical. What
we have found above is that

∫ v
u
f dg is an analytic function of v for every analytic

function f if and only if g is a critical analytic function.
This notion was introduced, in a somewhat different setting, in [Duffin 1968]

under the name of rhombic lattice. Critical maps were defined in [Mercat 2001]:
these are maps which admit a critical analytic function.

Recall condition (7.10) on g being an analytic function:

g
(
hd(e)

)
−g
(
tl(e)

)
= iωe

(
g(rs(e))−g(ls(e))

)
.

These equations, together with (7.13), have a nice geometric meaning: the diagonals
of the quadrilateral g

(
ls(e)

)
g
(
rs(e)

)
g
(
hd(e)

)
g
(
tl(e)

)
have the same midpoint, and

they are orthogonal. In other words, this quadrilateral is a rhombus. (In the
unweighted case it is a square, so in this case, we are back to the study of analytic
functions on the square grid!)
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Consider the critical analytic function g as a mapping of G∪G∗ into the com-
plex plane C. This defines embeddings of G, G∗ and G♦ in the plane with following
(equivalent) properties:

(a) The countries of G♦ are rhombi.

(b) Every edge of G♦ has the same length.

(c) Every country of G is inscribed in a circle with the same radius.

(d) Every country of G∗ is inscribed in a circle with the same radius.

If you want to construct such maps, you can start with a planar map straight-
line embedded in the plane so that all countries are rhombi; this is bipartite, and
you can define a critical graph on its white nodes by adding he appropriate diagonal
to each rhombus and deleting the original edges (see Figure 7.6).

Figure 7.6. A map with rhombic countries, and the critical graph
constructed from it.

Critical maps have a nice interpretation in terms of the Delaunay diagram:
it means that all Delaunay circles of the node set V have the same radius. This
is clearly invariant under duality. It follows that the Voronoi graph of V is the
Delaunay graph of the dual (Figure 7.7, left).

Figure 7.7. Left: the Delaunay circles of the node set of a critical
map. Right: A track in a rhombic graph.

Whether or not a weighted map in the plane admits a critical analytic function
depends on the weighting of the edges. Which maps can be weighted this way?
[Kenyon–Schlenker 2004] answered this question. Consider any country F0 of the
lozenge graphG♦, and a country F1 incident with it. This is a quadrilateral, so there
is a well-defined country F2 so that F0 and F2 are attached to F1 along opposite
edges. Repeating this, we get a sequence of countries (F0, F1, F2 . . . ). Using the
country attached to F0 on the opposite side to F1, we can extend this to a two-way
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infinite sequence (. . . , F−1, F0, F1, . . . ). We call such a sequence a track (see Figure
7.7, right).

Theorem 7.3. A planar map has a rhombic embedding in the plane if and only
if every track consists of different countries and any two tracks have at most one
country in common. �

7.2.2. Embedding by analytic functions. Restricting a complex analytic
function f on G♦ (where G is an infinite planar map) to V , we get a mapping of its
nodes into the complex plane. We can extend this map to a drawing of the whole
graph by mapping each edge uv onto the segment connecting f(u) and f(v). It
turns out that under rather general conditions, this mapping is an embedding in
the plane.

Theorem 7.4. Let G be a 3-connected map in the plane and let f be a complex
analytic function on G. Suppose that there exist a constant c such that

(7.14)
1

c
≤ |f(u)−f(v)|

dG(u, v)
≤ c.

for every pair of distinct nodes u, v ∈ V ♦. Then f defines an embedding of G in the
plane such that every country is a convex polygon, and every node is in the center
of gravity of its neighbors.

Proof. Analogously to the proof of Theorem 3.2, the main step in the proof is
the following.

Claim 1. For every (open or closed) halfplane H, the set S = {i ∈ V : f(i) ∈ H}
induces a connected subgraph.

We may assume that H is the halfplane {y ≥ 0}. Let u and v be two nodes
in S, we want to show that they can be connected by a path whose image stays in
the halfplane H. We use induction on dG(u, v). Consider a shortest path P in G
connecting u and v. We may assume that P is not just an edge, and that all the
inner nodes of this path are outside H. Let w be a node on P which is lowest.

We claim that there exists an infinite path Pu = (u0 = u, u1, . . . ) starting at
u such that f(Pu) lies in the upper halfplane and the distance of f(uk) from the
x-axis tends to infinity. Let G′ be the connected component of G[S] containing u.
It suffices to show that the distance of points of f(G′) from the x-axis is unbounded,
since then the existence of Pu follows by simple compactness.

Suppose that f(G′) lies in a strip 0 ≤ y ≤ y0, and let U denote the connected
component of C\f(G′) containing the halfplane y > y0. The boundary of U is a
polygon, whose vertices are points f(i), i ∈ V and intersection points of images
of edges. Neither type of vertices can give a concave angle, and so U is convex;
since U contains a halfplane, it follows that U is a halfplane. But its boundary
cannot contain a line (in fact, it cannot contain any segment longer than c), which
is clearly impossible. This proves that Pu exists as claimed.

Similarly, we can find an infinite path Pv = (v0 = v, v1, . . . ) such that f(Pv) lies
in the upper halfplane and the distance of f(vk) from the x-axis tends to infinity,
and an infinite path Pw = (w0 = w,w1, . . . ) such that f(Pw) lies in the lower
halfplane and the distance of f(wk) from the x-axis tends to infinity. Clearly Pw is
node-disjoint from Pu and Pv, and we may assume that its only intersection node



102 7. DISCRETE ANALYTIC FUNCTIONS

with P is w. If Pu and Pv intersect, then the conclusion is trivial, so assume that
they are node-disjoint.

Consider P ∪Pu∪Pv∪Pw in the original planar embedding ofG. This subgraph
splits the plane into three infinite regions; let Ω be the region bounded by Pu∪
P ∪Pv. It is easy to see that there are infinitely many disjoint paths Q1, Q2, . . .
connecting Pu and Pv inside Ω. We claim that if k is large enough, the image of
Qk must stay in H, proving that u and v can be connected by a path in S.

Let D denote the diameter of f(P ). Let u1 be the last node on the path Pu such
that the distance of f(u1) from the x-axis is at most D+2c3, let P ′u be the piece
of Pu between u and u1, and let P ′′u = Pu \P ′u. We define P ′v, P

′
w etc. analogously.

Suppose that f(P ′′u ) intersects f(P ′′v ), say edge ij of f(P ′′u ) intersects edge
ab of f(P ′′v ). By (7.14), the length of the image of any edge is at most c, so
|f(i)−f(a)| ≤ 2c, and so dG(i, a) ≤ 2c2. Thus there exists a path R of length at
most 2c2 in G connecting i to a. Again by (7.14), the diameter of f(R) is at most
2c3. By the definition of P ′′u , the distance of f(i) from the x-axis is more than 2c3,
so f(R) cannot cross the x-axis. It follows that u and v can be connected by a path
whose image stays in the upper halfplane, using paths Pu, R, and Pv.

So we may assume that f(P ′′u ) and f(P ′′v ) are disjoint. Let T be the set of all
nodes in G at a graph-distance at most c2 from P ∪P ′u∪P ′v∪P ′w. Since T is a finite
set, there is a k for which Qk does not intersect T . By (7.14) we get that for every
node s of Qk and every node t of P ,

|f(s)−f(t)| ≥ dG(s, t)

c
≥ c1

c
= c2.

In particular, f(s) cannot be in the convex hull of f(P ).
If f(Qk) does not intersect the lower halfplane, then we are done. Suppose

it does, then either it intersects f(P ′w) or else it contains a subpath Q′k such that
f(Q′k) lies in the upper halfplane and intersects both f(P ′′u ) and f(P ′′v ).

Suppose that f(Qk) intersects f(Pw). Similarly as above, we find a path R of
length at most 2c2 in G connecting a node a on Pw to a node i on Qk. This path
must intersect the path P ∪Pu∪Pv at some node z; this means that dG(z, a) ≤ 2c2,
and so |f(z)−f(a)| ≤ 2c3. But f(z) is either in the upper halfplane or at a distance
at most D from it, and so f(a) is at a distance at most 2c3 +D from the upper
halfplane. So a ∈ V (P ′u) and hence i ∈ T , a contradiction, since Qk avoids T .

Finally, if there is a path Q such that f(Q) lies in the upper halfplane and
intersects both f(P ′′u ) and f(P ′′v ), then similarly as above, we find two paths Ru
and Rv of length at most 2c2 connecting Q to P ′′u and P ′′v , respectively. Similarly
as above, these paths must stay in the upper halfplane, and so again we find that u
and v can be connected by a path staying in the upper halfplane through Pu, Ru,
Q, Rv and Pv. This completes the proof of the Claim.

The assertion that every node is in the center of gravity of its neighbors is just
a restatement of the fact that every analytic function is harmonic. This also shows
that (assuming that f gives an embedding) no country can have a concave angle,
and so the countries are convex polygons. So the main step is to show that f defines
an embedding.

We start with observing that the image of every edge of G is a segment of
length at most c, and for any two nodes u and v of G (adjacent or not) the distance
of f(u) and f(v) is at least 1/c.
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Now we turn to the proof that f defines an embedding. Let us triangulate each
country of G arbitrarily, to get a new graph G1. Let us draw the images of these
new edges as straight segments. We claim that even with these new edges, f defines
an embedding of G1.

It is enough to show that (a) two triangular countries of G1 sharing an edge
xy are mapped onto triangles on different sides of the line f(x)f(y), and (b) the
images of triangular countries incident with the same node x cover a neighborhood
of f(x) exactly once. We describe the proof of (a); the proof of (b) is similar.

So suppose that xyz and xyw are two triangular countries of G1, and that f(z)
and f(w) are on the same side of the line L through f(x) and f(y), say on the
right side. By the Lemma, there is a path P in G connecting z and w whose image
under f stays on the right side of L. Since x is mapped to the center of gravity of
its neighbors, there is a node x′ adjacent to x in G such that f(x′) lies on the left
side of L, and similarly, y has a neighbor y′ such that f(y′) lies on the left side of
L. Again by the Lemma, there is a path Q in G connecting x′ to y′ such that the
image of Q stays on the left side of L. Extend Q with the edges xx′ and yy′ to get
a path Q′.

Now obviously P and Q′ are node-disjoint paths. But if we consider them
in the planar embedding of G, it is clear that they must cross each other. This
contradiction proves the theorem. �

7.2.3. Geometric representations and discrete analytic functions.
Harmonic functions are closely related to geometric representations, as we have
seen, among others, in rubber band representations. In the setting of analytic
functions, this connection is even richer.

Square tiling. We have described the connection between square tilings and har-
monic functions on planar graphs, as discovered by [Brooks et al. 1940], in Section
6.1. Here we consider the closely related structure of tiling the whole plane with
squares, whose sides are parallel to the coordinate axes. Assume that the tiling is
discrete, i.e., every bounded region contains only a finite number of squares.

Points where four squares meet must be “resolved” just as in the finite case.
Every such point will be either “vertical-through” or “horizontal-through”. Let us
also call a vertex of a square that is an interior point of a vertical edge of another
square a “vertical-through”. Also assume that there is no horizontal semiline com-
posed of edges of the squares that contains no “vertical-through” point. We call a
horizontal segment basic, if it is composed of edges of squares and its endpoints are
“vertical-through” points.

We associate a map in the plane with this tiling just as in Section 6.1: We
represent each basic segment by a single node (say, positioned at the midpoint of
the segment). Each square “connects” two basic segments, and we can represent it
by an edge connecting the two corresponding nodes, directed top-down. We get a
directed graph G, which is infinite but locally finite.

It is not hard to see that G is planar. If we assign to each node (basic segment)
its y coordinate, we get a harmonic function; from this, we get an analytic pair as
described above. One can give an explicit description of the other function in this
pair by repeating the same construction using the vertical edges of the squares. It
is not hard to see that this gives the dual graph, and the x coordinates supply the
second function of an analytic pair.
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This construction can be reversed. Starting with a planar map G and an
analytic pair on it, we can construct a tiling of the plane by squares, where the
squares correspond to the edges of G (or, equivalently, to the edges of G∗, or,
equivalently, to the countries of G♦).

The following special case is worth mentioning. Let G be a 3-connected simple
toroidal map, and let us construct its rubber band embedding as in 7.2. We can

lift this to a periodic embedding of the universal cover map Ĝ in C, where the node
positions define a harmonic function. We can construct a square tiling representing
this graph as above. This too will be periodic, so the universal covering mapping
maps it onto a square tiling of the torus.

Touching polygons. The ideas in [Kenyon 2002] give another geometric interpre-
tation of analytic functions.

We need to define one further graph derived from a planar map G: define the
total map of a planar map as the medial map of its lozenge map. To clarify the
name: the lozenge map has a node for each node and for each country of G, and a
country for each edge of G. So its medial graph has a country for each node, edge
and country of G.

Suppose that a function f : V ∪V ∗ → C gives a straight line embedding of G in
the plane with convex countries, and a straight line embedding of G∗ with convex
countries (we consider the infinite case; in the finite case, we should ignore the
unbounded country). The only condition we need connecting the two embeddings
is that if uv is an edge of G (with this orientation), and pq is the corresponding
edge of G∗ (so that p represents the country ls(uv)), then the line f(p)f(q) crosses
the line f(u)f(v) from left to right. Let Pu denote the convex polygon representing
the country of G (or G∗) corresponding to u ∈ V ∗ (or u ∈ V )). Shrink each Pu
from the point f(u) by a factor of 2, to get a polygon P ′u. (The point f(u) is not
necessarily in the interior of Pu.) This way we get a system of convex polygons,
where for every edge uv ∈ G♦, the two polygons Pu and Pv share a vertex at the
point

(
f(u)+f(v)

)
/2 (Figure 7.8).

There are three kinds of polygons in this picture: the dark and light grey ones
correspond to the nodes in V and V ∗, respectively, while the white parallelograms
Qe between the polygons correspond to the edges e ∈ E. It is easy to prove
that these are indeed rectangles, and the two vectors spanning the parallelogram
corresponding to edge e are 1

2

(
f(hd(e))−f(tl(e))

)
and 1

2

(
f(ls(e))−f(rs(e))

)
. It can

be shown (using our hypothesis about the relationship between the two straight line
embeddings) that the interiors of these polygons will be disjoint. Thus this method
provides an embedding of the total graph of G in the plane.

It is clear that the function f is analytic if and only if every parallelogram Qe
is a square. If the parallelograms Qe are rectangles, then we can weight every edge
e ∈ E with the ratio of the sides of Qe. The function f will be analytic on this
weighted graph.

This correspondence with analytic functions is nice enough, but there is more.
Let us take another analytic function g on this edge-weighted graph, and construct
the polygons g(u)P ′u (multiplication by the complex number g(u) corresponds to
blowing up and rotating). The resulting polygons will not meet at the appropriate
vertices any more, but let’s try to translate them so that they do (Figure 7.9). The
computation is quite simple. Let h(u) be the vector with which we try to translate
g(u)P ′u, where (say) u ∈ V . Let p be a country of G incident with u. Then the
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Figure 7.8. Left: the total graph of a planar map G, obtained
from straight-line embeddings of the map and its dual (only the
neighborhood of a single edge is shown). Right: similar representa-
tion of the graph in Figure 7.5. Note that since the node positions
of the original graph define an analytic function, the white regions
representing the edges are squares.

image of u in the image of Pp is

f(u)+f(p)

2
g(p)+h(p),

while the image of p in the image of Pu is

f(u)+f(p)

2
g(u)+h(u).

These two points must be the same, which leads to the equation

f(u)+f(p)

2

(
g(p)−g(u)

)
= h(u)−h(p).

Recall that f and g are given, and we want to find a function h satisfying this
equation for every edge up of G♦. Functions h satisfying this condition are precisely
of the form

h(v) =

∫ v

u

f dg+const

(with an arbitrary but fixed starting node u). We have seen that this integral is
well defined for any two analytic functions. If g is, in addition, critical, then this
function h is a third analytic function defined by this representation of the total
graph.

It is not hard to see that conversely, every “deformation” of the total graph
picture such that the polygons Pu remain similar to themselves defines an analytic
function on G.

Circle packings. We can also relate discrete analytic functions to circle repre-
sentations. Let G be a 3-connected toroidal map. It is again best to go to the

universal cover map Ĝ. Then we can construct two (infinite, but discrete) families
F and F∗ of circles in the plane so that they are double periodic modulo a lattice
L = Za+Zb, F (mod L) corresponds to the nodes of G, F∗ (mod L) corresponds
to the countries of G, and for every edge e, there are two circles C,C ′ representing
hd(e) and tl(e), and two circles D and D′ representing rs(e) and ls(e) so that C,C ′

are tangent at a point p, D,D′ are tangent at the same point p, and C,D are
orthogonal. (This can be proved along the lines of the proof of Theorem 5.3.)
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Figure 7.9. The deformation of the touching polygon represen-
tation given by an additional analytic function.

If we consider the centers of the circles in F as nodes, and connect two centers
by a straight line segment if the circles touch each other, then we get a straight
line embedding of the universal cover map in the plane (periodic modulo L). Let
xv denote the point representing node v of the universal cover map or of its dual.

To get a discrete analytic function out of this representation, consider the plane
as the complex plane, and define f(u) = xu for every node u ∈ V ∪V ∗. By the
orthogonality property of the circle representation,

f
(
hd(e)

)
−f
(
tl(e)

)
= iω(e)

(
f(rs(e))−f(ls(e))

)
with an appropriate ω(e) > 0. It follows that if we consider the map G with weights
ω(e), then f is a discrete analytic function on this weighted map.

For more on the subject, see the book [Stephenson 2005] and the papers
[Mercat 2002], [Mercat 2004].

7.3. Discrete holomorphic forms, a.k.a. rotation-free circulations

Let us return to finite maps, but this time on surfaces other than the plane.
In this section, it will be convenient to allow the graphs to have parallel edges
and loops. While no nonconstant analytic function can be defined on any finite
graph, we can do a lot better if we consider functions on the edges, analogous to
derivatives of “true” analytic functions, namely holomorphic forms. We have to
start with some topological considerations concerning maps on surfaces.

7.3.1. Maps, boundaries and coboundaries. Most of the basic definitions
concerning planar maps carry over without any difficulty to graphs embedded in
other surfaces. A point to pay attention to is the definition of a proper map on a
compact surface S. By this we mean a finite graph G embedded in S so that each
country is homeomorphic to an open disk. Once we have this property, the notions
of the cyclic sequence of edges forming the boundary, the dual map, the lozenge
map, etc. can be defined. If the surface is orientable, then we can define for each
edge a right shore rs(e) and a left shore ls(e) just like in the plane. For a proper
map on a compact surface, Euler’s Formula generalizes as

(7.15) n−m+f = χ,

where χ is the Euler characteristic of the surface. For a compact orientable surface
of genus g (a sphere with g handles), one has χ = 2−2g.
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Let G be a finite directed map on an orientable surface. For every face F ∈ V ∗,
we denote by ∂F ∈ RE the boundary of F :

(∂F )e =


1, if ls(e) = F ,

−1, if rs(e) = F ,

0, otherwise.

Then |∂F |2 is the length of the cycle bounding F . Note that ∂F is just the spe-
cial circulation fC defined in (B.2), where C is the boundary cycle of F with the
counterclockwise orientation.

This construction is dual to vector δv and the 0-dimensional coboundary oper-
ator, introduced in Appendix B.3 (those can be defined for every graph, not only
for maps on surfaces). Similarly as there, we can consider the boundary operator
as an E×V ∗ matrix D = DG, where D1F = ∂F for every country F ∈ V ∗. Its
transpose DT ∈ RV ∗×E is the coboundary operator from dimension 1 to dimension
2, with the rather simple action of DT

1e = 1ls(e)−1rs(e). It is easy to check the
fundamental relations

(7.16) BTD = 0 and DTB = 0.

(In topology, one would denote both coboundary operators B and DT by δ and
both boundary operators BT and D by ∂, so (7.16) could be written as δ2 = 0 and
∂2 = 0. In the simple cases we need, it will be more convenient to distinguish the
boundary and coboundary maps in different dimensions.)

Some basic facts about various subspaces defined by the coboundary operator
B are summarized in Appendix B.3. If the graph is embedded in a surface, then
we get a little more interesting spaces, relating the graph with its dual. (This still
belongs to the almost-trivial part of algebraic topology.)

As a warmup, consider a (finite) 2-connected planar map G. Then the space
of circulations H and its orthogonal complement A, the space of potentials, are
related by map duality. Mapping each edge to the corresponding dual edge defines
an isomorphism φ : RE → RE∗ . It is not hard to verify that φ(AG) = HG∗ and
φ(HG) = AG∗ . Boundary cycles of bounded countries of G form a basis of HG.
So dim(AG∗) = m−n+1; recalling that dim(A) = n−1, we see that this is just a
restatement of Euler’s formula.

We get a richer structure if we assume that G is embedded in an orientable
surface of higher genus. Let Σ be a closed compact orientable surface of genus g,
and suppose that the directed graph G is embedded in Σ as a map. Let f = |V ∗|
be the number of countries. We say that a vector x ∈ RE is rotation-free, if for
every country p the equation

(7.17)
∑

e: ls(e)=p

xe =
∑

e: rs(e)=p

xe

holds. We can express this as x ⊥ ∂p. This is also equivalent to saying that the
vector x defines a circulation on the dual graph.

Each vector ∂p (p ∈ V ∗) is a circulation; circulations that are linear combina-
tions of these special circulations are called null-homologous. Two circulations z and
z′ are called homologous if z−z′ is null-homologous. Null-homologous circulations
form a linear space B = BG ⊆ RE generated by the vectors ∂p.

We have defined two orthogonal linear subspaces of RE : the space A of po-
tentials and the space B of null-homologous circulations. Interchanging the roles
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of the map and its dual, the roles of A and B are interchanged. The orthogonal
complement A⊥ = H is the space of all circulations, and B⊥ is (under the identifi-
cation of E and E∗) the space of circulations on the dual graph. The intersection
C = A⊥∩B⊥ = (A+B)⊥ is the space of rotation-free circulations. This subspace
will be our main object of study in this section.

The orthogonal decomposition

(7.18) RE = A⊕B⊕C
can be thought of as a discrete version of the Hodge decomposition from differ-
ential geometry. We know that dim(A) = n−1 and dim(B) = dim(AG∗) = f−1.
Counting dimensions, we can express the dimension of C by the genus of the surface:

(7.19) dim(C) = m−dim(A)−dim(B) = m−(n−1)−(f−1) = 2g.

In particular, we see that for maps on the sphere, the space C is the null space: no
nonzero circulation can be rotation-free.

Example 7.5 (Toroidal grid). Figure 7.10 shows a rotation-free circulation on
the toroidal grid. The numbers 5 and 17 can be replaced by two arbitrary numbers,
so this picture gives a 2-dimensional space of rotation-free circulations. By (7.19),
the dimension of C is 2, so there are no other rotation-free circulations. �
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Figure 7.10. Rotation-free circulation on the toroidal grid.
(Edges leaving on the top are identified with edges entering on
the bottom, and similarly for right-left, so that we have a graph
embedded in the torus.)

7.3.2. Rotation-free circulations and discrete analytic functions. Let
z ∈ RE be a rotation-free circulation on a graph G embedded in a surface. Consider
a family F ′ of countries whose union is homeomorphic to the disk, and let G′ =
(V ′, E′) be the graph formed by the boundary edges of these countries. Every
cycle in G′ is null-homologous, and so rotation-freeness and the potential argument
(Corollary 4.5) give us a function f : V ′ → R such that ze = f

(
hd(e)

)
−f
(
tl(e)

)
for every edge e ∈ E′. Similarly, the flow condition implies that there is a function
g : F ′ → R such that ze = g

(
rs(e)

)
−g
(
ls(e)

)
for every edge e between two countries

in F ′. (To see the analogy with complex function theory better, we shifted our
notation to functions on node sets rather than vectors indexed by nodes.)
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The functions f and g defined above satisfy

(7.20) f
(
tl(e)

)
−f
(
hd(e)

)
= g
(
rs(e)

)
−g
(
ls(e)

)
for every edge between two countries in F . We can think of f and g as the real and
imaginary parts of a (discrete) analytic function, and (7.20) can be thought of as a
discrete analogue of the Cauchy–Riemann equations.

It is important to emphasize that these functions f and g exist only locally,
in the planar piece of Σ; but this is not surprising, since “true” analytic functions
may have well-defined values only when restricted to a simply connected region.
However, we can use the trick of Riemann surfaces from complex function theory.
For a map G on a closed orientable surface Σ different from the sphere, we consider
the universal cover mapping φ : R2 → Σ. Rolling up the plane twice to get a torus
is an example.

The graph Ĝ = φ−1(G) = (V̂ , Ê, F̂) is called the universal cover of G. This
is an infinite graph embedded in the plane, and it is a planar map in the sense
of Section 7.2. Furthermore, it is invariant under the action of an appropriate
discrete group of isometries of the Euclidean plane (in the case of the torus) or of
the hyperbolic plane (in the case of higher genus). The universal cover of the dual

map G∗ is the dual map Ĝ∗.
Any rotation-free circulation on G corresponds to a rotation-free circulation on

Ĝ. This circulation can be represented as âe = f
(
hd(e)

)
−f
(
tl(e)

)
, where f : V̂ →

R. Note that the function f can not be obtained by lifting a function on V .
Similarly, we obtain a function g : V (Ĝ∗) → R such that âe = g

(
rs(e)

)
−g
(
ls(e)

)
.

The pair (f, g) is an analytic pair.
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Figure 7.11. Left: A rotation-free circulation on the torus (upper
left corner) and a corresponding harmonic function on the universal
cover map. Right: A corresponding harmonic function on the dual.

Figure 7.11 shows a rotation-free circulation on a graph embedded in the torus.
The first figure shows an associated harmonic function on the nodes of the universal
cover map, the second, a harmonic function on the dual map.

We can introduce these basic notions in a little larger generality: we associate
a positive weight ω(e) with every edge. In most of this chapter, we restrict our
discussion to the unweighted case, because extending this to the weighted case
would not amount to much more than inserting ‘ω(e)’ at appropriate places in the
equations.



110 7. DISCRETE ANALYTIC FUNCTIONS

7.3.3. Nondegeneracy properties. We state and prove two key nondegen-
eracy properties of rotation-free circulations. We start with a simple lemma about
maps on surfaces. For every country p, let rev(p) denote the number of times the
orientation of the edges changes if we move along the boundary of p. For every
node v, let rev(v) denote the number of times the orientation of the edges changes
in their cyclic order as they emanate from v.

Lemma 7.6. Let G = (V,E, V ∗) be a proper directed map on a surface of Euler
characteristic χ. Then ∑

u∈V ∪V ∗
(rev(u)−2) = −2χ.

Proof. Every corner means an orientation change either for the node or for
the country defining it. Hence∑

u∈V ∪V ∗
rev(u) =

∑
v∈V

deg(v) = 2m = 2n+2f−2χ.

Rearranging, we get the equality in the lemma. �

The first nondegeneracy property [Benjamini–Lovász 2003] concerns certain
special rotation-free circulations, namely those obtained as projections of basis vec-
tors. Let Ψ denote the orthogonal projection of RE to the space C of rotation-free
circulations.

Theorem 7.7. Let G be a 3-connected proper map on an orientable surface with
genus g > 0. Then Ψ1e 6= 0 for e ∈ E.

Note that Ψ1e 6= 0 implies that

(7.21) (Ψ1e)e = 1
T
eΨ1e = 1

T
eΨ

2
1e = |Ψ1e|2 > 0,

so a (seemingly stronger) conclusion of the theorem could be that the vector Ψ1e
is positive on the edge e. In a similar fashion, for any c ∈ C, we have

ce = 1
T
ec = 1

T
e(Ψc) = cT(Ψ1e),

so it would suffice to prove that not every rotation-free circulation vanishes on e.
For g = 0 there is no nonzero rotation-free circulation, and hence Ψ1e = 0 for

every edge e. So the hypothesis that g > 0 cannot be omitted. The assumption that
G is 3-connected cannot be dropped either, as shown by the example in Figure 7.12.
Here every rotation-free circulation is 0 on e, and hence Ψ1e = 0. The orientability
of the surface is also important (Exercise 7.17).

e 

Figure 7.12. Every rotation-free circulation is 0 on the edge e.
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Proof. Suppose that Ψ1e = 0 for some edge e. This means that 1e ∈ A+B,
and so we have a decomposition 1e = a+b, where a ∈ A and b ∈ B. So we have
af +bf = 0 for every edge f 6= e, but af +bf = 1 for f = e. By the definition of A
and B, there are vectors x ∈ RV and y ∈ RV ∗ such that a = Bx and b = DTy. We
may choose the reference orientation so that a ≥ 0.

Let S = {yp : p ∈ V ∗}. For c ∈ S, let Uc denote the union of countries p
with yp ≥ c. The boundary of Uc is an eulerian subgraph Dc of G. Let D be a
cycle contained in Dc. For every edge f ∈ E(D)\{e} we have af > 0, and all these
edges are oriented in the same way around the cycle. So xi strictly increases as we
traverse the cycle D. This can only happen if e ∈ E(D), and since this holds for
every cycle in D ⊆ Dc, the whole subgraph Dc is a single cycle through e. It also
follows that all the values xi on Dc are different, and they grow strictly from one
endpoint of e to the other.

Let G0 denote the subgraph formed by those edges f for which af = 0, and G1

the subgraph formed by the other edges. Since xi is constant on every connected
component of G0, any cycle Dc meets any component of G0 at most once.

Let a < b be two consecutive numbers in S, then the boundary of Ua \Ub is
contained in Da∪Db. A connected component of G0 can have at most two nodes
in common with Da∪Db; hence, by 3-connectivity, this connected component must
consist of a single edge that is contained in Ua \Ub, connecting Da and Db.

0
cD

1
cD

e

v

D
a

D
c

D
b

D
d

Figure 7.13. Level sets of the vector y, and the neighborhood of
a node v

This argument implies, in particular, that every node is contained in at least
one cycle Dc. Let v 6= hd(e), tl(e) be any node, and let a ∈ S and b ∈ S be smallest
and largest values for which v ∈ V (Da) and v ∈ Db (Figure 7.13). Let c < a and
d > b be a nearest numbers in S (we assume that these numbers exist; the opposite
case can be settled similarly). The edges of the cycles Dr (a ≤ r ≤ b) entering v
are consecutive in the cyclic orientation about v, and so are their edges leaving v.
Furthermore, G0 can have at most two edges adjacent to v, one connecting v to
Dc, and one to Dd. No matter how these two edges are oriented, the edges incident
with v form two consecutive sequences, one entering and one leaving v. In other
words,

(7.22) rev(v) =

{
0, if v = tl(e) or v = hd(e),

2, otherwise.

A similar argument shows that rev(p) = 2 for every country p. Substituting in
Lemma 7.6 yields −4 = −2χ, so χ = 2, and thus the surface is the sphere, a
contradiction. �
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Considering a “generic” linear combination of the vectors Ψ1e (e ∈ E), we
obtain the following corollary.

Corollary 7.8. Every 3-connected proper map on an orientable surface with genus
g > 0 carries a rotation-free circulation that does not vanish on any edge. �

The arguments above also yield a more explicit formula for Ψ1e.

Proposition 7.9. Let G be an oriented map on an orientable surface Σ, and let
e ∈ E. Let x ∈ RV be the vector of voltages of the nodes, if a unit current is sent
from tl(e) to hd(e), and let y ∈ RV ∗ be defined analogously for G∗. Then

Ψ1e = 1e−Bx−Dy.

Proof. We have the decomposition 1e = a+b+c with a ∈ A, b ∈ B and c ∈ C.
Using the definitions of A, B and C, this can be written as

1e = Bx+Dy+Ψ1e

for appropriate vectors x ∈ RV and y ∈ RV ∗ . Applying the boundary operator BT,
we get

1hd(e)−1tl(e) = BTBx = Lx,

since Dy and Ψ1e are circulations and hence BTDy = BTΨ1e = 0. As noted at the
end of Section 4.1.3, we can interpret x (and similarly y) as in the Proposition. �

The effective resistance between the endpoints of e = ij can be expressed as
R(i, j) = 1

T
eBx, and similarly the effective resistance of the dual map between the

endpoints of the dual edge e∗ = pq is R(p, q) = 1
T
eDy. Taking scalar product of the

formula in Proposition 7.9 with 1e, we get

(7.23) (Ψ1e)e = 1−R(i, j)−R(p, q).

Using (7.21), we get a corollary for effective resistances:

Corollary 7.10. If G is map on an orientable surface, then for every edge e,
R(i, j)+R(p, q) ≤ 1. If the surface is the sphere, then equality holds. If the surface
is different from the sphere, and G is 3-connected, then strict inequality holds. �

The second main nondegeneracy property [Benjamini–Lovász 2002] tries to cap-
ture the property of “true” analytic functions that if they vanish on an open disk,
then they vanish identically. What should correspond to the notion of “open disk”
in a discrete setting? It is not hard to guess that it should mean a “large enough
connected subgraph”, but just specifying the number of nodes will not work.

Example 7.11. Let G be a map on an orientable surface with genus g > 0, and let
X be a connected induced subgraph of G such that at most 2g “external” nodes of
X are connected to the rest of G (otherwise, X can be arbitrarily large). Suppose
that X is embedded in a subset of Σ of the surface that is topologically a disk.
Delete the edges of X as well as all the non-external nodes, create a new node x,
and connect it to the external nodes (Figure 7.14).

We get a graphG′ that is still a map on Σ. Thus this graph has a 2g-dimensional
space of circulations, and hence there is a nonzero rotation-free circulation ψ van-
ishing on each of the 2g−1 of the edges incident with x. Since this is a circulation,
it must vanish on all the edges incident with x. Delete x, put X back, and extend
ψ with 0-s to the edges of X. We get a nonzero rotation-free circulation vanishing
on X. �
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1 

Figure 7.14. Contracting a loosely connected piece

This example suggests that the right thing to consider is not the size of the
zero-region but its node-boundary. The following theorem asserts that this is indeed
so, and the number 2g in the example is best possible up to a factor of about 2.

Theorem 7.12. Let G be a graph embedded in an orientable surface Σ as a map.
Let ϕ be a nonzero rotation-free circulation on G and let G′ be the subgraph of G
on which ϕ does not vanish. Suppose that ϕ vanishes on all edges induced by, and
incident with, a connected subgraph U of G. Then U can be separated from G′ by
at most 4g−3 nodes.

Proof. In our topological arguments, we have to be careful not to use intuition
based on planar maps. In particular, we may have edges both sides of which belong
to the same country (even though the graph is 3-connected). We call such an edge
non-bordering.

Let W be the connected component of G\V (G′) containing U , and let Y denote
the set of nodes in V \V (W ) adjacent to W . So Y ⊆ V (G′), every node in Y is
adjacent to W , and all edges e between Y and W , as well as in G[W ], have ϕ(e) = 0.

Consider an edge e with ϕ(e) = 0. If e is not a loop, then it can be contracted
to get a map on the same surface with a rotation-free circulation. In particular, we
can contract W to a single node u (Figure 7.15).

2 1 

1 

0 

2 

3 

u 

Figure 7.15. Contracting a connected component of zero edges

If e is a loop with ls(e) 6= rs(e), then G\e is still a map (the interior of every
country is topologically an open disk), and ϕ is a rotation-free circulation on it.

So we can eliminate an edge with ϕ(e) = 0 unless it is a non-bordering loop. In
this latter case, we can change ϕ(e) to any nonzero value and still have a rotation-
free circulation.
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We apply this elimination procedure to all edges with ϕ = 0 except for the
edges between u and Y , and between two nodes of Y . We don’t try to contract
edges between nodes in Y (we do not want to reduce the size of Y ), but we can
delete them unless they are non-bordering. If there are parallel edges between u
and Y , and at least one of them is a border between distinct countries, then we
delete this too. So at the end we may assume that every edge between u and Y is
either single, or non-bordering. Let D be the number of edges between u and Y .

Re-orient each edge with ϕ 6= 0 in the direction of the flow ϕ, and orient the
edges between u and Y alternatingly in an out from u (there may be one pair of
consecutive edges in the same direction, if D is odd). Orient the edges with ϕ = 0
between two nodes of Y arbitrarily, to get a digraph G1.

It is easy to check that G1 has no sources or sinks, so rev(v) ≥ 2 for every
node v, and of course rev(u) ≥ D−1 ≥ |Y |−1. Furthermore, every country either
has an edge with ϕ > 0 or a non-bordering edge on its boundary. In the first
case, it cannot be bounded by a directed cycle, since ϕ would add up to a positive
number on its boundary. In the second, the country boundary goes through the
non-bordering edge twice in different directions, so again it is not a directed cycle.
Thus we have rev(p) ≥ 2 for every country p.

Substituting in Lemma 7.6 (with G1 in place of G), we get that |Y |−1 ≤ 4g−4.
Since Y separates U from G′, this proves the theorem. �

7.4. Global information from local observation

As an application of the nondegeneracy results above, we describe an algorith-
mic problem; I don’t think this problem has any important applications, but it is
perhaps interesting for its unusual setting. Suppose that we live on a (finite) map
on a compact orientable surface with genus g (the embedding is reasonably dense).
Can we determine global properties of the graph, say the genus of the surface, if
we only have access to a small neighborhood of our location (Figure 7.16)?

Figure 7.16. A map observed at the black nodes. Can you de-
termine the genus of the surface?

Well, clearly not. But suppose that the graph is “active”, in the sense that the
edges carry weights, which change according to random local transitions, and we
can observe the process in that small neighborhood for some time. Let us describe
a particular process that allows us to determine the genus of the graph, based on
[Benjamini–Lovász 2002].

Discrete holomorphic forms motivate a reasonably natural and simple proce-
dure, which we call random balancing. Informally, this can be described as follows.
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We consider a finite map G, with a reference orientation, on an orientable surface
S. Each edge carries a real weight xij . With some frequency, a node wakes up, and
balances the weights on the edges incident with it, so that locally the flow condition
is restored. With the same frequency, a country wakes up, and balances the weights
on the edges incident with it, so that the rotation around the country is canceled.

To make this precise, we start with any vector x ∈ RE . At each step, one of
the following two operations is carried out on the current edge-weighting x ∈ RE :

(a) Node Balancing. Let v ∈ V and let sv = (δv)
Tx be the “imbalance” at

node v (the value by which the flow condition at v is violated). We modify x by
subtracting

(
sv/ deg(v)

)
δv from it.

(b) Country Balancing. Let p ∈ V ∗, and let rp = (∂p)
Tx be the “rotation”

around p. We modify x by subtracting
(
rp/ deg(p)

)
∂p from it.

Rotation-free circulations are invariant under node and country balancing.
Starting with any vector x on the edges and doing country and node balancing
of randomly chosen nodes and countries, from the uniform distribution on V ∪V ∗,
the weights will converge to Ψx quite fast (Exercise 7.18).

How do we observe the procedure? Let U be a connected subgraph of G, which
cannot be separated from any non-zero-homotopic cycle by fewer than 4g−1 nodes.
Let E0 be the set of edges incident with U (including the edges of U). We think of
E0 as the “window” through which the graph G can be observed.

Let Γx denote the restriction of x ∈ RE to E0. By Theorem 7.12, dim(ΓC) =
dim(C) = 2g. For any x ∈ RE , the vector z = Ψx is in C, and Γz can be observed
in the window. If we can repeat this with sufficiently many starting edgeweights
x1, . . . , xm so that their projections zi = Ψxi span C, then Γz1, . . . ,Γzm span
ΓC by Theorem 7.12, and so determining the dimension of the space spanned by
Γz1, . . . ,Γzm tells us the genus of the surface.

How to generate such starting vectors xi? Since by our model we have access
to the edges in E0 = {e1, . . . , em}, it is natural to restart from xi = 1ei +zi−1. (For
i = 1, we start from 1e1 .) We call this a local excitation.

Do local excitations yield sufficiently many linearly independent vectors Γzi?
Luckily, they do, as shown by the next lemma.

Lemma 7.13. The vectors Ψ1e (e ∈ E0) generate C.

Proof. Suppose not, then there is a nonzero vector v ∈ C orthogonal to every
vector Ψ1e. Then

vT
1e = (Ψv)T1e = (Ψ1e)

Tv = 0

for every edge e ∈ E0, which means that Γv = 0. By Theorem 7.12, it follows that
v = 0, a contradiction. �

The more difficult issue is: how to compute z = Ψx from x? Starting with
x0 = x, let xt ∈ RE be the vector of edgeweights after t random balancing steps.
If z = Ψx0, then xt → z as t→∞, and so Γxt → Γz.

Of course, after a local excitation we cannot wait for infinite time to let the
system settle to a rotation-free circulation. We have to make an observation of the
window E0 allowing sufficient but finite time T after each local excitation. These
observations provide vectors y1, . . . , ym ∈ RE0 such that yi−yi−1 ≈ ΓΨ1ei (here
y0 = 0). If we had exact equality here, then the rank of (y1, . . . , ym) would be
exactly 2g, by Lemma 7.13 and Theorem 7.12.
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But we have errors! We can do the following: we construct a linear subspace
Σ (approximating ΓC) as follows. Start with Σ0 = 0. For i = 1, . . . ,m, check
if the distance of yi−yi−1 from Σi−1 is at least a pre-defines ε > 0. If so, let
Σi = lin(Σi−1∪{yi}), else let Σi = Σi−1. Return the dimension of Σm. Let us call
this procedure subspace fitting.

Theorem 7.14. Let ε = (n+f)−(n+f)2 , T = (n+f)7, and let k be the result of
the subspace fitting algorithm. Then with high probability, g = k/2. �

The proof of this theorem involves some rather tedious computation, analogous
to that in [Benjamini–Lovász 2002], and will not be reproduced here. For the
interested reader, we state the main steps as Exercises 7.18 and 7.19.

Remark 7.15. We defined balancing steps as a node/country chosen uniformly
from V ∪V ∗. While this is perhaps easier to describe, it has an unpleasant feature,
in particular if we think of the map G as very large: random choice for the site
of the balancing step is a global operation. The following (essentially equivalent)
model is therefore more appealing: Let us endow each node and each country
with a “Poisson clock”, emitting ticks at times according to a Poisson process with
parameter 1. When its clock ticks, the site balances. Thus the model becomes truly
local. Unfortunately, the waiting time in the algorithm still depends (polynomially)
on the size of the graph; this is natural, since information from the distant parts of
the map must get to the observation window.

Remark 7.16. In [Benjamini–Lovász 2002] a different method for local excitation
was analyzed: In that version, we do not manipulate the edgeweights in the window,
but (besides node and country balancing) we allow a third random change with some
small probability p:

(c) Excitation. Add a random number X ∈ {−1, 1} to the weight of a random
edge e ∈ E.

The main result is that there is a constant c > 0 such that if p < 1/(n+f)c,
then observing the modified balancing process for at least (n+f)c/p steps, we can
determine the genus g with high probability.

Exercise 7.1. (a) Prove that if we assign a complex number to every integer point
on the real and imaginary axes, then there is a unique analytic function on the
Gaussian integers extending these values. (b) Prove that if we assign a complex
number to every Gaussian integer on the diagonal x = y in the plane, then there
is a unique strongly analytic function on the Gaussian integers extending these
values.

Exercise 7.2. Let f be an analytic function on G. Prove that f̂(x+ iy) =

(−1)x+yf(x+ iy) is analytic on G.

Exercise 7.3. Prove that the restriction of any discrete analytic function to the
(tilted) grid G0 is a (complex valued) harmonic function on this grid graph. Also
prove that every harmonic function on the grid graph G0 arises as the restriction
of a discrete analytic function.

Exercise 7.4. (a) Prove that if f is an analytic function on the grid, then
∫ u
0
f

is an analytic function of u. (b) If f is a polynomial in Re(z) and Im(z), then∫ u
0
f is a polynomial in Re(u) and Im(u).
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Exercise 7.5. For u ∈ G, let u:0: = 1, and for n ≥ 1, define

u:n: = n

u∫
0

z:n−1:dz.

Define a discrete polynomial of degree n as any linear combination of the discrete
analytic functions 1, z, z:2:, . . . , z:n:. Prove that the space of polynomials of a given
degree is invariant under shifting the origin [Mercat 2002].

Exercise 7.6. Let f be an analytic function on the grid, and let a be a nonzero
Gaussian integer. Prove that the following functions are discrete analytic:

(a) ∂af(z) =
(
f(z+a)−f(z)

)
/a.

(b) f†(z) =

{
f(z) if z ∈ G0,

−f(z) if z ∈ G1.

Exercise 7.7. Define the discrete exponential function as a discrete analytic func-
tion Exp(x) on G satisfying∫ v

u

f(z)dExp(z) =

∫ v

u

f(z)Exp(z)dz.

for every discrete analytic functions f and every u, v ∈ G.

(a) Prove that there is a unique exponential function.

(b) Prove that

Exp(z) =

∞∑
n=0

z:n:

n!
,

for values of z for which the series on the right hand side is absolute convergent.

(c) Prove that exponentials form a basis for all discrete analytic functions
[Mercat 2004].

Exercise 7.8. Let εn ↘ 0, let Ω be a simply connected bounded open set in
the plane, and let gn : Ω∩(εnG) → Z be a function that satisfies the discrete
analycity condition on every square contained in Ω. We extend the definition of gn
to every point in Ω, as the value at the nearest point of Ω∩(εnG). Let g : Ω→ Z,
and assume that gn → g uniformly on every compact subset of Ω. Prove that g is
analytic (in the classical sense).

Exercise 7.9. Prove that every analytic function on a lattice domain can be
written as f1 + if2, where f1 and f2 are strongly analytic functions.

Exercise 7.10. Let g be a strongly analytic function on a lattice domain graph
G (with the cyclic orientation). For an internal edge uv, define ĝ(uv) = g(u)+

(u−v)g(u).

(a) Prove that ĝ(uv) = g(v)+(u−v)g(v).

(b) Prove that ĝ(uv) is the orthogonal projection of g(u) onto the line parallel to√
u−v.

(c) Prove that the function |ĝ|2 satisfies the flow condition at every internal node
of G∗.

(d) Show that one can define a function H : V (G∗)\∞ → R such that if uv ∈ E,
p = ls(uv) and q = rs(uv), then H(q)−H(p) = |ĝ(uv)|2.

(e) Prove that H is superharmonic on the lattice graph of G0.

Exercise 7.11. Let G be a finite connected planar map. Let us assign values
f0(u) ∈ C to the nodes of the unbounded country p∞. (a) Prove that there is a
pair of functions f : V → C and g : V ∗ \p∞ → C such that f extends f0 and
(7.7) is satisfied at every edge except for the edges of p∞. (b) Prove that the pair
(f, g) is uniquely determined up to adding a constant to g.
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Exercise 7.12. Let G be a connected planar map with a reference orientation
and let v ∈ V such that v is not a cutpoint. Let us assign values g0(uv) ∈ C to
edges exiting v so that

∑
u∈N(v) g0(uv) = 0. Prove that there is a unique extension

g : E → C of g0 that is a circulation on G and rotation-free on G\v.

Exercise 7.13. Prove that every circulation on a map on any orientable surface
is homologous to a unique rotation-free circulation.

Exercise 7.14. Let G be a map on an orientable surface Σ and e ∈ E. Prove
that if there is a any rotation-free circulation that does not vanish on e, then Ψ1e
is such a circulation.

Exercise 7.15. Show by an example that there is a 3-connected map G on the
torus and a nonzero vector f ∈ RE supported on two edges such that Ψf = 0.

Exercise 7.16. Let G be a map on an orientable surface S of genus g > 0, such
that every noncontractible Jordan curve on the surface intersects the map in at
least 4g points. Prove that if a rotation-free circulation vanishes on all edges of a
non-0-homologous cycle and on all edges incident with it, then it is identically 0.

Exercise 7.17. Rotation-free circulations can be defined on non-orientable closed
surfaces as well. (a) Prove that there is no nonzero rotation-free circulation on
any map on the projective plane. (b) Prove that on a map on a non-orientable
surface with Euler characteristic χ, the dimension of the space of rotation-free
circulations is 1−χ. (c) Show by an example that Theorem 7.7 does not remain
valid on nonorientable surfaces.

Exercise 7.18. Let G be a map on an orientable surface.

(a) Prove that starting with any vector on the edges and doing country and node
balancing repeatedly so that each node and each country gets balanced infinitely
often, the edgeweights converge to a rotation-free circulation.

(b) For u ∈ V ∪V ∗ and x ∈ RE , let Φu denote the result of node/country balancing
at u. Let u1, u2, . . . be the sequence of independent uniform random elements
of V ∪V ∗. Starting with any vector x ∈ RE , define a sequence of vectors by
recurrence as follows: x0 = x and xt = Φutxt−1 (t ≥ 1). Prove that

E
(
|xt−Ψx|2

)
≤
(

1− 1

(n+f)4

)t
|x|2.

Exercise 7.19. Prove that if G is a map on an orientable surface with genus
g > 0, then (Ψ1e)e ≥ n−nf−f for every edge e.



CHAPTER 8

Discrete Analytic Functions: Statistical Physics

There are several models in geometric probability and statistical physics which
are defined on the part of a lattice in a domain Ω in the plane, and which show
a fully unexpected invariance under conformal transformations of Ω, at least in
the scaling limit, when the edge-length of the lattice tends to zero. This fact (in
the cases when proved at all) is not only unexpected, but highly nontrivial. It is
perhaps not surprising that discrete analytic functions play a substantial role in
several of these proofs.

We describe four such models, and show the discrete analytic functions (or
similar functions) that arise from them; then we sketch the proof in one of the
cases.

8.1. Conformal invariance

8.1.1. Domino tilings. A domino is the union of two adjacent squares. A
lattice domain D may or may not be the union of disjoint dominos; the ques-
tion is equivalent to the existence of a perfect matching in the tangency graph
G∗D. A necessary and sufficient condition for this can be obtained by special-
izing the Marriage Theorem, but more geometric conditions can be formulated
[Fournier 1995][Kenyon 2009].

Figure 8.1. Left: a domino tiling of a lattice domain and the
corresponding perfect matching in the dual graph. Right: the
height function of this domino tiling, in grayscale. Note that the
edges of the matching correspond to rifts (changes by more than
1) in the height function.

A construction capturing important features of domino tilings was introduced
in [Thurston 1989]. Given a covering by disjoint dominos, we assign a value of
1 to each edge on the boundary of a domino and −3 to the edge separating two
squares on the same domino. It is trivial to see that this assignment is rotation-free
with respect to the cyclic orientation, and so (by the potential argument) it can
be represented as δh, for some vector h ∈ RV . The function h is called the height
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function of the domino tiling. It is uniquely determined up to adding a constant
function; to be specific, we set the function value 0 on the leftmost tile among the
lowermost tiles. In terms of G∗D, the function is defined on those squares containing
a node of V , and so we can consider it to be defined on the union of these squares
(Figure 8.1).

On the boundary of the lattice domain, the height function is uniquely de-
termined, independently from the domino tiling. On the other hand, the height
function determines the domino tiling: a pair of squares forms a domino if and only
if they share an edge along which the height function changes by 3.

Perhaps the first mathematical result about conformal invariance of the scaling
limit of combinatorial quantities defined on lattices was obtained by [Kenyon 2000].
He proved that the variance of the height function is asymptotically conformally
invariant. This means the following. Fix a point p in the interior of the domain
Ω. Select a tiling T of the corresponding lattice domain, then the dual square
containing p has a certain height h(p). If we select T at random, uniformly among
all tilings, then h(p) will be a random variable, that has a certain expectation h(p).
When the edge length ε of the grid tends to zero, then the random variable h(p)−
h(p) tends to a limit random variable g(p). This random variable is conformally
invariant: If φ : Ω → Ω1 is a conformal mapping of Ω to another domain Ω1,
and g1 denotes the function corresponding to g on Ω1 then g(φ(p)) has the same
distribution as g(p). See [Kenyon 2009] for a nice introduction to this rich area.

8.1.2. Honeycombs, triangles and hex. Let G be a 2-connected simple
planar graph in which all countries are triangles except for the unbounded country
p∞. Let a, b, c and d be four edges of the boundary of p∞ (labeled in their coun-
terclockwise order), splitting it into four node-disjoint arcs ab, bc, cd and da . Let
us 2-color the nodes with black and white, where we require that nodes in ab∪cd
are black and nodes in bc∪da are white. Let us say briefly that the boundary is
properly colored.

By Proposition 6.3 and the construction in Figure 6.7(b), there is either an
all-black path connecting ab and cd, or and all-white path connecting bc and da,
but not both. What is the probability that for a random coloring (subject only to
the requirement that the boundary is properly colored), the first possibility, namely
ab-cd connectivity occurs?

This number is quite difficult to compute in general, but there is a beautiful
asymptotic formula in the case when G is a piece of the triangular grid. More
exactly, consider the regular triangular grid in the plane, and a finite set of lattice
triangles whose union is a simply connected region Ω. Let G be the graph consisting
of the edges and vertices of these triangles. Splitting the boundary into four parts
as above, we can ask for the probability that in a random coloring that is proper on
the boundary, ab and cd are connected by a black path. We call this the crossing
probability (from ab to cd).

Next, consider a sequence G1, G2, . . . of such graphs, with the edge-lengths of
the grids tending to 0. Suppose, furthermore, that the corresponding domains Ωn
tend to a simply connected domain Ω in the Carathéodory sense. Let the boundary
polygon of Ωn be split into four arcs as before by edges an, bn, cn and dn, and
assume an → a ∈ ∂Ω, bn → b ∈ ∂Ω etc.

It can be proved that the crossing probability between the arcs anbn and cndn
tends to a value p = p(Ω, a, b, c, d) which depends on the domain Ω and on the
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four points a, b, c, d ∈ ∂Ω only. The surprising fact, conjectured in [Cardy 1992],
based on computational experiments and ingenious intuition, is that this value
is invariant under conformal transformation. This fact was eventually proved in
[Smirnov 2001]:

Theorem 8.1. Let Ω be a simply connected domain in the plane, let a, b, c, d,∈
∂Ω, and let f : Ω → C be a bijective conformal map. Then p(Ω, a, b, c, d) =
p
(
f(Ω), f(a), f(b), f(c), f(d)

)
.

This allows us to compute the crossing probabilities for any domain (assuming
we can compute that map f sufficiently explicitly), when perhaps ad hoc methods
can be used.

Figure 8.2. Three ways of randomly walking down from the top
of a triangle to the bottom on the streets amidst hexagonal build-
ings. Top: a Galton board; left: random walk (not a proper draw-
ing, which would pass too many streets); right: along the line
separating a random 2-coloring of the hexagons.

A particularly nice special case was conjectured by [Cardy 1992] and proved by
[Smirnov 2001]. Consider a triangular domain T in the regular triangular lattice,
with vertices a, b and c. Take those hexagons in the dual lattice whose center is a
lattice point in T ; but omit the hexagon containing a. Let all the hexagons along
the edge ab be colored black, all hexagons along the edge ac be colored white. Let
the other hexagons be colored randomly. Start a polygonal walk between the two
hexagons on the top, and keep going so that you always have a black hexagon on
your right and a white hexagon on your left. Eventually, you will exit at a point y
on the edge bc. Then Cardy’s Formula tells us that the point y is asymptotically
uniformly distributed along the edge bc, if the edge length of the lattice tends to 0
(Figure 8.2, right). Another way of saying this is that if x is a point on the edge bc
of a regular triangle abc, then

p(T ; a, b, c, x) =
|c−x|
|c−b|

.
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The other two figures illustrate other ways of walking down from a to bc: the
Galton board (when we move always down, choosing a left or right turn randomly),
and a random walk. The Galton board produces a binomial distribution, which is
asymptotically Gaussian.

8.1.3. Paving your porch, or the Fortuin–Kasteleyn model. The fol-
lowing construction [Smirnov 2010a, Chelkak–Smirnov 2012], providing an inter-
esting class of strongly analytic functions, will be important for its applications in
physics. Here we start with an elementary mathematical formulation.

Consider the tiling of a lattice domain (a “porch”) with square tiles that have
two circular arcs on their face, with radius half of their side length, centered at op-
posite corners (Figure 8.3). There are two “doors”, special tiles marked by arrows.

Such a tile has two possible orientations. We assume that the tiles on the
boundary of the domain are oriented alternatingly, except for the doors. More
precisely, we may assume that in the 2-coloring of the vertices, entering the door on
the left edge of the picture, we see a white vertex on our left. Then the black vertices
on the upper boundary have partial circles about them (which may consist of one,
two or three quarter-circles), and so do the white vertices on the lower boundary.
The arcs that constitute these incomplete circles will be called ornamental, and the
edges of the tiles incident with ornamental arcs will be called external. No matter
how the remaining tiles are put down (including two on the boundary, at the doors),
the non-ornamental arcs on the tiles form a single open curve γ connecting the two
doors, and a number of closed curves (possibly quite long and winding).

Figure 8.3. Tiling of a porch with tiles of a commercial pattern.
The 2-coloring of the nodes is shown only along the boundary, the
2-coloring of the squares, only near the doors. Tiles on the bound-
ary are placed so that they form a neat sequence of incomplete
circles, interrupted only at the two doors. No matter how we put
down the tiles in the middle, we get a single curve connecting the
two doors, together with a collection of closed curves.

Suppose that we have a sequence of lattice domains Ωn, with the size of tiles
tending to zero, so that the domains “tend to” a simply connected domain Ω.
Let the two doors (shorter and shorter edges) converge to points a and b on the
boundary of Ω.
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Let us tile the domains Ωn randomly, under the boundary conditions as dis-
cussed above. There is a complication here: not every tiling has the same probabil-
ity; we weight each tiling T with w(T ) = (

√
2)# of closed curves, and choose a tiling

with probability proportional to its weight. Some explanation for this strange choice
of weights will be forthcoming when we discuss the connection of tilings with the
Ising model. We call this probability distribution on tilings the physics distribution
(as opposed to the uniform distribution).

Each tiling will define a random door-to-door curve γn. It turns out that the
distributions of these random curves will tend to a distribution Γ(Ω, a, b) on Jordan
curves inside Ω connecting a and b. This is not trivial, but not too surprising so
far. The amazing fact is that this limit distribution will be invariant not only under
translations (trivial), similarities (a matter of normalization), rotations (nontrivial),
but under all conformal transformations! If we have a conformal map φ : Ω→ Ω′,
and γ is a random curve from the distribution Γ(Ω, a, b), then the distribution
of φ(γ) is Γ

(
Ω′, φ(a), φ(b)

)
. This result was proved in [Smirnov 2010a]; see also

[Smirnov 2010b] for a more informal presentation, and [Chelkak–Smirnov 2012] for
a generalization to planar graphs with a rhombic embedding (a.k.a. isoradial graphs
or critical graphs), but also for more details and applications.

To illustrate why this result is surprising, let us consider a very special case:
Ω is the unit disk D, and a and b are diametrically opposite points. The situation
looks quite different when the segment ab is horizontal (so parallel to the sides of
the tiles), and when it is rotated by some angle. Nevertheless, in the limit the
orientation of the lattice plays no role in the limit.

It is not easy to make the above discussion precise. The convergence Ωn → Ω
can be defined in the Carathéodory sense: there are conformal maps φn : D →
Ωn and φ : D → Ω so that φn → φ inside D. The limit distribution of a-
b curves is much more difficult to define and describe; this needs the theory of
stochastic Löwner evolution (SLE) developed by [Schramm 2000], [Schramm 2007],
whose presentation is outside the possibilities of this book.

Let us formulate one consequence of the method that can be formulated, and its
proof can be sketched, without invoking the full machinery of SLE. Let us consider
a porch with four doors a, b, c, d (in this counterclockwise order). These mean four
special edges on the boundary. Assume that the number of edges of the boundary
between consecutive doors is even, and that the tiles incident with these edges are
fixed so that the vertices at an odd distance from the nearest door are centers of
partial circles (Figure 8.4).

If we lay down the remaining tiles arbitrarily, a door-to-door curve γ1 will start
at a. It is easy to argue (using parity) that γ1 must exit the porch either at b or
d. Another curve γ2, disjoint from γ1, will connect the remaining two doors. This
tells us that there are two possibilities, and we may wonder what is the probability
that the curve starting at a exits at b.

Theorem 8.2. Consider a sequence Ωn of lattice domains, tending to a simply
connected domain Ω. Let an, bn, cn, dn be four doors on Ωn, and suppose that they
tend to four different points a, b, c, d on the boundary of Ω. Then the probability
that for a random tiling a door-to-door curve connects an and bn tends to a value
p(Ω; a, b, c, d), and this number is conformally invariant: if φ : Ω → Ω′ is a
conformal map, then p(Ω; a, b, c, d) = p

(
Ω′;φ(a), φ(b), φ(c), φ(d)

)
.
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a

c

b

d

Figure 8.4. A tiling with four doors.

The proof of this theorem (even in a somewhat sketchy form) will take a lot
of preparations, to be done in the Section 8.2.1. But first (to justify the interest
in this seemingly quite special question), we discuss its relation to an important
problem in statistical physics.

8.1.4. Ising model in the plane. In this most classical model in statistical
physics, we consider a lattice domain and its lattice graph G, and assume that
there is an atom sitting at each node. Assigning to every node of G (every “site”) a
“state”, which can be UP or DOWN, we get a “configuration”. The configuration
can be described by the set S of atoms in the UP state (Figure (8.5).

Figure 8.5. Three kinds of states in an Ising model: a disordered
state, a state close to the homogeneous ground state in the fer-
romagnetic case, and a state close to the chessboard-like ground
state in the antiferromagnetic case.

Two atoms that are adjacent in the grid have an “interaction energy”, which
depends on their states. In the simplest version of the basic Ising model, the
interaction energy depends only on whether or not the atoms are in the same
state. Adding the same constant a to the interaction energies shifts the total
energy by a|E| independently of the configuration, and such a shift is irrelevant;
so we may assume that the interaction energy between atoms in the same state
is 0. Multiplying the other interaction energy by a positive number means only
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changing the unit of temperature, so we may assume that the interaction energy
between atoms in different states is either J = 1 or J = −1.

The total energy of a given configuration S is

H(S) = J |E(S, V \S)|.
Basic physics (going back to Boltzmann) tells us that the system is more likely to
be in states with low energy. In formula, the probability of a given configuration
is proportional to e−H(S)/T , where T is the temperature (from our point of view,
just a parameter). Since probabilities must add up to 1, these values must be
normalized:

P(S) =
e−H(S)/T

Z
,

where the normalizing factor Z is called the partition function of the system. The
partition function is simple to describe:

Z =
∑
S⊆V

e−H(S)/T ,

but the number of terms is enormous, and so partition functions can be very hard
to compute or analyze.

The behavior of the system depends very much on the sign of J . If J = 1, then
adjacent pairs that are in the same state contribute less to the total energy than
those that are in different states, and so the configuration with the lowest energy
is attained when all atoms are in the same state. The typical configuration of the
system will be close to this, at least as long as the temperature T is small. This
is called the ferromagnetic Ising model, because it explains how materials like iron
get magnetized. This will be the case we consider in this section. If J = −1 (the
antiferromagnetic case), then the behavior is different: the chessboard-like pattern
minimizes the energy, and no magnetization occurs at any temperature.

One may notice that the temperature T emphasizes the difference between the
energy of different configurations when T → 0 (and de-emphasizes it when T →∞).
In the limit when T → 0, all the probability will be concentrated on the states with
minimum energy, which are called ground states. In the simplest ferromagnetic Ising
model, there are two ground states: either all atoms are in state UP, or all of them
are in state DOWN. As the temperature increases, disordered states become more
likely. The transition from the ordered state to the disordered may be gradual (in
dimension 1), or it may happen suddenly at a given temperature (in dimensions 2
and higher, for large graphs G). This temperature is called the critical temperature,
and the phenomenon itself, a phase transition.

8.1.5. Porch tiling and the Ising model. Our next goal is to show the
connection between the Ising and the porch tiling models. We start with rephrasing
the porch tiling model, at least at the critical temperature. Let us draw, for each
tile, the diagonal that does not intersect the quarter-circles. The new edges form a
subgraph of the union of the two lattice graphs G0 and G1 on G0∩V and G1∩V .
If we specify the subgraph H0 on G0∩V , then the other subgraph H1 is determined
as the graph of those edges of G1 that do not cross the edges of H0. So a porch
tiling can be specified by a subgraph H0 of G0 (we keep all nodes).

Note that each connected component of H0, as well as each connected compo-
nent of H1, is surrounded by a closed curve of the tiling, except for the connected
components containing the two boundary arcs. So the number of closed curves is
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J
0

J
1

Figure 8.6. A porch tiling, and subgraphs of G0 and G1 sur-
rounded by closed curves.

c(H0)+c(H1)−2 (recall that c(H) denotes the number of connected components
of the graph H).

The component numbers c(H0) and c(H1) are related. Consider the graph G0

formed by the black nodes and the diagonals between them. Add a new black node b
outside that lattice domain D, and connect it to every black node on the boundary.

This way we get a planar graph Ĝ0. The dual of this graph is the graph Ĝ1 obtained
from G1 by adding edges crossing the edges incident with b. From the graph H0

(as defined above) we construct a subgraph J0 of G0 by adding to it the new node
b, all edges connecting b to black nodes on the upper arc between the doors, and
(say) to the black endnode of the left door. The corresponding subgraph of G1 will
be obtained from H1 by adding all edges of the path connecting consecutive white
nodes on the lower arc, and ending at the white endnode of the right door (Figure
8.6). It follows that

(8.1) c(J1) = c(J0)+ |E(J0)|−|V (J0)|+1 = c(J0)+ |E(J0)|−|V (G0)|

(recall Exercise 2.3). It is also clear that c(J0) = c(H0) and c(J1) = c(H1), since
the additional part simply connects the ornamental centers to the main part.

Let `0 be the number of black nodes on the lower arc, then |E(J0)| = |E(H0)|+
`0. Using (8.1), we get that c(H1) = c(H0)+ |E(H0)|+`0−|V (G0)|. Thus the
weight we assign to a tiling (to define the physical distribution) is

w(T ) = (
√

2)# of closed curves = (
√

2)c(H0)+c(H1)−2 ∼ 2|E(H0)|/2+c(H0).

The fact that Ising model is closely related to the porch tiling model is not
obvious, since the Ising model concerns subsets of the nodes, while the tiling model
(after the reformulation above) concerns subsets of the edges. To connect the two
models, let G = (V,E) be an arbitrary graph (we do not even need planarity for this
argument), and let us consider pairs (S, Y ), where S ⊆ V and Y ⊆ E[S]∪E[V \S].
Fix a parameter 0 < p < 1, and consider a probability distribution on such pairs,
where

P(S, Y ) ∼ p|Y |(1−p)|E\Y | ∼
( p

1−p

)|Y |
(we have to normalize the given values to get a probability distribution). This value
is the same for all sets S that are unions of connected components of the graph
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(V, Y ); the number of such sets is 2c(V,Y ). If we generate a pair (S, Y ) from this
distribution and then forget S, then we get a probability distribution on subsets of
E for which

P(Y ) ∼
( p

1−p

)|Y |
2c(V,Y ).

The value p = 2−
√

2 plays a special role: this corresponds to the critical tempera-
ture in the Ising model. In this case, p/(1−p) =

√
2, and so

P(Y ) ∼ 2|Y |/2+c(V,Y ).

This is the same probability distribution as coming from the porch tiling model.
On the other hand, let us forget about Y . Fixing S and setting E′ = E[S]∪

E[V \S], we get

P(S) ∼
∑
Y⊆E′

p|Y |(1−p)|E\Y |

= (1−p)|E(S,V \S)|
∑
Y⊆E′

p|Y |(1−p)|E
′\Y | = (1−p)|E(S,V \S)|.

Defining the temperature T so that 1−p = e−1/T , we get

P(S) ∼ e−|E(S,V \S)|/T .

This is just the probability distribution in the Ising model.

8.2. Analytic functions and porch tilings

The remainder of this chapter is devoted to sketching the proof of the conformal
invariance of the porch tiling model (a.k.a. the Fortuin–Kasteleyn random cluster
model).

8.2.1. A strongly analytic function. We consider a lattice domain D, with
the acyclic orientation: every edge of GD is oriented from its black endpoint to its
white endpoint. We orient the graph G∗D (the tangency graph of the squares) in
the cyclic sense (the boundary of every black country is a counterclockwise oriented
cycle).

Let us start with a simple observation. Tracing the curve γ from the left door
to the right door, we cross several edges. A different tiling will create a different
curve, crossing different edges. However, if an edge is crossed by both curves, it is
crossed in the same direction. Indeed, following the curve, we see that every edge
is crossed so that its black endpoint is on the right (so every edge is crossed in the
same direction as the oriented edges of G∗D crossing it).

It is also easy to observe that if we consider a random tiling (say, from the
physics distribution, but here we could talk about any distribution), and for an
edge e we denote by p(e) the probability that the door-to-door curve crosses e,
then for the four edges e1, e2, e3, e4 of a tile (in this cyclic order), we have

p(e1)+p(e3) = p(e2)+p(e4)

(since every curve loads {e1, e3} by the same amount as it loads {e2, e4}). Our
main tool below will be a similar relation for the physics distribution even if we
assign a “phase” (a unit complex vector) to each crossing.

Let us remove those boundary tiles that contain two ornamental arcs; they play
no role. Those tiles that contain one ornamental arc have a fixed orientation, but
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their non-ornamental arc can be part of the curve γ. Let us call them boundary
tiles.

We are going to construct a strongly analytic function on the graph G∗D of this
grid from these tilings. Recall that we define a weight of a tiling as

w(T ) = (
√

2)# of closed cycles.

The total weight, in physical terms the partition function, is Z =
∑
T w(T ). The

ratio w(T )/Z gives the probability of the tiling in the physics distribution.

Next, we construct a function on the edges of G. Set θ = eπi/4 = (1+ i)/
√

2 for
convenience. Given a tiling T (we keep the tiles on the boundary fixed, except for
the two tiles in front of the doors), we trace out the curve γ connecting the doors,
starting (say) at the left door. Along the curve, we count turns with sign: when
crossing a tile, we make either a left turn, which counts 1, or a right turn, which
counts −1. When an edge e is crossed, this tiling T contributes

(8.2) fT (e) =
w(T )

Z
θ−# of turns up to e

to the function value of e; edges not crossed by γ receive no contribution from this
tiling.

As pointed out above, the curve γ crosses e in the same direction for every
tiling T . It follows that fT (e) is parallel to the same line for all T ; fT (e) is real if e
is a vertical edge oriented down (in the acyclic orientation), fT (e) is a real multiple
of θ if e is a horizontal edge oriented right to left etc. We can formalize this as
follows: fT (uv) is parallel to

√
i(u−v) (when we talk about an edge uv, we assume

that it is oriented from u to v; so in this case u is black and v is white).

�

i

-i
1

-1

✁✂

✄☎

✆

✝

Figure 8.7. Directions in the complex plane of the contributions
of door-to-door curves to f . They are determined by the edge up
to the sign.

We define, for every edge e = uv,

(8.3) f(e) =
∑
T
fT (e) = E

(
1(e ∈ γ)θ−# of turns up to e

)
,

where the expectation is taken for a random tiling from the physical distribution.
By the observations above,

(8.4) f(uv)
∥∥ √i(u−v) and |f(e)| ≤ P(e ∈ γ) ≤ 1.

Let us consider a tile S, and let e1, e2, e3, e4 be its edges in counterclockwise
order. If S is an internal tile, then we define

(8.5) g(S) =
1

2

(
f(e1)+f(e2)+f(e3)+f(e4)

)
.
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For a boundary tile, we have to modify this definition. We may assume that e1

and e2 are its internal edges (the other two edges carry no information). We define

(8.6) g(S) = (2−
√

2)
(
f(e1)+f(e2)

)
.

Note that if a door-to-door curve γ intersects this tile at all, then it intersects both
e1 and e2. If the tile is on the upper boundary, then γ must enter through e1 and
make a right turn inside. So f(e2) = θf(e1). For tiles on the lower boundary, the
curve crosses e1 and e2 in the reverse order, but the relation f(e2) = θf(e1) remains
valid.

Lemma 8.3. The function g is strongly analytic on the graph whose nodes are the
tile centers, and in which two centers are connected by an edge if the tiles share an
internal edge.

Proof. We compare the contributions from a tiling T and from the tiling T ′
obtained by rotating an internal tile S by 90◦. Let γ and γ′ be the door-to-door
curves in T and T ′, respectively. If γ does not cross S, then neither does γ′, and
all these contributions are 0. If γ crosses S, then so does γ′; one of them crosses
once, and the other crosses twice (Figure 8.8). Let (say) γ cross twice and γ′ cross
once. We may assume that γ enters S through e1. There are still two possibilities
to consider, namely whether γ turns left or right after entering S. We discuss the
case of a left turn; the other case is analogous.

e
1

e
2

e
3

e
4

�✄
e
1

e
2

e
3

e
4

�

Figure 8.8. Rotating a non-boundary tile that is crossed by γ.

We can express all contributions in terms of a = fT (e1):

fT (e2) = θa, fT (e3) = ia, fT (e4) = θa,

and (since there is one more cycle in T ′ than in T )

fT ′(e1) =
√

2a, fT ′(e2) = θ
√

2a, fT ′(e3) = fT ′(e4) = 0.

Hence

fT (e1)+fT ′(e1) = (
√

2+1)a, fT (e2)+fT ′(e2) = (
√

2+1)θa,

fT (e3)+fT ′(e3) = ia, fT (e4)+fT ′(e4) = θa.

Notice that

fT (e1)+fT ′(e1)+fT (e3)+fT ′(e3) = fT (e2)+fT ′(e2)+fT (e4)+fT ′(e4).

Summing over all tilings, we get that

(8.7) f(e1)+f(e3) = f(e2)+f(e4) = g(S).
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Consider an edge e = uv of G between two non-boundary tiles S and S′, so
that S′ is to its left. Let pS and pS′ denote their centers, and let st and xy be the
edges of S and S′, respectively, opposite to uv. Then

g(S)−g(S′) =
(
f(st)+f(uv)

)
−
(
f(xy)+f(uv)

)
= f(st)−f(xy).

Since both f(st) and f(xy) are parallel to
√
i(t−s) =

√
i(y−x) =

√
i(u−v) =√

vS′−vS , so is their difference: g(S)−g(S′) ‖
√
vS−vS′ . Similar computation

shows that this relation remains valid for edges between a boundary tile and a non-
boundary tile, as well as for non-ornamental edges between boundary tiles. This
proves that g is strongly analytic. �

For the special edge at the left door, we have fT (e) = w(T )
Z , and so f(e) = 1.

The tile S next to the door satisfies R
(
g(S)

)
= 1.

From the fact that f(e1) ⊥ f(e3) and f(e2) ⊥ f(e4), it follows that (8.7)
describes a decomposition of g(S) into the sum of two orthogonal vectors in two
different ways. In other words, f(ei) is the orthogonal projection of g(S) onto the
corresponding direction (Figure 8.9, left shows how the values of f on the edges
can be expressed if g(S) is given in the standard form). It is easy to check that this
relation is also valid for the non-ornamental edges of boundary tiles (the definition
of g was adjusted so that this should hold). In particular,

(8.8) |f(e1)|2 + |f(e3)|2 = |f(e2)|2 + |f(e4)|2 = |g(S)|2

for the four edges of an internal tile S.

� g(S)=�+✁i ✁i

(1 )
2

i
✂ ✄☎

✄

(1 )
2

i
✂ ✆☎

✆

Figure 8.9. Left: the values of the function f on the edges of a lattice
square, in terms of the value of g. Right: incisions at the ornamental
arcs. Only part of the boundary is shown.

For a boundary tile S, where f1 and f2 are its internal edges, we can define
f(e3) = (

√
2−1)if(e1) and f(e4) = −(

√
2−1)if(e2) for the other two edges. Then

g(S) satisfies (8.5). We have to be careful here on two counts: first, this definition
of f(e3) and f(e4) does not have the same combinatorial meaning as it does for
internal edges (which would make these values equal to zero); second, one or even
both of the edges e3 and e4 may be shared by other boundary tiles, and then the
values computed from those tiles might be different. It is best to think of making
an incision between the two boundary tiles along such edges (or scratch out the
grout, if you wish). A boundary node with two (or three) ornamental arcs around
it is split into two (or three) separate nodes of degree two (Figure 8.9, right). A tile
containing two ornamental arcs will be completely cut off, and it can be discarded,
playing no role in the arguments. This domain with incisions will be denoted by
Dinc, and the corresponding graph by Ginc = (V inc, Einc).
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The f -values of any two edges of a lattice square S determine the value g(S),
as well as the f -values of the other two edges of S. For two opposite edges, this
follows by (8.7). It is not hard to calculate that

(8.9) g(S) = (1− i)f(e1)+(1+ i)f(e2),

and

(8.10) f(e3) = −if(e1)+(1+ i)f(e2), f(e4) = (1− i)f(e1)+ if(e2).

For boundary tiles in the graph Ginc, (8.6) expresses g as a linear combination of
f(e1) and f(e2) with different coefficients; nevertheless, these formulas remain valid
for these tiles as well (since f(e1) and f(e2) are not independent, but related by
f(e2) = θf(e1).

To formulate a further key property of the function g, we describe another way
of reducing the domain: the “irrelevant fringes” can be removed. To be precise,
we cut each boundary tile into two triangles by the diagonal separating the arcs on
the tile, and delete the triangle containing the ornamental arc. In particular, we
delete all tiles with two ornamental arcs (Figure 8.10). This reduced domain will
be denoted by Dred, and the corresponding graph by Gred = (V red, Ered). Note
that the graph Gred is no longer a subgraph of the grid, since the diagonals of the
tiles where we have cut them are new (longer) edges on the boundary now; we call
these edges diagonal edges. In the 2-coloring of the nodes, let (say) all the nodes
on the lower arc be black, and all the nodes on the upper arc be white. We also
need to define the orientation of the edges of the boundary arcs: we orient them
away from the left door (along the boundary).

Figure 8.10. Cutting off the fringes of a porch tiling.

Lemma 8.4. Let uw be a diagonal boundary edge, obtained from the boundary tile
S. Then g(S) ‖

√
w−u.

Proof. Let uw be an edge of (say) the upper boundary arc of the porch between
the doors, where this boundary arc passes the edge from u to w. Let v be the third
vertex of the triangle containing uw. Then, as we have seen, f(vw) = θf(vu), and
so

g(S)
∥∥ f(vu)+f(vw) = (1+θ)f(vu)

∥∥ (1+θ)
√
i(v−u)

=
√

(1+θ)2i(v−u)
∥∥ √θ(v−u)

∥∥ √w−u. �
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8.2.2. Guessing the limit. Lemma 8.4 suggests what the limit of the discrete
analytic functions g should be when we are looking at tiling the same porch D with
smaller and smaller tiles. Let us think of the difference w−u as the “discrete
tangent vector” of the domain Dred (following the boundary from the left door to
the other one). Then we have a discrete analytic function on Dred, whose value is
parallel to the square root of the conjugate of the tangent vector on the boundary.
What would the continuous analogue of such a property be?

Let Ω be a simply connected domain in the plane with a smooth (or piecewise
smooth) boundary, and let a and b be two points on its boundary. Let Φ : Ω→ C∪
{∞} be a conformal map that maps Ω onto the strip 0 ≤ I(z) ≤ 1, so that Φ(a) =
−∞ and Φ(b) = +∞. The mapping Φ is determined only up to an additive real
constant, but this will not matter, since we need its derivative Φ′ only. Furthermore,
since the map is one-to-one, its derivative is not zero in the interior of Ω, and hence√

Φ′ can be defined choosing the branch of the square root with R(
√

Φ′(c)) > 0 for
a point c on the counterclockwise lower arc.

Let ψ = (Φ|L)−1, then Φ
(
ψ(s)

)
= s, and differentiating, we get

Φ′
(
ψ(s)

)
ψ′(s) = 1. This means that

Φ′
(
ψ(s)

)
=

1

ψ′(s)
=

1

|ψ′(s)|2
ψ′(s),

where ψ′(s) is a tangent vector to the domain Ω at the boundary point ψ(s). Thus√
Φ′(ψ(s)) =

1

|ψ′(s)|

√
ψ′(s);

the square root on the right is well defined once we fix its sign at (say) s = 0
appropriately. This suggests that if Ω is “close” to D, then (Φ′)1/2 could be “close”
to g.

To make this more precise, let Gn (n = 1, 2, . . . ) be the graph of a simply
connected lattice domain Dn of the lattice Gn = εnG, where εn → 0. Assume that
Dn → Ω, where Ω is a simply connected bounded domain in the plane, and the
convergence is in the Carathéodory sense.

Let fn and gn denote the functions defined by (8.3) and (8.5) for the lattice
graph Gn of Dn. We can consider gn(z) to be defined on all points z ∈ Dn as the
value of gn on the square containing z (ties broken arbitrarily). The main theorem
of [Smirnov 2010b] and [Chelkak–Smirnov 2011] is the following.

Theorem 8.5. With the notation above,

1
√
εn
gn →

√
Φ′

uniformly on every compact subset in the interior of Ω.

The considerations above imply that if the functions gn/
√
εn tend to any func-

tion, then this must be analytic and in fact equal to
√

Φ′. But to show that the
sequence of functions gn/

√
εn is convergent is highly nontrivial, and it takes careful

estimates based on analysis and on the theory of random walks.

8.2.3. An almost harmonic function. The proof of Theorem 8.5 depends
on the introduction of an auxiliary function on the nodes, that is “almost” har-
monic, and which is interesting on its own right. Equation (8.8) means that the
function |f(e)|2 is rotation-free (on the edges of the domain Dinc, with respect to



8.2. ANALYTIC FUNCTIONS AND PORCH TILINGS 133

the acyclic orientation). Hence it has a potential, which means that there is a
function H : V inc → R such that

(8.11) H(v)−H(u) = |f(uv)|2

for every (oriented) edge uv ∈ Einc.
The difference of H along a diagonal of a square can be expressed in terms of

the function g. Let v and z be diametrically opposite vertices of a lattice square S,
then

(8.12) H(v)−H(z) =
1

2
Re
(
(v−z)g(S)2

)
.

This follows by direct computation using (8.9) and (8.10). It is easy to derive from
this an expression for the analytic defect of H:

(8.13) H(v1)+ iH(v2)+ i2H(v3)+ i3H(v4) =
i−1

2
g(S)2

for every lattice square (v1v2v3v4) in D.

Lemma 8.6. The function H is constant along both boundary arcs of Dred.

Proof. Consider a boundary triangle uvw, with vertex v at the right angle.
Let, say, v be white. Then by the argument in the proof of Lemma 8.4, we have
f(wv) = θf(uv) or f(wv) = θf(uv). In both cases,

H(w)−H(u) = H(w)−H(v)+H(v)−H(u) = |f(vw)|2−|f(vu)|2 = 0. �

Let us add that the values of H on the upper boundary arc of Dred are one
larger than its values on the lower arc of this domain, since f(uv) = 1 for the edge
uv at the left door. Since H is determined only up to an additive constant, we may
assume that

(8.14) H =

{
1 on the upper arc of Dred,

0 on the lower arc of Dred.

It follows from the definition of H that if uv is an edge of G (oriented from u to
v), then H(u) ≤ H(v).

This function H is not harmonic in general, but it has the following useful
weaker property:

Lemma 8.7. Let v be a white internal lattice point, and let v1, . . . , v4 be the lattice
points diagonally opposite to v in the squares containing it. Then

H(v) ≤ 1

4

(
H(v1)+H(v2)+H(v3)+H(v4)

)
,

i.e., H is subharmonic on the white grid graph in the interior of D. Analogously,
H is superharmonic on the black grid graph in the interior of D.

Proof. Let u1, . . . , u4 be (black) neighbors of v, and set fk = f(ukv) (Figure
8.11). It suffices to prove the identity

(8.15) H(v1)+H(v2)+H(v3)+H(v4)−4H(v) = 2|f1− if2−f3 + if4|2.
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Figure 8.11. H is subharmonic.

The proof involves some computation. By (8.10), f(ukvk) = −ifk+1 +(1+ i)fk,
and hence

H(vk)−H(v) = H(vk)−H(uk)+H(uk)−H(v) = |f(ukv)|2−|f(ukvk)|2

= |fk+1|2 + |fk|2−(1+ i)fkfk+1−(1− i)fkfk+1.

Note that fk+1 ‖ (1− i)fk, and this implies that (1− i)fkfk+1 +(1+ i)fkfk+1 = 0,
and so we can write

(8.16) H(vk)−H(v) = |fk+1|2 + |fk|2−2i(fkfk+1−fkfk+1).

On the other hand, expanding 2|f1− if2−f3 + if4|2 we get terms 2|fk|2, terms
2i(fkfk+1−fkfk+1), and terms containing fkfk+2 +fkfk+2, which is zero since
fk+2 ‖ ifk. So we get the same expression as obtained by adding up the right hand
sides of (8.16). This proves the identity (8.15). �

A useful consequence of this lemma is that for every node u,

(8.17) 0 ≤ H(u) ≤ 1.

Indeed, to see e.g. the case when u is black, we notice that it holds true if u is
a node on the lower arc of Dred (when H(u) = 0), and also if u is a neighbor of
a white node v of the upper arc of Dred (because then H(u) ≤ H(v) = 1 and
H(v)−H(u) = |f(uv)|2 ≤ 1). So H(u) ≥ 0 on all black nodes by its superharmonic
property. Similarly, H(v) ≤ 1 for all white nodes. Finally, if u is a black node, v is
a white neighbor of u, then 0 ≤ H(u) ≤ H(v) ≤ 1.

Consider the restriction of H to the black nodes on the boundary of Dinc, and
extend it to a harmonic function hB on the black grid inside Dinc. We define hW
analogously. It follows from Lemma 8.7 that hB(u) ≤ H(u) for every black node
u, and hW (v) ≥ H(v) for every white node v.

Let us add that for a black node u, and any (white) neighbor v of u, H(u) ≤
H(v) by definition, so (informally) we may have in mind the inequalities

(8.18) hB ≤ H|B“ ≤ ”H|W ≤ hW

(we have to put quotes around the middle inequality sign, since H|B and H|W are
defined on different sets). The functions hB and hW are harmonic extensions of
almost the same values on almost the same sets. So if we can show that hB ≈ hW
on the boundary, then we will know that H ≈ hB , so H is approximately harmonic.
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8.2.4. Sketch of the proof of Theorem 8.5. Let Hn denote the function
defined by (8.11) and (8.14) for the graphGn, and define hB,n and hW,n analogously.

First, it suffices to prove that there is a subsequence of the sequence (Gn : n =
1, 2, . . . ) for which the convergence holds as claimed in the theorem. This follows
by a standard “subsequential limit” argument.

Second, there is a subsequence for which gn/
√
εn converges, uniformly in the

interior of Ω, to some function g : Ω→ Z, and also Hn, hB,n and hW,n converge to

appropriate functions Ĥ, ĥB , ĥW : Ω→ R. (This step takes some careful estimates
of harmonic and sub/superhamonic functions on the grid, for which we refer to the
papers of Chelkak and Smirnov.) From the fact that the functions gn are discrete
analytic, it follows that g is analytic (in the classical sense). Using (8.14) and

(8.18) (in an exact quantitative form), one can prove that Ĥ = ĥB = ĥW , and it is
a harmonic function (in the analysis sense). Furthermore, the boundary values of

Ĥ are 0 on the lower a-b arc of ∂Ω and 1 on the upper a-b arc.
Third, notice that the function I(Φ) (where Φ is defined in Section 8.2.2) has

the same properties: it is harmonic, 0 on the lower arc, and 1 on the upper arc. It

follows that Ĥ = I(Φ) and so

Hn → I(Φ)

in the interior of Ω.
Fourth, (8.12) implies that for any node u and any path P = (u0, . . . , uk = u)

in GB connecting u to a (black) node u0 on the lower arc, we have
(8.19)

Hn(u) =
1

2

k∑
j=1

R
(uj−uj−1√

2εn
gn(Sj)

2
)

=
1

2
√

2
R
( k∑
j=1

(uj−uj−1)
(gn(Sj)√

εn

)2)
,

where Sj is the lattice square with diagonal uj−1uj . The sum on the right is an
approximation of the integral of g2

n/εn along P (taking into account that the lattice

εnG0 has edge length
√

2εn). it follows that

Hn(u)→ 1

2
R
(∫ u

v

g(z)2 dz
)
,

where v is any point on the lower arc. So it follows that

R
(1

2

∫ u

v

g(z)2 dz− iΦ(u)
)

= 0.

Since the function in the large parenthesis is analytic, we can conclude that not
only its real part is zero, but so is the function itself:

1

2

∫ u

v

g(z)2 dz = iΦ(u).

Differentiating and taking square roots, we get the theorem.

8.2.5. Sketch of the proof of Theorem 8.2. Let us add a curve ξ on the
outside connecting doors a and b (Figure 8.12). For every tiling, there will be a
unique curve from door c to door d, which may or may not go through ξ. In fact,
it goes through ξ if and only if the door-to-door curves of the tiling (without ξ)
match a with c and b with d. The arguments above can be extended to the porch
with the additional curve to show that the probability that the door-to-door curve
goes through ξ is conform invariant.
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Figure 8.12.

Exercise 8.1. A lattice domain with the same number of black and white squares
can be domino tiled unless there are two boundary vertices x, y whose distance in
the reduced dual graph is less than their height difference.

Exercise 8.2. Let v and z be diametrically opposite vertices of a lattice square
S. Prove that H(v)−H(z) = 1

2
R
(
(v−z)g(S)2

)
.

Exercise 8.3. Let e1, . . . , e4 be the edges incident with a lattice point in the
interior of D, and let S1, . . . , S4 be the squares incident with it. Prove that

|g(S1)|2 + · · ·+ |g(S4)|2 ≤ 2(|f(e1)|2 + · · ·+ |f(e4)|2).



CHAPTER 9

Adjacency Matrix and its Square

In the previous chapters, the vector-labelings we considered were mostly in
low dimensions, and planar graphs played the major role. Now we turn to repre-
sentations in higher dimensions, where planarity plays no role, or at most a little
role.

Perhaps the easiest nontrivial way of assigning a vector to each node is to use
the corresponding column of the adjacency matrix. Even this easy construction has
some applications, and we will discuss one of them.

However, somewhat surprisingly, it turns out that a more interesting vector-
labeling can be obtained by using the columns of the square of the adjacency matrix.
This construction is related to the Regularity Lemma of Szemerédi, one of the most
important tools of graph theory, and it leads to reasonably efficient algorithms to
construct (weak) regularity partitions.

9.1. Neighborhoods, rank and size

If we know the rank of the adjacency matrix of a graph, how large can the
graph be? Obviously we have to make some assumption, since we can replace any
node by an arbitrary number of twins without increasing the rank of the adjacency
matrix. However, if we exclude twins, then the question becomes meaningful.

An almost trivial answer is given by the following argument. Let r = rk(AG)
be the rank of the adjacency matrix of the simple graph G (we will call this number
simply the the rank of G), and let (say) the first r columns of the adjacency matrix
form a basis of the column space. Two rows that agree in their first r positions will
agree everywhere, which is impossible if there are no twins. So the initial r-tuples
of rows will be all different, and hence there are at most 2r rows.

This argument works over any field, and no better bound can be given over
GF (2), for example (see Exercise 9.2). However, over the real field we can use
geometry, not just linear algebra, and prove a substantially better (almost optimal)
bound [Kotlov–Lovász 1996].

Theorem 9.1. Let G be a twin-free graph on n nodes of rank r. Then n = O(2r/2).

Before turning to the proof, we recall a result from discrete geometry. The
kissing number s(d) is the largest integer N such that there are N nonoverlapping
unit balls touching a given unit ball in Rd. For d = 2, it is easy to see that
this number is 6, but the 3-dimensional case is already difficult: whether the 3-
dimensional kissing number is 12 or 13 was the subject of a famous debate between
Isaac Newton and David Gregory in the 17-th century (the fact that s(3) = 12 was
not proved in a watertight way until [Schütte–v.d.Waerden 1953]).

The exact value of s(d) is only known for a few other small di-
mensions, but the following bound, which follows from tighter estimates

137
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[Kabatjanskĭı–Levenštein 1978], will be enough for us:

(9.1) s(d) = O(2d/2).

In other words, every set of more than s(d) vectors in Rd contains two vectors such
that angle between them is less than π/3. This theorem has an almost immediate
consequence for graphs with low rank adjacency matrices:

Lemma 9.2. If a graph G of rank r has n > s(r+1) nodes, than it has two nodes
i and j such that |N(i)4N(j)| < n/4.

Proof. Let ai denote the column of AG corresponding to i ∈ V , and let ui =
1−2ai. Clearly the vectors ui are ±1-vectors, which belong to an (at most) (r+1)-
dimensional subspace. Applying the kissing number bound to the vectors ui, we
get that there are two vectors ui and uj forming an angle less than π/3. For two ±1
vectors, this means that ui and uj differ in fewer than n/4 positions. The vectors
ai and aj also differ in these positions only. �

We also need a couple of simple facts about twins. Recall that they cannot be
adjacent. If we delete a node from a graph G that has a twin, then the rank of
the graph is not changed. Furthermore, no new twins are created: if a pair i, j of
remaining nodes is distinguished by some node u of G having a twin v, and if u is
deleted, then v still distinguishes i and j.

Lemma 9.3. Let G be a graph rank r. (a) If i and j (nonadjacent) nodes of G
that are twins in an induced subgraph H, but not in G, then rk(H) ≤ r−2. (b) If i
and j are adjacent nodes in G and no node of a X ⊆ V \{i, j} distinguishes i and
j, then rk(G[X]) ≤ r−1.

Proof. (a) The matrix AG must contain a column that distinguishes rows
i and j, and so it is not in the linear span of the columns in X. Adding this
column to AH increases its rank. Adding the corresponding row increases the rank
further. (b) The columns corresponding to X have the same entry in rows i and j,
but column i has different entries in these positions, and so these columns cannot
generate column i. So the rank of these columns is at most r−1, which implies
that rk(G[X]) ≤ r−1. �

Proof of Theorem 9.1. To facilitate the proof by induction on r, we set
f(r) = C2r/2−16, where the constant C > 16 is chosen so that s(r+1) ≤ f(r) for
all r. The statement we prove is that n ≤ f(r) for every twin-free graph on n nodes
and of rank r. For r = 1, 2, 3 this is easily checked. So we may suppose that r > 3.

If |N(i)4N(j)| ≥ n/4 for all pairs of nodes, then Lemma 9.2 implies that
n ≤ s(r+1) < f(r). So we may assume that there are two nodes i and j such that
|N(i)4N(j)| < n/4. The set X = V \

(
N(i)4N(j)

)
does not distinguish i and j,

and hence by Lemma 9.3, rk
(
G[X]

)
≤ r−1.

The rest of the proof is a somewhat lengthy argument combining graphs and
matrices; geometric representation has done its job. We want to find an induced
subgraph that is twin-free and lower rank, so that we can apply induction.

Let G[Z] be a largest induced subgraph of G with rk(G[Z]) ≤ r−1. Since X
induces such a subgraph, we have

(9.2) |Z| ≥ |X| > 3

4
n.



9.1. NEIGHBORHOODS, RANK AND SIZE 139

If G[Z] is twin-free, then by the induction hypothesis applied to G[Z],

n <
4

3
|Z| ≤ 4

3
f(r−1) < f(r).

So we may assume that G[Z] has twins. By Lemma 9.3, we have the stronger bound
rk(G[Z]) ≤ r−2.

Let u ∈ V \Z. By the maximality of Z, we must have rk(G[Z∪{u}]) = r, and
hence G[Z∪{u}] must be twin-free. This implies that u must distinguish every
twin pair in Z; in other words, u is connected to exactly one member of every such
pair. This in particular implies that G[Z] does not have three mutually twin nodes.
Let T be the set of nodes that are twins in G[Z] and are adjacent to u, and let T ′

be the set of twins of nodes of T . Let U = Z \(T ∪T ′).
Next consider any v ∈ V \Z different form u. We claim that it is either con-

nected to all of nodes in T and none in T ′, or the other way around. Row v of AG
is a linear combination of rows corresponding to Z and u; let, say, the coefficient of
row u in this linear combination be positive. Then for every twin pair {i, j} (where
i ∈ T and j ∈ T ′) we have aui > auj , but (by the definition of twins) awi = awj for
all w ∈ Z, and hence avi > avj . This means that v is adjacent to i, but not to j,
and so we get that v is adjacent to all nodes of T but not to any node of T ′.

Thus we have a decomposition V \Z = Y ∪Y ′, where every node of Y is con-
nected to all nodes of T but to no node of T ′, and for nodes in Y ′, the other way
around. So G has the structure in Figure 9.1.

T

�✁

Y

✂✄

Z

U

Figure 9.1. Node sets in the proof of Theorem 9.1. Dashed ar-
rows indicate twins in G[Z].

The graph G[T ∪U ] is obtained from G[Z] by deleting one member of each
twin-pair, hence it is twin-free. Since rk(G[T ∪U ]) = rk(G[Z]) ≤ r−2, we can
apply the induction hypothesis to get

(9.3) |T |+ |U | ≤ f(r−2).

If |Y ∪Y ′| ≤ 16, then

n = 2|T |+ |U |+ |Y ∪Y ′| ≤ 2f(r−2)+16 = f(r),

and we are done. So we may assume that (say) |Y ′| > 8. Since the rows in Y ′

are all different, this implies that they form a submatrix of rank at least 4. Using
that in their columns corresponding to T these rows have zeros, we see that the
matrix formed by the rows in Y ′∪T has rank at least rk(G[T ])+4. This implies
that rk(G[T ]) ≤ r−4.

If G[T ] is twin-free, then we can apply induction:

(9.4) |T | ≤ f(r−4).
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Using (9.2), (9.3) and (9.4), we get that

n <
4

3
|Z| = 4

3
(2|T |+ |U |) ≤ 4

3

(
f(r−2)+f(r−4)

)
< f(r).

So we may assume that G[T ] is not twin-free. Any twins in G[T ] remain twins
in G\U : no node in T ′ can distinguish them (because its twin does not), and no
node in Y ∪Y ′ can distinguish them, as we have seen. So G\U is not twin-free,
and hence rk(G\U) ≤ r−2 by Lemma 9.3. By the maximality of Z, we have
|V \U | ≤ |Z|. Using (9.3), this gives

n ≤ |Z|+ |U | = 2|T |+2|U | ≤ 2f(r−2) < f(r).

�

The bound in Theorem 9.1 is sharp up to the constant. (This shows that even
though the bound on the kissing number could be improved, this would not give
an improvement of the whole argument.) Let us define a sequence of graphs Gr
recursively: Let G1 = K2, and given Gr (r ≥ 2), let Gr+1 be obtained from Gr
by doubling each node (creating |V (Gr)| pairs of twins), adding a new node, and
connecting it to one member of each twin pair. It is easy to see by induction that
Gr is twin-free, |V (Gr)| = 3 ·2r−1−1, and rk(AGr ) = 2r.

As a corollary, we get that if the rank of the adjacency matrix of a simple
graph (which may have twins) is r, then its chromatic number is at most f(r). This
argument can be refined [Kotlov 2000] to prove a better upper bound of χ(G) =
O
(
r(4/3)r)

)
. It was conjectured [van Nuffelen 1976] that χ(G) ≤ r for every graph

G, but this was disproved [Alon–Seymour 1989]; the worst example known so far

[Nisan–Wigderson 1984], gives a sequence of graphs with χ(G) = Ω(2(log r)1.09...).

9.2. Regularity partitions

9.2.1. Regularity Lemmas. In order to formulate this application of geo-
metric representations, we have to include a little introduction to regularity lemmas.
The original Regularity Lemma [Szemerédi 1975],[Szemerédi 1978] has been the key
to many proofs in extremal graph theory, graph algorithms, number theory, the the-
ory of graph limits, and more; the range of its applications is so broad that we do
not attempt to describe any of them in this book. It has formulations not only in
graph theory but in analysis and information theory as well, and its applications of-
ten depend on different versions of the Lemma, which are not equivalent. Stronger
versions have been proved [Alon at al. 2000], [Tao 2006], [Lovász–Szegedy 2007].
Another version is weaker than the original but gives much better error bounds
[Frieze–Kannan 1993], and this is the version we will be dealing with in this sec-
tion.

Let G be a graph on n nodes. For two sets S, T ⊆ V , let eG(S, T ) denote the
number of edges ij ∈ E with i ∈ S and j ∈ T . We do not assume here that S and
T are disjoint; edges induced by S∩T should be counted twice. We also use this
notation in the case when G is edge-weighted, when the weights of edges connecting
S and T should be added up. (An unweighted edge can be considered as an edge
with weight 1.)

We come to an important definition of this section, introduced by
[Frieze–Kannan 1993]. We define, for two edge-weighted graphs G and H on the
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same set V of n nodes, their cut-distance by

d�(G,H) =
1

n2
max
S,T⊆V

|eG(S, T )−eH(S, T )|.

This is, of course, not the only way to define a meaningful distance between two
graphs; for example, the edit distance |E(G)4E(H)| is often used. For us the cut-
distance, which measures a certain global similarity, will be more important. Note
that the normalization guarantees that 0 ≤ d�(G,H) < 1 for any two simple graphs
G and H. It is straightforward to check that d� satisfies the triangle inequality.

Remark 9.4. One may wonder why we divide by n2, and why not by |S| |T |, which
would also guarantee that the distance of two simple graphs is at most one. It is not
hard to see that in this case the maximum would be attained when |S| = |T | = 1,
and the distance would be 0 if the two graphs are identical, and 1 otherwise.

Remark 9.5. The notion of the cut-distance can be modified to apply to graphs
that are not defined on the same node set; they may even have different number of
nodes. We don’t need these extensions in this book; see [Lovász 2012] for a detailed
discussion and applications.

Let P = {V1, . . . , Vk} be a partition of V into nonempty sets. We define the
edge-weighted graph GP on V by taking the complete graph and weighting its
edge uv by eG(Vi, Vj)/(|Vi| |Vj |) if u ∈ Vi and v ∈ Vj . The case i = j takes some
care: we then count edges twice, so eG(Vi, Vi) = 2|E(G[Vi])|, and we include the
case u = v, so GP will have loops. Informally, GP is obtained by averaging the
adjacency matrix over sets Vi×Vj .

The Regularity Lemma says, roughly speaking, that the node set of every graph
has a partition P into a “small” number of classes such that GP is “close” to G.
Figure 9.2 shows a schematic explanation of the Regularity Lemma.

Figure 9.2. Left: adjacency matrix of a graph G, where 1’s are
replaced by black squares, and 0’s, by white squares. Right: sim-
ilar representation of GP for a 3-partition P. The partition is a
regularity partition if the submatrix in (almost) every rectangle
Vi×Vj is random-like.

Lemma 9.6 (Weak Regularity Lemma). For every simple graph G and every
k ≥ 1, the node set V has a partition P into k classes such that

d�(G,GP) ≤ 4√
log k

.
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The main point here (and in subsequent related results) is that the error bound on
the right tends to 0 as k →∞, independently of the graph.

A proof of this lemma will follow from its matrix form (Lemma 9.7). We do
not require here that P be an equitable partition. It is not hard to see, however,
that this version implies that there is also a k-partition in which all partition classes
are almost equal (in the sense that each class has bn/kc or dn/ke elements), and
which satisfies the same inequality as in the lemma, just we have to double the
error bound.

9.2.2. Cut norm. It will be useful to reformulate the Regularity Lemma in
terms of matrices, and for this, we need to define norms on the space of n×n
matrices. For S, T ⊆ [n], we define the special matrix 1S×T by

(1S×T )i,j =

{
1, if i ∈ S and j ∈ T ,
0, otherwise.

This is a 0-1 matrix of rank 1. For a matrix M ∈ Rn×n and S, T ⊆ [n], we define

M(S, T ) =
∑

i∈S, j∈T
Mi,j = M ·1S×T .

Now we come to defining various norms on matrices. We need the standard
Frobenius norm:

‖M‖2 =
( n∑
i,j=1

M2
i,j

)1/2

.

The cut-norm is less standard, and is used mostly in combinatorics. It is defined
as follows:

(9.5) ‖M‖� = max
S,T⊆[n]

∣∣M ·1S×T ∣∣ = max
S,T⊆[n]

|M(S, T )|.

It is easy to verify that this is indeed a norm (most importantly, it satisfies the
triangle inequality). Applying this notation to the adjacency matrices of two graphs
G and H on the same set of n nodes, we get

d�(G,H) =
1

n2
‖AG−AH‖�.

There are many alternative ways to define the cut-norm, or norms that are
closely related. (The proofs are left to the reader as exercises.) We could define it
by

(9.6) ‖M‖� = max
{
|xTMy| : x, y ∈ [0, 1]n

}
.

If we maximize instead over all vectors in [−1, 1]n, we obtain a norm that may be
different, but only by a factor of 4:

(9.7) ‖M‖� ≤ max{|xTMy| : x, y ∈ [−1, 1]n} ≤ 4‖M‖�.

It will be useful to state the upper bound here in a form valid for all vectors
x, y ∈ Rn:

(9.8) |xTMy| ≤ 4‖M‖� |x|∞ |y|∞.
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We can also play with the sets S and T in the definition, without changing the
value too much. For example,

1

4
‖M‖� ≤ max

S⊆[n]
M(S, S) ≤ ‖M‖�,(9.9)

1

4
‖M‖� ≤ max

|S|,|T |≥n/2
M(S, T ) ≤ ‖M‖�,(9.10)

1

4
‖M‖� ≤ max

T=[n]\S
M(S, T ) ≤ ‖M‖�.(9.11)

(The last formula is the origin of the name “cut norm”, since the edges counted
form a cut in the graph.)

9.2.3. Averaging. For a partition P = {V1, . . . , Vk} of [n], vector x ∈ Rn,
and matrix M ∈ Rn×n, we define the vector xP and matrix MP ∈ Rn×n by

(xP)u =
x(Vi)

|Vi|
and (MP)u,v =

M(Vi, Vj)

|Vi| |Vj |
(u ∈ Vi, v ∈ Vj).

In words, the matrix MP is obtained by averaging the entries of M over every block
Vi×Vj (and analogously for xP). If A is the adjacency matrix of a simple graph
G, then AP is the weighted adjacency matrix of GP .

Let us say that B ∈ Rn×n is a P-matrix, if B is constant on every block Vi×Vj ,
i.e., BP = B. Then the operator M 7→ MP is the orthogonal projection of Rn×n
to the linear space of P-matrices. This operator is symmetric and idempotent:

MP ·N = M ·NP = MP ·NP , (MP)P = MP .

With respect to many matrix norms, it is also contractive:

(9.12) ‖MP‖2 ≤ ‖M‖2, and ‖MP‖� ≤ ‖M‖�.

(The latter inequality takes some work to prove, see Exercise 9.5.)

9.2.4. The Weak Regularity Lemma. Using the cut norm and this aver-
aging operator, we can re-state the Weak Regularity Lemma. In fact, we state it
in three versions, to make the proof easier to follow.

Lemma 9.7. Let M ∈ Rn×n.

(a) For every r ≥ 1 there are 2r sets S1, . . . , Sr, T1, . . . , Tr ⊆ [n] and r real
numbers ai such that ∥∥∥M− r∑

i=1

ai1
T
Si×Ti

∥∥∥
�
≤ 1√

r
‖M‖2.

(b) For every k ≥ 2 there is a partition P of [n] into k classes for which

‖M−MP‖� ≤
4√

log k
‖M‖2.

(c) For every k ≥ 2 there is a partition P of [n] into k classes, and a P-matrix
B, for which

‖M−B‖� ≤
2√

log k
‖M‖2,



144 9. ADJACENCY MATRIX AND ITS SQUARE

Lemma 9.7(a) gives a low-rank approximation of M . The important fact about
version (a) of the lemma is that the number of terms r and the error bound 1/

√
r

are polynomially related. The order of magnitude of the errors cannot be improved
(see Exercise 9.10).

Proof. We start with proving (a). Let S, T ⊆ [n] be two nonempty sets such
that ‖M‖� = |M(S, T )|. For every real number a, we have

‖M−a1S×T ‖22 = ‖M‖2 +a2‖1S×T ‖22−2aM ·1S×T
= ‖M‖2 +a2|S| |T |−2aM(S, T ),

which is minimized when a = M(S, T )/(|S| |T |), and for this choice

(9.13) ‖M−a1S×T ‖22 = ‖M‖2− 1

|S| |T |
M(S, T )2 ≤ ‖M‖22−‖M‖2�.

Repeated application of this inequality gives a sequence of matrices

Mr = M−
r∑
i=1

ai1Si×Ti ,

where

‖Mr‖22 ≤ ‖M‖22−
r−1∑
j=0

‖Mj‖2�.

Since the left side is nonnegative, there must be an index j ≤ r−1 for which

‖Mj‖2� =
∣∣∣M− j∑

i=1

ai1Si×Ti

∣∣∣2
�
≤ 1

r
‖M‖22.

Replacing the remaining coefficients aj+1, . . . , ar−1 by 0, we get the decomposition
in (a).

Next we prove (c). Consider the decomposition as in (a) with r = b(log k)/2c,
and let P be the partition into the atoms of the Boolean algebra generated by all
the sets Si and Ti. Then |P| ≤ 22r ≤ k, and the P-matrix B =

∑r
i=1 ai1Si×Ti

satisfies

‖M−B‖� ≤
1√
r
‖M‖2 ≤

2√
log k

‖M‖2.

(This last step holds for k ≥ 4; for k = 2, 3 we can just take B = 0.)

To prove (b), we use (9.12) and the fact that BP = B:

‖M−MP‖� ≤ ‖M−B‖� +‖B−MP‖� = ‖M−B‖� +‖BP−MP‖�
= ‖M−B‖� +‖(B−M)P‖� ≤ 2‖M−B‖�. �

Remark 9.8. In (a), one could require in addition that
∑
i a

2
i ≤ 4, at the cost of

increasing the error bound to (4/
√
r)‖M‖2. The trick is to use the maximizing sets

in (9.10).

Remark 9.9. The original Regularity Lemma measures the error of the approxi-
mation A ≈ AP differently. Again there are several versions, closest to ours is the
following: For a matrix M ∈ Rn×n and partition P = {V1, . . . , Vk} of [n], and for
every 1 ≤ i, j ≤ k, we choose the sets Sij ⊆ Vi and Tij ⊆ Vj maximizing the “local
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error” |(M−MP)(Sij , Tij)|. The “total error” is the sum of these, normalized as
before:

e(P) =
1

n2

k∑
i,j=1

|(M−MP)(Sij , Tij)|.

Appropriate modification of the proof above gives the following: There is a partition
P of [n] into k classes for which

e(P) = O
( 1√

log∗ k

)
.

(Here log∗ k is a very slowly decreasing function, defined as the number of times
we have to apply the log function to k to get a negative number.) This bound
is also known to be best possible up to a constant factor [Conlon–Fox 2012],
[Fox–L.M.Lovász 2014].

9.3. A-squared representation

9.3.1. Voronoi cells and regularity partitions. Now we are ready to tie
regularity partitions to geometric representations. We define the A-squared repre-
sentation of a graph G as the map i 7→ ui, where ui = A2ei is the column of A2

corresponding to node i (where A = AG is the adjacency matrix of G). Squaring
the matrix seems unnatural, but it is crucial. We define the 2-neighborhood distance
of two nodes by

d2(s, t) =
1

n3/2
|us−ut|.

This normalization guarantees that the distance of any two nodes is at most 1. We
need further notation: For a nonempty set S ⊆ V , we consider the average distance
from S:

d2(S) =
1

n

∑
i∈V

d2(i, S) =
1

n

∑
i∈V

min
j∈S

d2(i, j).

Example 9.10. To illustrate the substantial difference between the vector repre-
sentations by the columns of the adjacency matrix and by the columns of its square,
let us consider a random graph with a very simple structure: Let V = V1∪V2, where
|V1| = |V2| = n/2, and let any node in V1 be connected to any node in V2 with
probability 1/2. With high probability, the distance between any two columns of

the adjacency matrix is of the order
√
n (approximately

√
n/
√

2 for two nodes in
different classes, and

√
n/2 for two nodes in the same class). But if we square

the matrix, the distance of two columns in different classes will be approximately
n3/2/8, while for two columns in the same class it will be O(n5/4). With the nor-
malization above, the two classes will be collapsed to single points (asymptotically),
but the distance of these two points will remain constant. So the 2-neighborhood
distance reflects the structure of the graph very nicely! �

Example 9.11. Let G be obtained by selecting n random points on the d-
dimensional unit sphere Sd, and connecting two of these points x and y if
](x, y) ≤ 90◦. Then with high probability d2(x, y) ∼

√
d](x, y). So, even if

we don’t use any information except the graph structure, the 2-neighborhood dis-
tance of nodes is, up to a little perturbation tending to 0 as n→∞, is proportional
to the geometric distance of the original points on the sphere. In other words, the
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A-squared representation is the very high dimension n is almost isometric with the
d-dimensional representation we started with.

One may object that this is due to the very special construction of the graph.
However, we can modify it an connect any two points depending on their distance,
just making sure that we will have an edge density bounded away from both 0 and
1.

Another objection can be that the same conclusion would hold (with an even
simpler proof) for the 1-neighborhood distance. We can further generalize the con-
struction, by connecting two nodes randomly, where the probability of connecting
them is an arbitrary continuous function of their distance. (Decisions about con-
necting pairs of nodes must be made independently, and as before, we have to
choose this function so that we get an edge density bounded away from 0 and 1.)
In this case the 1-neighborhood distance between two nodes will be of constant
order even if the original points are close on the sphere.

This graph can be used to show that the bound in the Weak Regularity Lemma
9.6 is sharp, up to a constant factor. This will follow from Theorem 9.12(b) below,
noticing that for any subset S of k = 2d points on Sd, at least half of the surface
will be at a distance larger that 1/

√
d from S. �

The following connection between Voronoi diagrams and regularity partitions
was proved in [Lovász–Szegedy 2007] (in a somewhat weaker form).

Theorem 9.12. Let G be a simple graph, and let d2(., .) be its 2-neighborhood
distance.

(a) The Voronoi cells of a nonempty set S ⊆ V define a partition P of V such
that d�(G,GP) ≤ 2d2(S)1/2.

(b) For every partition P = {V1, . . . , Vk} we can select elements si ∈ Vi so that
S = {s1, . . . , sk} satisfies d2(S) ≤ 4d�(G,GP)1/2.

Proof. In both parts of the proof we work with linear algebra, using the
adjacency matrix A = AG. In both parts we consider a particular partition
P = {V1, . . . , Vk}. We will be interested in the “error” matrix R = A−AP , for
which ‖R‖� = n2d�(G,GP).

(a) Let S = {s1, . . . , sk}, let P = {V1, . . . , Vk} be the partition of V defined
by the Voronoi cells of S (where si ∈ Vi), and let φ(v) = st for v ∈ Vt. To bound
‖R‖�, we use (9.9):

‖R‖� = max
x,y∈{0,1}V

|xTRy|.

Let x, y be the maximizers on the right, and let x̂ = x−xP and ŷ = y−yP . The
crucial equation is

xTRy = xTAy−xTAPy = xTAy−xTPAyP = xTAŷ+ x̂TAyP ,

which implies that

(9.14) |xTRy| ≤ |x| |Aŷ|+ |yP | |Ax̂| ≤ n1/2
(
|Ax̂|+ |Aŷ|

)
.

To connect with the A-squared representation u, we use that

A2ŷ =
∑
v

ŷvuv =
∑
v

ŷv(uv−uφ(v))
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(since
∑
v∈Vt

ŷv = 0 for every partition class Vi). The fact that we have a Voronoi

partition means that |uv−uφ(v)| = n3/2d2(v, S) for every node v. Hence

|A2ŷ| ≤
∑
v

|ŷv||uv−uφ(v)| ≤
∑
v

|uv−uφ(v)| = n3/2
∑
v

d2(v, S) = n5/2d2(S),

and

|Aŷ|2 = ŷTA2ŷ ≤ |ŷ| |A2ŷ| ≤ n1/2n5/2d2(S) = n3d2(S).

We get the same upper bound for |Ax̂|. Combining with (9.14), we get

d�(G,GP) =
1

n2
|xTRy| ≤ 1

n3/2
(|Ax̂|+ |Aŷ|) ≤ 2d2(S)1/2.

(b) Let i, j be two nodes in the same partition class of P, then APei = APej ,
and hence A(ei−ej) = R(ei−ej). Thus

|ui−uj | = |A2ei−A2ej)| = |AR(ei−ej)| ≤ |ARei|+ |ARej |.

For every set Vt ∈ P, choose a point st ∈ Vt for which |ARej | is minimized over
j ∈ Vt by j = st, let S = {s1, . . . , sk}, and let φ(i) = st for i ∈ Vt. Then

|ui−uφ(i)| ≤ |ARei|+ |AReφ(i)| ≤ 2|ARei|,

and using the Cauchy–Schwarz Inequality,

d2(S) =
1

n

∑
i∈V

d2(i, S) ≤ 1

n

∑
i∈V

d2(i, φ(i)) =
1

n5/2

∑
i∈V
|ui−uφ(i)|(9.15)

≤ 2

n5/2

∑
i∈V
|ARei| ≤

2

n2

(∑
i∈V
|ARei|2

)1/2

.

Here by (9.8),∑
i∈V
|ARei|2 = tr(RAAR) = tr(ARRA) =

∑
i∈V

(eTiA)R(RAei)

≤ 4‖R‖�
∑
i∈V
|Aei|∞|RAei|∞ ≤ 4n2‖R‖�,

and so by (9.15),

d2(S) ≤ 4

n
‖R‖1/2� = 4d�(G,GP)1/2. �

Combining Theorem 9.12 with the Weak Regularity Lemma, it follows that
every graph has an “average representative set” in the following sense.

Corollary 9.13. For every simple graph G and every k ≥ 1, there is a set S ⊆ V
of k nodes such that d2(S) ≤ 8/(log k)1/4.

Remark 9.14. In [Lovász 2012], a version of Theorem 9.12 was formulated using
the `1-distance between the representing points rather than the `2 (Euclidean)
distance. This gives a sharper result in the sense that we don’t have to take the
square root in (b); as a consequence, we get 4/(log k)1/2 instead of 8/(log k)1/4 in
Corollary 9.13. On the other hand, the Voronoi diagram is much nicer, and more
efficiently computable, for the Euclidean distance (recall Figure 2.10).
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Remark 9.15. Theorem 9.12 suggests to define the dimension of a family G of
graphs as the infimum of real numbers d > 0 for which the following holds: for
every ε > 0 and G ∈ G the node set of G can be partitioned into a set of at most
ε|V (G)| nodes and into at most ε−d sets of d2-diameter at most ε. (This number d
can be infinite.) In the cases when the graphs have a natural dimensionality, this
dimension tends to give the right value (recall Example 9.11).

Remark 9.16. It would be tempting to reverse the above treatment: prove Corol-
lary 9.13 by some more direct geometric argument, and then use Theorem 9.12 to
prove the (weak) Regularity Lemma. However, a direct proof of Corollary 9.13 has
been elusive so far.

Remark 9.17. Does Corollary 9.13 remain valid if we want to find a set of k nodes
such that the maximum distance from the set, rather than the average distance,
can be bounded uniformly by a function of k tending to zero as k → ∞? Alon
(unpublished) proved that the answer is in the affirmative, if we consider the `1
distance instead of the Euclidean distance in the A-square representation, and allow
a slightly weaker bound of O

(
(log log k)/

√
log k

)
for the distance from the k-set

(see [Lovász 2012] for a proof). It is not known at this time whether an analogous
statement remains true for the Euclidean distance. Again, a geometric proof would
be very desirable.

9.3.2. Algorithms for nets and regularity partitions. The results above
can be applied to the computation of (weak) regularity partitions in the property
testing model for dense graphs. This topic is treated in detail in [Lovász 2012], so
we only sketch the model and the application.

We need to survey some notions and elementary arguments about packing and
covering. Let ε > 0. A set of nodes S ⊆ V is an ε-cover, if d2(v, S) ≤ ε for every
point v ∈ V . (Here, as usual, d2(v, S) = mins∈S d2(s, v).) We say that S is an
ε-packing, if d2(u, v) ≥ ε for every u, v ∈ S. An ε-net is a set that is both an
ε-packing and an ε-cover. It is clear that a maximal ε-packing must be an ε-cover
(and so, and ε-net). It is clear that if S is an ε-cover, then the Voronoi cells of S
have diameter at most 2ε.

An average ε-cover is a set S ⊆ V such that
∑
v∈V d2(v, S) ≤ εn. An average

ε-net is an average (2ε)-cover that is also an ε-packing. (It is useful to allow this
relaxation by a factor of 2 here.) For every average ε-cover, a maximal subset that
is an ε-packing is an average ε-net. Corollary 9.13 implies that every graph has an

average ε-net with K(ε) = 2O(1/ε2) elements.
We will need the following simple lemma.

Lemma 9.18. Let T, S ⊆ V . Then there is a subset S′ ⊆ S such that |S′| ≤ |T |
and d(S′) ≤ d(S)+2d(T ).

Proof. For every point in T choose a nearest point of S, and let S′ be the
set of points chosen this way. Clearly |S′| ≤ |T |. For every x ∈ V , let y ∈ S
and z ∈ T be the points nearest to x. Then d2(z, S) ≤ d2(z, y) ≤ d2(x, z)+
d2(x, y) = d2(x, T )+d2(x, S), and hence, by its definition, S′ contains a point y′

with d2(z, y′) ≤ d2(x, T )+d2(x, S). Hence

d2(x, S′) ≤ d2(x, y′) ≤ d2(x, z)+d2(z, y′) ≤ 2d2(x, T )+d2(x, S).

Averaging over x, the lemma follows. �
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Now we turn to algorithms. We assume, as before, that we can generate inde-
pendent, uniformly distributed random points from V . The 2-neighborhood metric

d2(i, j)2 =
1

n2
|A2(ei−ej)| =

1

n3

∑
k

|(A2)ik−(A2)jk|2

=
1

n3

∑
k

∣∣∣∑
r

(Air−Ajr)Ark
∣∣∣2

(where A is the adjacency matrix of the graph G) can be written as

d2(i, j) = Ek
∣∣Er((Air−Ajr)Ark)∣∣2,

where k and r are chosen randomly and uniformly from V . This shows that we
can approximately compute d2(i, j) by random sampling from V . (We suppress the
analysis using Laws of Large Numbers and concentration inequalities.)

How to construct ε-nets? If V is not too large, then we can go through the nodes
in any order, and build up the ε-net S, by adding a new node v to S if d2(v, S) ≥ ε.
In other words, S is a greedily selected maximal ε-packing, and therefore an ε-net.

Average ε-nets can be constructed by a simple randomized algorithm even if V
is large. We build up S randomly: at each step we generate a new random node,
and add it to S if its distance from S is at least ε (otherwise, we throw it away).
For some pre-specified A ≥ 1, we stop if for A/ε consecutive steps no new point
has been added to S. The set S formed this way is trivially an ε-packing, but not
necessarily maximal. However, it is likely to be an average (2ε)-cover. Indeed, let t
be the number of points x with d2(x, S) > ε. These points are at distance at most
1 from S, and hence ∑

x∈V
d2(x, S) ≤ (n− t)ε+ t < nε+ t.

So if S is not an average (2ε)-cover, then t > εn. The probability that we have not
hit this set for A/ε steps is (

1− t

n

)A/ε
< e−

tA
nε < e−A.

The time cost of this algorithm is at most K(ε)A/ε.
We can modify this procedure to find an almost optimal average O(ε)-cover.

Consider the smallest average ε-cover T (we do not know which points belong to
T , of course). Suppose that we can construct a (possibly much larger) average 2ε-
cover S by the procedure described above. By Lemma 9.18, S contains an average
(3ε)-cover S′ of size |S′| ≤ |T |.

How to find this subset of S? We can try all |T |-subsets of S. This clearly
inefficient last step is nevertheless useful: In 2O(K(ε)) (randomized) time, we can
construct a set that is an average (3ε)-cover with probability 1−ε. (The point is
that the time bound depends only on ε, not on the size of V .)

Once this set S is computed, we can consider the task of computing a weak
regularity partition solved: by Theorem 9.12, we can take the Voronoi cells of the
set S, with respect to the metric d, as the classes of this partition. This partition
P satisfies d�(G,GP) ≤ 8ε1/2.

Note, however, that “computing the partition P” does not mean that we com-
pute a list of all nodes, specifying the partition class it belongs to: we assume that
the graph is very large, so such a list would be too long. What we want is a way to
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determine about any given node which partition class it belongs to, in other words,
which element of S is closest to it. Since the metric d is computable by sampling,
this can be done in the property testing model. (Of course, using sampling we can
only compute an approximation of the metric d, with high probability. We do not
discuss the issue of estimating the errors here.)

Remark 9.19. The considerations in Section 9.3.2 work in general for every metric,
assuming that we have an upper bound on the size of an ε-packing.

Exercise 9.1. Find all twin-free simple graphs with rank at most 4.

Exercise 9.2. Show that for every even r ≥ 2, there is a twin-free simple graph
on 2r−1 nodes whose adjacency matrix has rank r over GF (2).

Exercise 9.3. Prove that every graph on n nodes contains two nodes i and j
with |N(i)4N(j)| < n/2. Show that this bound is best possible.

Exercise 9.4. Let G1 and G2 be two independently generated random graphs on
the same set V of nodes, obtained by connecting any two elements of V with prob-
ability 1/2, independently for different pairs. Prove that with high probability,
d�(G1, G2) = o(1).

Exercise 9.5. Prove (9.12). Prove that similar inequality holds for any matrix
norm that is invariant under reordering of the rows and columns.

Exercise 9.6. Let M be a real n×n matrix, and define ‖M‖1 =
∑n
i,j=1 |Mij |.

(a) Prove that ‖M‖1 ≤ 2n‖M‖�. (b) Prove that ‖M‖1 ≤ 2
√
n‖M‖�.

Exercise 9.7. If a metric space has an ε-cover with N elements, then no (2ε)-
packing can have more than N elements.

Exercise 9.8. Every ε-cover of a metric space has a subset that is both an ε-
packing and a (2ε)-cover.

Exercise 9.9. Let (V, d) be a finite metric space and let T and S be ε-covers.
Then there is a subset S′ ⊆ S such that |S′| ≤ |T | and S′ is a (4ε)-cover.

Exercise 9.10. Let Sd denote the d-dimensional unit sphere. Let V be a random
subset of Sd with |V | = n, where we let n→∞ in the statements below. Connect
two points of V if their spherical distance is larger than π/2, to get a graph G. (a)
Prove that with high probability, (A2

G)uv ∼ ](u, v)/2π for all u, v ∈ V . (b) Prove

that with high probability, d2(u, v) = Ω(](u, v)/
√
d) for all u, v ∈ V . (c) Prove

that with high probability, every set S ⊆ V with d(S) ≤ 1/(8
√
d) has at least

2d elements. (d) Prove that with high probability, every partition P for which

d�(G,GP) ≤ 1/(64
√
d) has at least 2d classes.

Exercise 9.11. Describe how to solve the maximum cut problem in the property
testing model in the following sense: There is a randomized algorithm A which,
given a graph G, an error bound ε > 0, and a node v ∈ V , returns LEFT or
RIGHT. For a fixed G and ε, the partition into nodes found on the LEFT and
nodes found on the RIGHT determine a cut containing at least (1−ε) times as
many edges as the maximum cut. All this happens with probability 1−ε, and the
computation time is bounded by a function of ε.



CHAPTER 10

Orthogonal Representations: Dimension

We have used orthogonal representations, (labelings of the nodes by vectors in
which nonadjacent nodes are labeled by orthogonal vectors of graphs) in Section
1.4 of the Introduction. In this and the next chapter we study them from two
different aspects. One can be concerned with the smallest dimension in which
such a representation exists, or with representations that are “economical” in some
other sense. It turns out that orthogonal representations are related to a number
of fundamental properties of graphs, like connectivity, tree-width, stability number
and chromatic number.

Perhaps the most natural way to be “economic” in constructing an orthogonal
representation is to minimize the dimension, which will be the main topic of this
chapter. We can say only a little about the minimum dimension of orthogonal
representations overall, but we get interesting results if we impose “nondegener-
acy” conditions. We will study three nondegeneracy conditions: general position,
faithfulness, and transversality.

10.1. Basics

An orthogonal representation of a simple graph G in Rd assigns to each i ∈
V a vector ui ∈ Rd such that uT

iuj = 0 whenever ij ∈ E. An orthonormal
representation is an orthogonal representation in which all the representing vectors
have unit length. Clearly we can always scale the nonzero vectors in an orthogonal
representation to unit length, and zero vectors (which are orthogonal to everything)
can be either excluded or ignored in most cases.

There is something arbitrary in requiring that nonadjacent nodes be represented
by orthogonal vectors; why not adjacent nodes? We use here the more standard
convention, but sometimes we need to talk about an orthogonal representation of
the complement, which we also call a dual orthogonal representation.

Note that we did not insist that adjacent nodes are mapped onto nonorthogonal
vectors. If this condition also holds, then we call the orthogonal representation
faithful.

Example 10.1. For d = 1, the vector labels are just real numbers ui, and the
constraints uiuj = 0 (ij ∈ E) mean that no two nodes labeled by nonzero numbers
are adjacent; in other words, the support of u is a stable set of nodes. Scaling the
nonzero numbers to 1, we obtain incidence vectors of stable sets. (The connection
between stable sets and orthonormal representations in higher dimension will be
the central topic of the next chapter.)

Since very simple problems about stable sets are NP-hard (for example, their
maximum size), this example should warn us that orthogonal representations can
be very complex. �

151
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Example 10.2. Every graph has a trivial orthonormal representation in RV , in
which node i is represented by the standard basis vector ei. This representation
is not faithful unless the graph has no edges. However, it is easy to perturb this
representation to make it faithful. Of course, we are interested in “nontrivial”
orthogonal representations, which are more “economical” than this trivial one. �

Example 10.3. Every graph G has a faithful orthogonal representation in RE ,
in which we label a node by the indicator vector of the set of edges incident with
it. It is perhaps natural to expect that this simple representation will be rather
“uneconomical” for most purposes. �

Example 10.4. Figure 10.1 below shows a simple orthogonal representation in 2
dimensions of the graph obtained by adding a diagonal to the pentagon. �

a 

d 

e 

b 

c 

c,d 

a,b,e 

0 

Figure 10.1. An (almost) trivial orthogonal representation

Example 10.5. The previous example can be generalized. In an orthogonal rep-
resentation, we can label a set of nodes with the same nonzero vector if and only if
these nodes form a clique. Let k = χ(G) (the chromatic number of the complement
of G), then there is a family {B1, . . . , Bk} of disjoint complete subgraphs covering
all the nodes. Mapping every node of Bi to ei (i = 1, . . . , k) is an orthonormal
representation. �

Example 10.6. In the introduction we have seen an orthogonal representation with
a more interesting geometric content. The previous example gives an orthogonal
representation of C5 in 3-space (Figure 10.2, left). The “umbrella” representation
defined in the introduction gives another orthogonal representation of the graph C5

in 3-space. �

a 

b 

c d 

e a 

b 

c 
d 

e 

a 

b,d 

c,e 

Figure 10.2. The graph C5 and two orthonormal representations
of it.
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Example 10.7. Let L be the Laplacian of a graph G, and let ui (i ∈ V ) be the
columns of the matrix L1/2. Then uT

iuj = Lij , and hence u is a faithful orthogonal
representation of G. �

10.2. Minimum dimension of orthonormal representations

Our first topic is to construct orthogonal representations in a dimension as low
as possible. Of course, we can represent every node by the zero vector, to get an
orthogonal representation in dimension 0. So we come to a very weak nondegeneracy
assumption: we exclude zero vectors. Nonzero vectors can be normalized to unit
vectors, so in other words, we want to study the minimum dimension in which a
given graph G has an orthonormal representation. It is trivial that this dimension
is at least α(G), since we have to use at least α(G) mutually orthogonal vector
labels. The construction in Example 10.5 shows that this minimum dimension is
at most χ(G).

The minimum dimension of an orthonormal representation is (loosely) tied to
the chromatic number of the complement. Let us consider the (infinite) graph
Hd, whose nodes are all unit vectors in Rd, two of them being adjacent if and
only if the vectors are orthogonal. The chromatic number of this graph is not
known precisely, but (for large d) rather good bounds follow from the results
of [Larman–Rogers 1972] (upper bound) and [Frankl–Wilson 1981], improved by
[Raigorodsky 2012] . Not stating the most precise bounds, the following will suffice
for us:

(10.1) 1.2d ≤ χ(Hd) ≤ 4d.

Using this, it will be easy to prove the following.

Proposition 10.8. The minimum dimension d in which a graph G has an or-
thonormal representation satisfies

1

2
logχ(G) ≤ d ≤ χ(G).

Proof. We have already shown the upper bound. On the other hand, any
orthonormal representation of G in Rd gives a homomorphism G→ Hd, and hence

χ(G) ≤ χ(Hd) ≤ 4d,

proving the lower bound in the proposition. �

The bounds above are essentially tight. The theorem of [Erdős–de Bruijn 1951]
implies that Hd has a finite subgraph H with χ(H) = χ(Hd) ≥ 1.2d, showing that
the lower bound is tight up to a constant factor. The graph with d nodes and no
edges shows the tightness of the upper bound.

Stated in a different language, [Rosenfeld 1991] proved that no triangle-free
graph with n nodes can have an orthonormal representation in dimension less than
n/2 (this is clearly tight, for example, for a complete bipartite graph; see Exercise
10.3). The case of general clique number was considered in [Füredi–Stanley 1992]
and [Alon–Szegedy 1999], but the upper and lower bounds are rather far apart.
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10.3. General position and connectivity

The first nontrivial nondegeneracy condition we study is general position: we
assume that any d of the representing vectors in Rd are linearly independent. This
implies that neither one of them is the zero vector. Another way of expressing this
property is that every subset of the vectors is either linearly independent or spans
the whole space.

The main result to be presented in this section [Lovász–Saks–Schrijver 1989]
finds an exact condition for this type of geometric representability.

Theorem 10.9. A graph G has an orthogonal representation in Rd in general
position if and only if G is (n−d)-connected.

It is useful to remark that a graph is (n−d)-connected if and only if its comple-
ment does not contain a complete bipartite graph with more than d nodes (where
for a complete bipartite graph we always assume that its bipartition classes are
nonempty). So we could formulate this theorem as follows: A graph has a dual or-
thonormal representation in general position in Rd if and only if it does not contain
any complete bipartite subgraph with d+1 nodes.

The condition that the given set of representing vectors is in general position is
not easy to check (it is NP-hard). A weaker, but very useful condition will be that
the vectors representing the nodes nonadjacent to any node are linearly indepen-
dent. We say that such a representation is in locally general position. This condition
implies that every node is represented by a nonzero vector unless it is connected to
all the other nodes. In this case there is no condition on the representing vector,
so we may assume that all vectors are nonzero (equivalently, unit vectors).

Theorem 10.9 will be proved in the following slightly more general form:

Theorem 10.10. For every graph G, the following conditions are equivalent:

(i) G has an orthogonal representation in Rd in general position;

(ii) G has an orthogonal representation in Rd in locally general position;

(iii) G is (n−d)-connected.

Two steps of the proof are easy. Consider an orthogonal representation in
general position, then the vectors representing the non-neighbors of a node v cannot
span the whole space (since they are all orthogonal to the vector label of v), so
they are linearly independent. Thus (i)⇒(ii). To illustrate the connection between
connectivity and orthogonal representations, we prove that (ii)⇒(iii). Let V0 be a
cutset of nodes of G, then V = V0∪V1∪V2, where V1, V2 6= ∅, and no edge connects
V1 and V2. This implies that the vectors representing V1 are linearly independent,
and similarly, the vectors representing V2 are linearly independent. Since the vectors
representing V1 and V2 are mutually orthogonal, all vectors representing V1∪V2 are
linearly independent. Hence d ≥ |V1∪V2| = n−|V0|, and so |V0| ≥ n−d (Figure
10.3).

The difficult part of the proof will be (iii)⇒(i): this requires the construction
of a general position orthogonal representation for (n−d)-connected graphs. We
describe and analyze the algorithm constructing the representation. As a matter
of fact, to describe the construction is quite easy, the difficulty lies in the proof of
its validity.
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V
0 

V
1 V

2 

V
1 

V
2 

Figure 10.3. Locally general position orthogonal representation
in low dimension implies high connectivity.

10.3.1. G-orthogonalization. The following procedure can be viewed as an
extension of the Gram-Schmidt orthogonalization algorithm. Let G be any simple
graph, where V = [n], and let u : V → Rd be any vector labeling. Let us choose
vectors f1, f2, . . . consecutively as follows. Let f1 = u1. Supposing that the vectors
fi (i < j) are already chosen, we define fj as the orthogonal projection of uj onto

the subspace Lj = lin{fi : i < j, ij ∈ E}⊥. The sequence (f1, . . . , fn) is a vector
labeling of G, which we call the G-orthogonalization of the vector labeling u. It is
trivial that f is an orthogonal representation of G. If E = ∅, then (f1, . . . , fn) is just
the Gram–Schmidt orthogonalization (u1, . . . ,un). It follows by straightforward
induction on j that

lin{u1, . . . ,uj} = lin{f1, . . . , fj}
for every j ∈ [n].

It is important to note that theG-orthogonalization of a vector labeling depends
on the ordering of V . In this section we will be concerned with G-orthogonalizations
obtained through different orderings of a fixed graph G. If σ : V → [n] defines
an ordering of the nodes and u : V → Rd is a vector labeling, then we denote its
G-orthogonalization by fσ (we omit σ if the ordering of the nodes is understood).

From now on, we consider a random vector labeling u: by this we mean that
the vectors ui are random vectors whose entries are chosen independently from the
standard Gaussian distribution. Note that the length of the vector ui influences
the vector fi only, and only its length; so we could replace the (multidimensional)
standard Gaussian distribution of ui by any rotationally symmetric distribution in
the lemmas below (for example, by the uniform distribution on Sd−1).

Lemma 10.11. Let G be a graph in which every node has degree at least n−d,
and let u : V → Rd be a random vector labeling. Then the vectors in the G-
orthogonalization of u (with respect to any ordering of the nodes) are almost surely
nonzero.

Proof. For any j, there are at most d−1 vectors fi (i < j, ij /∈ E), hence they
do not span Rd, and hence almost surely uj is linearly independent of them, and
then its projection onto Lj is nonzero. �

The main fact we want to prove is the following (which implies Theorem 10.10
immediately).

Lemma 10.12. Let G be an (n−d)-connected graph, and let u : V → Rd be
a random vector labeling. Then the vectors in the G-orthogonalization of u (with
respect to any ordering of the nodes) are almost surely in general position.
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To motivate our approach to the proof, let us consider a simple example.

Example 10.13. Let V = {a, b, c, d} and E = {ac, bd}. Consider a random vector
labeling u in R3 and compute its G-orthogonalization f , associated with the given
ordering. Since every node has degree 1, the vectors fi are almost surely nonzero.
We have fa = ua, fb ∈ f⊥a , and fc ∈ f⊥b ; almost surely, fc will not be parallel to
fa, so together they span the plane f⊥b . This means that fd, which is orthogonal to
both fa and fc, must be parallel to fb, no matter what ud is.

Now suppose that we reverse the order of the nodes. Let f ′d, f
′
c, f
′
b, f
′
a be the

vectors obtained by the G-orthogonalization in this order. Almost surely f ′d will not
be parallel to f ′b, but f ′c will be parallel with f ′a. So not only are the two distributions
different, but a particular event, namely fb‖fd, occurs with probability 0 in one and
with probability 1 in the other.

Let us modify this example by connecting b and c by an edge. Processing the
vectors in the order (a, b, c, d) again, the vectors fa = ua and fb will be orthogonal
again. No condition on fc, so almost surely fc = uc will be linearly independent
of fa and fb, but not orthogonal to either one of them. The direction of fd is
still determined, but now it will not be parallel to fb; in fact, depending on fc, it
can have any direction orthogonal to fa. Doing this in the reverse order, we get
vectors f ′d, f

′
c, f
′
b, f
′
a that have similar properties. The distributions of (fd, fc, fb, fa)

and (f ′d, f
′
c, f
′
b, f
′
a) are still different, but any event that occurs with probability 0 in

one will also occur with probability 0 in the other (this is not quite obvious). �

This example motivates the following considerations. As noted, the distribution
of the G-orthogonalization may depend on the ordering of the nodes; the key to the
proof will be that this dependence is not too strong. To define what this means,
consider two random variables X and Y with values in RM . We say that these are
mutually absolutely continuous, if for every Borel set B,

P(X ∈ B) = 0 ⇔ P(Y ∈ B) = 0.

Informally, if a “reasonable” property of X almost never holds (for example, its
coordinates almost surely do not satisfy an algebraic equation), then this is also
true for Y , and vice versa.

We will repeatedly use the following easy property of being mutually absolutely
continuous.

Lemma 10.14. Consider two random variables, each of which consist of two com-
ponents: X = (U, V ) and X ′ = (U ′, V ′), where U,U ′ ∈ RM and V, V ′ ∈ RN .
Assume that U and U ′ are mutually absolutely continuous, and for every Borel set
A ∈ RM with P(U ∈ A) > 0, the random variables V |A and V ′|A are mutually
absolutely continuous. Then X and Y are mutually absolutely continuous. �

The main lemma (which will be used later as well) is the following.

Lemma 10.15 (Main Lemma). Let G be an (n−d)-connected graph, and let
u : V → Rd be a random vector labeling. Then for any two orderings σ and τ of
V , the random variables fσ and fτ are mutually absolutely continuous.

This implies Lemma 10.12, since the first d vectors in the G-orthogonalization
of a random vector labeling are almost surely in general position, and we can start
the ordering with any d-tuple.
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Proof. It suffices to prove this lemma in the case when τ is the ordering
obtained from σ by swapping the nodes in positions j and j+1 (1 ≤ j ≤ n−1).
Let us label the nodes so that σ = (1, 2, . . . , n).

Clearly fσi = fτi for i < j. The main part of the proof is to show that the
distributions of (fσ1 , . . . , f

σ
j+1) and (fτ1 , . . . , f

τ
j+1) are mutually absolutely continuous.

We prove this by induction on j, distinguishing several cases.

Case 1. j and j+1 are adjacent in G. In this case the vector fj+1 does not
depend on uj and vice versa, so fσj = fτj and fσj+1 = fτj+1.

Case 2. j and j+1 are not adjacent, but they are connected by a path that
lies entirely in {1, . . . , j, j+1}. Let P be a shortest such path and let t be its length
(number of edges), so 2 ≤ t ≤ j. We argue by induction on t (and on j). Let i be
any internal node of P . We swap j and j+1 by the following steps (Figure 10.4):

(1) Interchange i and j, by several swaps of consecutive elements among the
first j.

(2) Swap i and j+1.

(3) Interchange j+1 and j, by several swaps of consecutive elements among
the first j.

(4) Swap j and i.

(5) Interchange j+1 and i, by several swaps of consecutive elements among the
first j.

j j+1 i 

i j+1 j 

j+1 i j 

j i j+1 

i j j+1 

j+1 j i 

Figure 10.4. Interchanging j and j+1.

In each step, the new and the previous distributions of the G-orthogonalized
vectors are mutually absolutely continuous: In steps (1), (3) and (5) this is so
because the swaps take place among the first j nodes, and we can invoke induction
on j; in steps (2) and (4), because the nodes swapped are at a smaller distance
than t in the graph distance, and we can invoke induction on t.

Case 3. There is no path connecting j to j+1 within {1, . . . , j+1}. This case
is more tedious but not particularly deep. It suffices to show that the distributions
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of the pairs of vectors (fσj , f
σ
j+1) and (fτj , f

τ
j+1), conditioned on the previous vectors

u1, . . . ,uj−1, are mutually absolutely continuous. The remaining vectors fσk and fτk
(k > j+1) are generated in the same way from these two sequences, and hence the
distributions of fσ and fτ are mutually absolutely continuous.

Clearly V \{1, . . . , j+1} is a cutset, whence by our hypothesis on the connectiv-
ity of G it follows that n−j−1 ≥ n−d and so j ≤ d−1. Let B = lin{u1, . . . ,uj−1}
and C = B⊥, then t = dim(C) = d−dim(B) ≥ d−(j−1) ≥ 2.

The random vector uj can be decomposed as uj = bj+cj , where bj and cj are
random Gaussian vectors in B and C, respectively, and bj and cj are independent
as random variables. The subspace which is orthogonal to all previous nonneighbors

of j (in the ordering σ) is Lj =
(
N
σ
(j)
)⊥

. Thus C ⊆ Lj . Let b′j be the orthogonal
projection of bj onto Lj . Since bj is orthogonal to C, so is b′j , thus b′j ∈ B.

We define Lj+1 similarly for the node j+1 and ordering τ , along with the
decomposition uj+1 = bj+1 +cj+1, and the orthogonal projection b′j+1 of bj+1

onto L.
The following observation will be important:

(10.2) b′j ⊥ b′j+1.

Here we have to use that there is no path in J connecting j and j+1. This
implies that the set {1, . . . , j−1} has a partition W ′∪W ′′ so that Nσ(j) ⊆ W ′,
Nτ (j+1) ⊆W ′′, and there is no edge between W ′ and W ′′. Let B′ = lin(W ′) and
B′′ = lin(W ′′), then B′ ⊥ B′′, and Lj ⊥ B′′, which implies that b′j ∈ B′. Similarly,
b′j+1 ∈ B′′, which implies (10.2).

To get fσj , we have to project uj onto Lj ; using that C ⊆ Lj , the component
of uj in C remains unchanged, and this projection can be expressed as

(10.3) fσj = b′j+cj

Similarly, we have

(10.4) fτj+1 = b′j+1 +cj+1.

To describe the other two orthogonalized vectors, notice that the only difference
between fτj+1 and fσj+1 is that we have to make fσj+1 orthogonal to fσj as well. Since
the vectors b′j and b′j+1 are already orthogonal to each other, as well as to all
vectors in C, this simply means that we have to modify (10.4) by replacing cj+1

by its projection c′j+1 onto the orthogonal complement of cj . So we can write

(10.5) fσj+1 = b′j+1 +c′j+1.

Similarly

(10.6) fτj = b′j+c′j ,

where c′j is the projection of cj onto the orthogonal complement of cj+1.
We can generate these vectors as follows. We condition on the vectors

u1, . . . ,uj−1, determining the subspaces B and C. Then we generate indepen-
dent Gaussian vectors bj ,bj+1 ∈ B, determining the vectors b′j and b′j+1. Finally,
we generate two independent Gaussian vectors cj , cj+1 ∈ C. Both pairs of vec-
tors (cj , c

′
j+1) and (c′j , cj+1) belong to the manifold {(x,y) : x,y ∈ Rd, x ⊥ y},

and they have positive density functions, which implies that they are mutually
absolutely continuous. Hence (fσj , f

σ
j+1) and (fτj , f

τ
j+1) are mutually absolutely con-

tinuous.
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This completes the proof of Lemma 10.15 and of Theorem 10.10. �

10.4. Faithfulness

It is probably difficult to decide whether a given graph has a faithful orthogonal
representation in a given dimension. In other words, we do not know how to
determine the minimum dimension of a faithful orthogonal representation. What
we can do is to give almost-trivial upper and lower bounds, and—as an application
of the results in the previous section—a nontrivial upper bound.

Let us start with some examples.

Example 10.16. It is easy to construct a faithful orthogonal representation in
dimension n−1 of the path Pn with n nodes: we label the nodes in order by e1, e1 +
e2, . . . , en−2 +en−1, en−1. The path Pn has no faithful orthogonal representation in
lower dimension. Indeed, in any faithful orthogonal representation (vi : i ∈ V (Pn),
for every 1 ≤ k ≤ n−1, the vector vk+1 is orthogonal to v1, . . . ,vk−1, but not
orthogonal to vk, which implies that vk is linearly independent of v1, . . . ,vk−1.
Hence the vectors v1, . . . ,vn−1 are linearly independent, and so the ambient space
must have dimension at least n−1. �

This example motivates the following upper and lower bounds on the dimension
of a faithful orthogonal representation. We have constructed orthogonal represen-
tations from cliques covering the nodes of a graph (Example 10.5). These repre-
sentations are far from being faithful in general. However, using a family of cliques
covering all edges, we can construct a faithful representation.

Proposition 10.17. If the edges of a graph G can be covered by k cliques, then it
has a faithful orthogonal representation in Rk.

Proof. Let {B1, . . . , Bk} be any family of complete subgraphs covering all
edges of a graph G. We construct the vector labeling u in Rk, defined by (ui)j =
1(i ∈ Bj). Then u is a faithful orthogonal representation of G: if i and j are
adjacent nodes, then they are contained in one of the cliques Bi, and hence uT

iuj >
0; if they are nonadjacent, then the supports of ui and uj are disjoint, and so
uT
iuj = 0. �

It is trivial that α(G) is a lower bound on the dimension of any orthogonal
representation by nonzero vectors (faithful or not). To strengthen this bound in
the case of faithful representations, we say that a subset S ⊆ V is almost stable,
if for every connected subgraph H of G[S] with at least one edge there is a node
j ∈ V \V (H) that is adjacent to exactly one node in V (H). (The node j may or
may not belong to S.) It is trivial that every stable set is almost stable.

Proposition 10.18. The dimension of any faithful orthogonal representation of a
graph G is at least as large as its largest almost stable set.

Proof. Let v be a faithful orthogonal representation of G in dimension d, and
let S be an almost stable set. We prove by induction on |S| that the vectors in v(S)
are linearly independent. If S is a stable subset of V , then this is trivial. Else, let
H be a connected component of G[S] with at least one edge, and let j /∈ V (H) be a
node adjacent to a unique node i ∈ V (H). The set S′ = S \ i is almost stable, and
hence the vectors in v(S′) are linearly independent by the induction hypothesis.
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Next, observe that the vectors v(V (H)\ i) cannot span vi; this follows from
the fact that vj is orthogonal to each of these vectors, but not to vi. Since the
vectors vk with k ∈ S \V (H) are all orthogonal to every vector vk with k ∈ V (H),
it follows that S′ cannot span vi. This proves that v(S) = v(S′)∪{vi} is a linearly
independent set of vectors. �

From the results in Section 10.3.1, it is easy to derive an upper bound on the
minimum dimension of faithful orthogonal representations.

Proposition 10.19. Every (n−d)-connected graph on n nodes has a faithful or-
thogonal representation in Rd.

Proof. It suffices to show that in a G-orthogonalized random representation,
the probability that two adjacent nodes are represented by orthogonal vectors is
zero. By the Lemma 10.15, it suffices to prove this for the G-orthogonalization
based on an ordering starting with these two nodes. But then the assertion is
obvious. �

Using that a graph with minimum degree D cannot contain a complete bipartite
graph with more than 2D nodes, Proposition 10.19 implies the following bound.

Corollary 10.20. If the maximum degree of a graph G is D, then G has a faithful
dual orthogonal representation in 2D dimensions.

This was proved in [Maehara–Rödl 1990]. They conjecture that the bound
on the dimension can be improved to D+1. Proposition 10.19 shows that the
conjecture is true if we strengthen its assumption by requiring that G is (n−D−1)-
connected.

We conclude this section with two examples illustrating the use (and insuffi-
ciency) of the upper and lower bounds above.

Figure 10.5. The graph V8 and the triangular grid ∆6.

Example 10.21. Let V8 denote the graph obtained from the cycle C8 by adding
its longest diagonals (Figure 10.5, left). This graph is 3-connected, and hence by
Proposition 10.19, it has a faithful orthogonal representation in R5. It does not
have a faithful orthogonal representation in R4 [van der Holst 1996]. But to show
this is not easy, because it does not have an almost stable set of size 5. (The last
two facts need some case analysis, not reproduced here.) So the lower bound in
Proposition 10.18 does not always give the right value. �

Example 10.22 (Triangular grid I). Consider the triangular grid ∆k with k > 2

nodes along the bottom line Figure 10.5, right). This graph has n =
(
k+1

2

)
nodes.
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The dark triangles form a family of cliques covering all edges, so the construction in
Example 10.16 yields a faithful orthogonal representation in dimension n−k =

(
k
2

)
,

the number of dark triangles. This is much better than the upper bound from
Proposition 10.19, which is n−2.

This dimension is in fact the smallest possible; this follows by Proposition 10.18,
since it is easy to see that the set of nodes above the bottom line is almost stable,
and hence the minimum dimension of a faithful representation is n−k.

We note that ∆k is planar, so all of its minors are at most 5-connected. So we
could not hope to salvage the upper bound provided by Proposition 10.17 by looking
at highly connected subgraphs or minors. The significance of this observation will
be made more clear in the next section. �

10.5. Transversality

We have seen various nondegeneracy conditions (general position, faithfulness),
and how they turn a complicated and probably untractable question like the exis-
tence of an orthogonal representation in a given dimension into a question where
some sort of answer can be obtained by combinatorial means. In this section we in-
troduce a more complicated, deeper nondegeneracy condition, which was first used
in this spirit by Colin de Verdière. We spend a bit more time on it than what we
would need in this chapter, as a preparation for its use later on.

Consider a system of polynomial equations with real coefficients

(10.7) p1(x) = 0, . . . , pm(x) = 0 (x ∈ Rn).

Each of these equations defines a hypersurface in Rn. We say that a solution u
is transversal, if these surfaces intersect transversally at this point. This means
that their normal vectors at this point, the vectors grad p1(u), . . . , grad pm(u), are
linearly independent.

We could also rephrase this property as follows: for a linear combination p =∑
i αipi of the left sides of (10.7), the point u is a stationary point of p (i.e., the

gradient of p at u is nonzero) only if the linear combination is trivial.
The most important consequence of this property is the following: if a solution

y of (10.7) is transversal, then for every ε > 0 there is a δ > 0 such that changing
each coefficient of each polynomial by at most δ, the modified system

(10.8) p̂1(x) = 0, . . . , p̂m(x) = 0

has a solution z such that |z−y| < ε. Furthermore, the vector z, as a solution
of the system (10.8), is transversal as well. This follows by the Implicit Function
Theorem.

Informally, this means that the solvability of the system of equations (10.7)
is not just a numerical coincidence, but it is a “robust” consequence of the struc-
ture of the equations. We will see that this fact leads to important combinatorial
applications of this nondegeneracy notion.

10.5.1. Transversal orthogonal representations. We can view an orthog-
onal representation i 7→ ui ∈ Rd of a graph G as a system of dn variables, entries
of a matrix U ∈ Rd×V , whose columns satisfy the quadratic equations

(10.9) uT
iuj = 0 (ij ∈ E).
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We say that the representation of G is transversal, if this solution of (10.9) is
transversal. Computing the gradient, this says that there are no real numbers Xij

(ij ∈ E) such that

(10.10)
∑

j∈N(i)

Xijuj = 0 for every i ∈ V.

Using terminology to be introduced in Chapter 14, the orthogonal representation u
of G is transversal if and only if (G,u) carries no nonzero homogeneous stress.

It will be convenient to think of X as a nonzero symmetric V ×V matrix such
that Xij = 0 if i = j or ij ∈ E. In other words, X is a nonzero G-matrix with zero
diagonal. Note that X has a zero-nonzero pattern complementary to A = Gram(u),
and condition (10.10) is equivalent to the matrix equation XA = 0.

For a row of X that is not all 0, equation (10.10) means a linear dependence
between the nonneighbors of i, and if X 6= 0 then at least one of these linear
dependencies is nontrivial. It follows that every orthogonal representation of a
graph G in locally general position is transversal. This shows that transversality
can be thought of as some sort of weakened, symmetrized version of locally general
position. But the two conditions are not equivalent, as the following example shows.

a b 

c 
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d 

f 

0 

0 

1 
( ) 

0 

1 

1 
( ) 

1 
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1 
( ) 

1 

0 

0 
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0 

1 

0 
( ) 1 

1 

0 
( ) 

Figure 10.6. The graph ∆3 with an orthogonal representation
that is transversal but not in locally general position.

Example 10.23 (Triangular grid II). Consider the graph ∆3 obtained by at-
taching a triangle to each edge of a triangle (Figure 10.6). We have constructed
an orthogonal representation of this graph in R3 (Example 10.22), which is shown
in the figure. This representation is not in locally general position, since the nodes
nonadjacent to (say) node a are represented by linearly dependent vectors. But
it is transversal. Indeed, suppose that a nonzero G-matrix X with zero diagonal
satisfies (10.10). Since node d is adjacent to all the other nodes except node c, we
have Xd,j = 0 for j 6= c, and therefore (10.10) implies that Xd,c = 0. By symmetry,
Xc,d = 0, and hence (10.10) implies that Xc,j = 0 for all j. Going on similarly, we
get that all entries of X must be zero. Note that the symmetry of X was important
in this argument. �

10.5.2. Strong Arnold Property. We can forget about the meaning of A
(in particular, about its positive semidefiniteness) and define the Strong Arnold
Property of any G-matrix A: this means that XA 6= 0 for every nonzero G-matrix
X with zero diagonal.

For a general G-matrix A, this definition of the Strong Arnold Property does
not correspond to a transversality property of a system like (10.9). Nevertheless, we
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can describe it as transversality with respect to another, more complicated system of
algebraic manifolds. First, we have to extend the definition of transversality to more
general manifolds. We say that smooth manifolds (not necessarily hypersurfaces)
in Rn intersect transversally at a point x, if their normal subspaces at this point
are linearly independent. For m = 2, this means that their normal subspaces at x
intersect at the zero subspace.

Consider the manifold Rk of all symmetric V ×V matrices with rank k. It is
not hard to see that the dimension of Rk is kn−

(
k
2

)
. We need the following lemma

describing the tangent space of Rk and its orthogonal complement.

Lemma 10.24. (a) The tangent space TA of Rk at A ∈ Rk consists of all matrices
of the form AU+UTA, where U ranges through all V ×V matrices.

(b) The normal space NA of Rk at A consists of all symmetric V ×V matrices
X such that AX = 0.

Note that U in (a) is not necessarily symmetric, but AU+UTA is.

Proof. (a) Consider any matrix of the form AU+UTA, and the family

At = (I+ tU)TA(I+ tU).

Clearly rk(At) ≤ rk(A) = k and equality holds if |t| is small enough. Furthermore,
( ddtAt)t=0 = AU+UTA, showing that AU+UTA ∈ TA.

Conversely, let Y ∈ TA. Then there is a one-parameter differentiable family
At of symmetric matrices, defined in a neighborhood of t = 0, so that At ∈ Rk,
A0 = A and Ȧ0 = ( ddtAt)t=0 = Y . In a sufficiently small neighborhood of t = 0
all matrices At have the same signature of eigenvalues, which implies that they
can be written in the form At = UT

t DUt, where D is a diagonal matrix in which
the first k1 diagonal entries are 1, the next k−k1 diagonal entries are −1, and the
rest are zero, and Ut is a nonsingular matrix which depends on t in a smooth way.
Differentiating,

Y = Ȧ0 = U̇T
0DU0 +UT

0DU̇0 = (U−1
0 U̇0)TA+A(U−1

0 U̇0).

This shows that Y has the form as stated.

(b) We have X ∈ N (A) if and only if X ·Y = 0 for every Y ∈ TA. By (a), this
means that X ·(AU+UTA) = 0 for every U ∈ Rn×n. This can be written as

0 = Tr
(
X(AU+UTA)

)
= Tr(XAU)+Tr(XUTA) = Tr(XAU)+Tr(AUX)

= 2Tr(XAU).

This holds for every U if and only if XA = 0. �

Using this description, we can easily prove the following lemma giving a geo-
metric meaning to the Strong Arnold Property in the case of general G-matrices.
Recall that MG denotes the linear space of G-matrices.

Lemma 10.25. For a graph G, a G-matrix A has the Strong Arnold Property if
and only if the manifolds Rk (k = rk(A)) and MG intersect transversally at A.

Proof. Let X be a nonzero matrix in the normal spaces of MG and Rk at A.
The first condition says that Xij = 0 for every ij ∈ E∪∆; the second says that
XA = 0 (by Lemma 10.24). These are just the conditions on X needed to disprove
the Strong Arnold property. �
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M

rk(A) = rk(M)

Aij=0  �ij✁E

Figure 10.7. The Strong Arnold Property

We note that every matrix A with corank at most 1 has the Strong Arnold
Property automatically. Indeed, if AX = 0, then X has rank at most 1, but since
X is symmetric with 0’s in the diagonal, this implies that X = 0.

It is not hard to prove that whether or not a G-matrix A has the Strong Arnold
Property depends only on the graph G and on the nullspace of A (see Exercise
10.10). A useful combinatorial property of the nullspace is the following.

Lemma 10.26. Let G be a graph, let A be a G-matrix with the Strong Arnold
Property. Let x, y ∈ Ker(A). Then either supp(x) and supp(y) intersect, or there
is an edge of G connecting them.

As a special case, we see that G has at most one connected component such
that the corresponding diagonal block of A is singular.

Proof. Suppose not, then X = xyT+yxT is a nonzero G-matrix with zero
diagonal satisfying MX = 0, contradicting the Strong Arnold Property. �

Coming back to orthogonal representations, we have seen that transversality is
weaker than locally general position; but a condition in the spirit of locally general
position does follow from the previous lemma.

Corollary 10.27. Let G be a simple graph and let S, T ⊆ V be disjoint subsets such
that no edge of G connects them. Let u be a transversal orthogonal representation
of G. Then either u(S) or u(T ) is linearly independent.

As a special case, two nonadjacent nodes cannot be both represented by the
zero vector.

10.5.3. Algebraic width. Based on transversality, an interesting graph in-
variant related to connectivity was introduced in [Colin de Verdière 1998a] (this is
different from the better known Colin de Verdière number to be discussed in Chap-
ter 16). He formulated this notion in terms of matrices, but from our perspective,
working with orthogonal representations is more natural.

It will be useful to introduce an extension of the notion of faithful represen-
tations, based on [van der Holst 1996]. We would like to “interpolate” between
faithful and nonfaithful orthogonal representations, by allowing “weak” edges for
which the inner product may be zero or nonzero. Van der Holst suggests to encode
this requirement by considering these edges as edges with multiplicity larger than
one. This seems to be somewhat arbitrary, but it will turn out to be quite useful.
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Given a multigraphG, let AG = (aij) be its adjacency matrix, where aij denotes
the number of edges connecting nodes i and j. We define a faithful orthogonal
representation of it as a vector labeling u : V → Rd, such that

(10.11) uT
iuj

{
= 0, if i 6= j and aij = 0,

6= 0, if aij = 1.

There is no condition when i = j or when i and j are connected by more than one
edge.

If the graph is simple, this gives the previously studied notion of faithfulness.
If all edges have multiplicity larger than one, then we get all orthogonal repre-
sentations. (The value of the multiplicity does not matter, once it is larger than
one.) For every graph G, we define G= as the graph obtained from G by doubling
all edges. Then faithful orthogonal representations of G= are just all orthogonal
representations of G.

Let d be the smallest dimension in which a multigraph G has a faithful transver-
sal orthogonal representation, and define walg(G) = n−d. We call walg(G) the
algebraic width of the graph (the name refers to its connection with tree width, see
below). This definition is meaningful, since it is easy to construct a faithful orthog-
onal representation in Rn, in which the representing vectors are almost orthogonal
and hence linearly independent, which implies transversality. The algebraic width
measures how much we can save in the dimension of a faithful transversal orthogonal
representation, relative to the trivial dimension n.

This definition can be rephrased in terms of the Gram matrix of the represen-
tation. For any faithful transversal orthogonal representation

(
ui : i ∈ V

)
, the

matrix N = Gram(u) has the following properties:

(N1) Nij

{
= 0 if i 6= j and aij = 0,

6= 0 if aij = 1;

(N2) N is positive semidefinite;

(N3) If X is a nonzero G-matrix with zero diagonal, then NX 6= 0.

Conversely, every matrix N with these properties can be written as the Gram
matrix of a vector labeling (by (N2)), and it is easy to check that this vector labeling
is a faithful transversal orthogonal representation. The rank of the matrix is the
dimension of the representation. Hence we get the following reformulation:

Lemma 10.28. The algebraic width of a graph G is equal to the maximum corank
of a matrix with properties (N1)–(N3).

Example 10.29 (Complete graphs). The Strong Arnold Property is void for
complete graphs, and every representation is orthogonal, so we can use the same
vector to represent every node. This shows that walg(Kn) = n−1. For every
noncomplete graph G, walg(G) ≤ n−2, since a faithful orthogonal representation
requires at least two dimensions.

Doubling edges makes a difference: to get a faithful orthogonal representation
of K=

n , we can represent all nodes by the null vector. The Strong Arnold Property
is void again, which shows that walg(K=

n ) = n. �

Example 10.30 (Edgeless graphs). To have a faithful orthogonal representation,
all representing vectors must be mutually orthogonal, hence walg(Kn) = 0. It is
not hard to see that every other multigraph G has walg(G) ≥ 1. �
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Example 10.31 (Paths II). Let Pn denote the path with n nodes, and assume
that n ≥ 2. Every matrix N satisfying (N1) has an (n−1)×(n−1) nonsingular
(triangular) submatrix, and hence by Lemma 10.28, walg(Pn) ≤ 1. Since Pn has an
edge, we know that equality holds here. �

Example 10.32 (Triangular grid II). To see a more interesting example, let us
have a new look at the graphs ∆k in Figure 10.5 (Example 10.22). For k = 3, we
have seen that ∆3 has a faithful transversal orthogonal representation in R3, and
this is clearly best possible, so walg(∆3) = 3.

For general k, the construction in Example 10.22 yields a faithful orthogonal
representation u. Recall that each coordinate of ui corresponds to one of the dark
triangles B, and it is 1 if i ∈ B, and 0 otherwise. We show that this representation
is transversal. Let X be a nonzero G-matrix with zero diagonal disproving the
transversality of u. This means that

∑
j Xijuj = 0 for every node i, which implies

that

(10.12)
∑
j∈B

Xij = 0

for every dark triangle B and node i.
We prove that Xij = 0 for all i, j ∈ V = V (∆k) by induction on the distance

of i and j (in the sense of 2-dimensional Euclidean distance in the figure). If i and
j are neighbors, then this is clear, since X is supported on E = E(∆k). Suppose
that ij ∈ E, then the interior segment connecting i and j intersects a dark triangle
incident with either i or j; say it intersects triangle B = jkl. Then both k and l are
closer to i than j is, and hence we already know that Xik = Xil = 0. By (10.12),
this implies that Xij = 0.

So u is a faithful transversal orthogonal representation of ∆k. The dimension
of this representation is the number of dark triangles, which is clearly

(
k−1

2

)
. We

have argued that this is the smallest possible dimension (this follows just from
faithfulness, not using transversality). Thus

walg(∆k) = n−
(
k−1

2

)
=

(
k

2

)
−
(
k−1

2

)
= k.

�

We continue with some easy bounds on the algebraic width. The condition that
the representation must be faithful implies that the vectors representing a largest
stable set of nodes must be mutually orthogonal nonzero vectors, and hence the
dimension of the representation is at least α(G). This implies that

(10.13) walg(G) ≤ n−α(G) = τ(G).

By Theorem 10.10, every k-connected graph G has a faithful general position or-
thogonal representation in Rn−k, and hence

(10.14) walg(G) ≥ κ(G).

We may also use the Strong Arnold Property to bound the algebraic width. There
are

(
n
2

)
−m orthogonality conditions, and in an optimal representation they involve(

n−walg(G)
)
n variables. If their normal vectors are linearly independent, then(

n
2

)
−m ≤

(
n−walg(G)

)
n, and hence

(10.15) walg(G) ≤ n+1

2
+
m

n
.
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The most important consequence of the Strong Arnold Property is the follow-
ing.

Theorem 10.33. The algebraic width walg(G) is minor-monotone: If H is a minor
of G, then walg(H) ≤ walg(G).

Proof. It suffices to consider three cases: when H arises from G by deleting an
isolated node, by deleting an edge, or by contracting an edge. We consider a faithful
transversal orthogonal representation u of H in dimension d = |V (H)|−walg(H),
and modify it to get a faithful transversal orthogonal representation of G.

The case when H arises by deleting an isolated node i is trivial: Starting with
an optimal representation of H, and representing i by the (d+1)-st unit vector,
we get a representation of G in dimension d+1. It is straightforward to see that
this faithful representation of G is transversal. Hence walg(G) ≥ n−(d+1) =
|V (H)|−d = walg(H).

Suppose that H = G\ab, where ab ∈ E. We start with an optimal representa-
tion i 7→ ui of H, this satisfies the conditions

uT
iuj = 0

(
ij ∈ E(H)

)
.(10.16)

By transversality, for a sufficiently small ε > 0, the system of equations

xT
ixj = 0 (ij ∈ E(H)\ab)(10.17)

xT
axb = ε(10.18)

has a solution in xi ∈ Rd, i ∈ V such that |ui−xi| ≤ ε for all i ∈ V , and which is
transversal with respect to the system (10.17)-(10.18). If ε is small enough, then
this representation is a faithful orthogonal representation of G, and it is transversal
with respect to (10.17), showing that walg(G) ≥ n−d = walg(H).

The most complicated case is obtained when H arises from G by contracting
an edge ab to a node. It will be convenient to assume that N(a)∩N(b) = ∅ (we
can delete the edges connecting b to N(a); this does not change the contracted
graph, and does not increase walg(G), as we have just proved). Let A = N(a)\b,
B = N(b)\a and R = V (H)\A\B. We identify b with the node of H obtained by
the contraction, and add a new isolated node a to H, to obtain a graph G′. We
have V (G′) = V , and G′ is obtained from G by shifting all ends of edges from a to
b (Figure 10.8).

R

A B

a b

R

A B

a b

�✁G

H

Figure 10.8. Minor monotonicity of the algebraic width
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We start again with a faithful transversal orthogonal representation
(
ui : i ∈

V (H)
)

in dimension d = |V (H)|−walg(H) of H, and want to construct a faith-
ful transversal orthogonal representation of G in dimension d+1. We start with
constructing a vector labeling of G′ in Rd+1:

vi =


(

ui
0

)
, if i 6= a,

ed+1 if i = a.

We have seen above that this is a faithful transversal orthogonal representation
of G′. By the Implicit Function Theorem, for a sufficiently small ε > 0 there is
a vector labeling (zi : i ∈ V ) such that zi is arbitrarily close to vi, and z is a
transversal solution of the system of equations

zTi zj = 0 (ij ∈ E(H) or i = a, j ∈ B∪R),(10.19)

zTazj−εzTbzj = 0 (j ∈ A).(10.20)

Define another vector labeling of V by

wi =

{
za−εzb, if i = b,

zi, otherwise.

We claim that (wi : i ∈ V ) is an orthogonal representation of G. Let ij ∈ E(G).
If i, j 6= b, then wT

iwj = 0 follows immediately from (10.19). If (say) i = b and
j ∈ R, then

wT
bwj = (za−εzb)Tzj = zTazj−εzTbzj = 0

by (10.19). Finally, if i = b and j ∈ A, then

wT
bwj = (za−εzb)Tzj = 0

by (10.20).
Second, we show that w is faithful, if ε is small enough, i.e., wT

iwj 6= 0 for all
ij ∈ E. If i, j 6= a, b, then this is clear, since wT

iwj ≈ vT
i vj = uT

iuj 6= 0 (the error
at the ≈ sign can be made arbitrarily small). If ij = ab, then wT

iwj = wT
awb =

zTaza−εzTazb 6= 0 if ε is small enough. If i = a and j ∈ A, then wT
awj = εzTi zb 6= 0

(since ic ∈ E(H)). If i = b and j ∈ B, then wT
bwj = (za−εzc)Tzj = εzTczj ≈

εvT
cvj = εuT

cuj 6= 0.
Finally, we show that (wi : i ∈ V ) is transversal (as an orthogonal represen-

tation of G), if ε is small enough. Suppose that there exists a nontrivial linear
combination

f(x) =
∑
ij∈E

Xijx
T
ixj

of the orthogonality conditions such that w is a stationary point of the function f .
The substitution

xi =

{
ya−εyb, if i = b,

yi, otherwise
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maps w onto z, and it turns f into the function

g(y) =
∑
ij∈E
i,j 6=b

Xijy
T
i yj+

∑
j∈A∪R

Xbj(ya−εyb)Tyj

=
∑
ij∈E
i,j 6=b

Xijy
T
i yj+

∑
j∈R

Xbjy
T
ayj−ε

∑
j∈R

Xbjy
T
byj+

∑
j∈A

Xbj(ya−εyb)Tyj .

The function g is a linear combination of the left hand sides of the equations (10.19)–
(10.20), and z is a stationary point of this linear combination. Since z is transversal,
this linear combination must be trivial. The last sum is the only one where the
functions (ya−εyb)Tyj (j ∈ A) are used, and hence Xbj = 0 for j ∈ A. Similarly,
the third sum gives that Xbj = 0 for j ∈ R. This means that all coefficients in the
second sum are 0. This leaves us with the first sum, so all coefficients there must
be 0 as well. But this is a contradiction, since f(x) was assumed to be a nontrivial
linear combination. �

10.5.4. Algebraic width, treewidth and connectivity. We start with sur-
veying several minor-monotone graph parameters related to connectivity.

The connectivity of a minor of a graph can be larger than the connectivity of
the graph itself. (A trivial example is a subdivision of a highly connected graph,
which is only 2-connected, but by edge contraction we get the original graph as
a minor.) Thus it makes sense to define the monotone connectivity κmon(G) of a
graph G as the maximum connectivity of any minor of G.

Tree-width was introduced in [Robertson–Seymour 1984] as an important ele-
ment in their graph minor theory. We try to decompose our graph G as the union
of subgraphs Gi, which are indexed by the nodes of a tree T , with the following
property: if i, j, k are three nodes of T and j lies on the path between i and k,
then V (Gi)∩V (Gk) ⊆ V (Gj). Such a family is called a tree-decomposition of the
graph G. The tree-width of a graph G is the smallest integer k for which G has a
tree-decomposition into parts with at most k+1 nodes. It is not hard to see that
κ(G) ≤ wtr(G), which implies

(10.21) κmon(G) ≤ wtr(G).

A closely related parameter, which we call the product-width wpr(G) of a graph
G, was also defined in [Colin de Verdière 1998a]. This is the smallest positive in-
teger r for which G is a minor of a Cartesian product Kr�T , where T is a tree.
The reason why we consider the product width a “connectivity-related” parameter
is that it is almost equal to treewidth:

(10.22) wtr(G) ≤ wpr(G) ≤ wtr(G)+1.

The lower bound was proved in [van der Holst 1996], the upper, in
[Colin de Verdière 1998a]. The proof of these inequalities is left to the reader as a
(not quite easy) exercise.

Monotone connectivity, product width and treewidth are minor-monotone
graph parameters; this is trivial for the first two, and well known for treewidth.
It is easy to verify that a graph is a forest if and only if either one of these param-
eters is at most 1.

So far, we have discussed connectivity-type graph parameters; now we relate
them to the algebraic width, which will be sandwiched between two of them:
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Theorem 10.34. For every graph G,

κmon(G) ≤ walg(G) ≤ wpr(G).

The upper bound was proved in [Colin de Verdière 1998a], while the lower
bound is an easy consequence of the results in Section 10.3.

Proof. Let H be a minor of G with largest connectivity. Using (10.14) and
the fact that walg(G) is minor-monotone, we get the first inequality:

κmon(G) = κ(H) ≤ walg(H) ≤ walg(G).

To prove the second, we use again the minor-monotonicity of walg(G): it suffices to
prove that

(10.23) walg(Kr�T ) ≤ r

for any r ≥ 1 and tree T . Note that if T has at least two nodes, then Kr+1 can
be obtained as a minor of Kr�T , and hence walg(Kr�T ) ≥ walg(Kr+1) = r by the
minor monotonicity of algebraic width. So for every tree T with at least one edge,
inequality (10.23) holds with equality.

Inequality (10.23) says that the minimum dimension in whichKr�T has a faith-
ful transversal orthogonal representation is at least (n−1)r, where n = |V (T )|. In
the argument below, we only need the faithfulness of the representation, transversal-
ity is not used in this part. Using Proposition 10.18, it suffices to show that Kr�T
has an almost stable set of size (n−1)r. We claim that for any node u ∈ V (T ), the
subset S = (V (T )\u)×V (Kr) is almost stable.

Let H be a connected subgraph of (Kr�T )[S]. Considering u as the root of T ,
let v be a node of T closest to u such that H contains a node from {v}×V (Kr).
Note that all nodes of H are contained in sets {w}×V (Kr) where w = v or w is a
descendant of v. Let (v, i) be a node of H, and let v′ be the parent of v in T . Then
(v′, i) is a node of Kr�T adjacent to (v, i), but to no other node of H. This proves
that S is almost stable, and thus completes the proof of the theorem. �

For small values, equality holds in Theorem 10.34; this was proved in
[van der Holst 1996] and in [Kotlov 2000].

Proposition 10.35. Let G be a graph with at least one edge. If walg(G) ≤ 2, then
κmon(G) = walg(G) = wpr(G).

Proof. Using Theorem 10.34 (an easy special case) and the remark above
about forests, we get

walg(G)=1 =⇒ κmon(G)=1 =⇒ G is a forest =⇒ wpr(G)=1 =⇒ walg(G)=1,

and this proves the assertion for walg(G) = 1. Suppose that walg(G) = 2, then
κmon(G) ≤ 2 by Theorem 10.34. Furthermore, neither K4 nor the graph ∆3 in
Example 10.23 is a minor of G, since walg(K4) = walg(∆3) = 3.

By Exercise 10.13, G satisfies wpr(G) ≤ 2. We must have equality, since other-
wise walg(G) = 1 would follow. �

A planar graph has κmon(G) ≤ 5 (since every simple minor of it is planar and
hence it has a node with degree at most 5). Since planar graphs can have arbitrarily
large algebraic width (see Exercise 10.15), the first inequality in Theorem 10.34 can
be arbitrarily far from equality: no function of κmon bounds walg from above.
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The following example from [van der Holst 1996] shows that in general, equality
does not hold in the upper bound in Theorem 10.34 either.

Example 10.36 (Wagner graph). Consider the Wagner graph W8 obtained from
the cycle C8 by adding its longest diagonals. Then κmon(W8) = walg(W8) = 3 and
wtr(W8) = wpr(W8) = 4. These facts take some work to verify, especially the value
of the algebraic width. �

As a weak converse of the inequality walg ≤ wpr in Theorem 10.34, the product
width (or tree-width) is bounded by some function of the algebraic width: For every
graph G, we have

(10.24) wpr(G) = O(walg(G)20).

indeed, Example 10.32 implies that G cannot contain the triangular grid ∆walg(G)+1

as a minor. A basic result of graph minor theory [Robertson–Seymour 1986] says
that the treewidth of such a graph is bounded by an appropriate function of the
grid size. The bound used in (10.24) was proved in [Chuzoy 2016].

10.6. The variety of orthogonal representations

In this section we take a global view of all orthogonal representations of a graph
in Rd. For small values of d, several of our considerations might be easier to follow
in terms of the complementary graph G. In particular, G is (n−d)-connected if
and only if G does not contain a complete bipartite graph on d+1 nodes (i.e., a
complete bipartite graph Ka,b with a, b ≥ 1, a+b = d+1).

Let G be a simple graph on n nodes, which are labeled 1, . . . , n. Every vector
labeling i 7→ vi ∈ Rd can be considered as a point in Rdn, and orthogonal rep-
resentations of G in Rd form an algebraic variety ORd(G) ⊆ Rdn, defined by the
equations

(10.25) uT
iuj = 0 (ij ∈ E).

We could consider orthonormal representations, whose variety is defined by the
equations

(10.26) uT
iui = 1 (i ∈ V ), uT

iuj = 0 (ij ∈ E).

The set of orthogonal representations of G that are not in general position also
forms an algebraic variety: we only have to add to (10.25) the equation

(10.27)
∏

1≤i1<···<id≤n

det(ui1 , . . . ,uid) = 0.

Similarly, the set of orthogonal representations that are not in locally general posi-
tion form a real algebraic variety. The set GORd(G) of general position orthogonal
representations of G in Rd, as well as the set LORd(G) of locally general position
orthogonal representations of G, are semialgebraic.

Let us a look at some examples showing the complications (or interesting fea-
tures, depending on your point of view) of the variety of orthogonal representations
of a graph.

Example 10.37. Consider the graph K2 consisting of two isolated nodes. Every
orthogonal representation of this graph consists of two orthogonal vectors. It follows
that in dimension d = 1, one of the labels must be 0; the other one is arbitrary. So
the variety of orthogonal representations decomposes into two subvarieties, which
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intersect at the point (0, 0). This graph has no orthonormal representation in
dimension 1.

For d = 2, we look at pairs (u1,u2) of orthogonal vectors. In the orthonormal
case, this implies that u2 arises from u1 by rotation of 90◦ either in the positive or in
the negative direction. In other words, either (u1)1 = (u2)2 and (u1)2 = −(u2)1, or
(u1)1 = −(u2)2 and (u1)2 = (u2)1. So the variety of orthonormal representations
decomposes into two algebraic varieties. It is not hard to see that these two are
irreducible.

Considering, more generally, orthogonal representations in the plane, their va-
riety decomposes into two semialgebraic sets in a natural way, depending on the
sign of det(u1,u2). These two semialgebraic sets intersect in the set of degenerate
labelings {(u1,u2) : u1 = 0 or u2 = 0}. These two semialgebraic sets are not
algebraic however.

For d > 2, both varieties (orthogonal and orthonormal representations) are in-
decomposable. Orthonormal representations of Kn in Rd form the Stiefel manifold
of n-frames in Rd. �

Example 10.38. Let us look at the structure of orthogonal representations of an
arbitrary graph G in one dimension. We have a single variable xi assigned to each
node i, and the orthogonality conditions say that xixj = 0 for ij ∈ E. This is
trivially equivalent to saying that the support of the vector x = (xi : i ∈ V ) is
a clique. So this variety decomposes into as many subvarieties as the number of
maximal cliques.

This shows that the variety of orthogonal representations can have a very com-
plex structure even in the smallest dimension. For example, the dimension of this
variety is ω(G), an NP-hard quantity. �

Example 10.39. Our last example is nontrivial, and it will play an important role
later in this section. Let Q3 denote the graph of the (ordinary) 3-dimensional cube.
Note that Q3 is bipartite; let A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4} be its
color classes. The indices are chosen so that ai is opposite to bi (Figure 10.9 (a)).

Since Q3 contains neither K1,4 nor K2,3, the graph Q3 is 4-connected, and
hence it has a general position orthogonal representation in R4. This is in fact easy
to construct. Choose any four linearly independent vectors x1, . . . ,x4 to represent
a1, . . . , a4, then the vector yi representing bi is uniquely determined (up to scaling)
by the condition that it has to be orthogonal to the three vectors xj , j 6= i. It
follows from Theorem 10.10 that for almost all choices of x1, . . . ,x4, the orthogonal
representation obtained this way is in general position.

For bipartite graphs G, we can think of orthogonal representations of G in Rd
in another way. Vectors representing one bipartition class can be thought of as
homogeneous coordinates of points in projective (d−1)-space, while vectors in the
other class can be thought of as homogeneous coordinates of planes. Orthogonal-
ity is then translated to incidence. So to construct a general position orthogonal
representation of Q3 in R4, we need four points in general position in 3-space, and
four planes, each going through exactly three of these points. In other words, we
get the vertices and faces of a tetrahedron (Figure 10.9 (b)).

We show that every orthogonal representation of this graph in general position
satisfies a certain algebraic equation. Let x′i denote the orthogonal projection of
xi onto the first two coordinates, and let y′i denote the orthogonal projection of yi
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Figure 10.9. (a) The cube as bipartite graph. (b) An orthogonal
representation in general position, depicted as a tetrahedron in
projective 3-space. The homogeneous coordinates of the vertices
represent one color class, those of the facets represent the other.
(c) A degenerate orthogonal representation.

onto the third and fourth coordinates. We claim that

(10.28)
det(x′1,x

′
3) det(x′2,x

′
4)

det(x′1,x
′
4) det(x′2,x

′
3)

=
det(y′1,y

′
3) det(y′2,y

′
4)

det(y′1,y
′
4) det(y′2,y

′
3)
.

Before proving (10.28), we remark that in a geometric language, this equation
says the following: Let ` be a line in projective 3-space that intersects the planes of
the faces of a tetrahedron T at four distinct points x1,x2,x3,x4. Let Σ1,Σ2,Σ3,Σ4

be the four planes spanned by ` and the vertices of T , indexed so that the face
defining xi is opposite to the vertex defining Σi. Then the cross ratios (x1 : x2 :
x3 : x4) and (Σ1 : Σ2 : Σ3 : Σ4) are equal (see Appendix A.4).

To prove (10.28), we may assume that xT
iyi = 1 for i = 1, . . . , 4. This can

be done, since xT
iyi 6= 0 (else, x1, . . . ,x4 would all be contained in the 3-space

orthogonal to yi, contradicting the assumption that the representation is in general
position), and the equation is invariant under scaling. This means that the 4×4
matrices X = (x1,x2,x3,x4) and Y = (y1,y2,y3,y4) satisfy XTY = I. By the
well-known relationship between the subdeterminants of inverse matrices, we have

det(x′1,x
′
3) = det(X) det(y′2,y

′
4),

and similarly for the other determinants in (10.28). Substituting these values, we
get (10.28) after simplification.

There is another type of orthogonal representation of this graph, in which the
elements of U are represented by vectors x1, . . . ,x4 in a linear subspace L of R4

and the elements of W are represented by vectors y1, . . . ,y4 in the orthogonal
complement L⊥ of L. Clearly, this is an orthogonal representation for any choice of
the representing vectors in these subspaces. This representation is never faithful.
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As a special case, we can choose 4 vectors xi in the plane spanned by the first
two coordinates, and 4 vectors yi in the plane spanned by the third and fourth
coordinates. Since these choices are independent, equation 10.28 will not hold in
general. (In the projective representation, we get four collinear points and four
planes incident with their line; Figure 10.9 (c)).

It follows from these arguments that the equation

det(x1,x2,x3,x4)
(

det(x′1,x
′
3) det(x′2,x

′
4) det(y′1,y

′
4) det(y′2,y

′
3)

−det(x′1,x
′
4) det(x′2,x

′
3) det(y′2,y

′
4) det(y′1,y

′
3)
)

= 0

is satisfied by every orthogonal representation, but the first factor is nonzero for
the orthogonal representations in general position, while the second is nonzero for
almost all of those of the second type. So the variety ORd(Q3) is reducible. �

10.6.1. G-orthogonalization revisited. For any graph G with ordered
nodes, and any vector labeling x ∈ Rd×V , the G-orthogonalization procedure de-
scribed in Section 10.3.1 assigns an orthogonal representation Φx ∈ Rd×V . The
mapping Φ : Rd×V → Rd×V is well-defined, and it is a retraction: if x itself is
an orthogonal representation, then Φx = x. In particular, the range of Φ is just
ORd(G). But the map Φ is not necessarily continuous (check Example 10.37).

We can modify this procedure so that we get vectors whose coordinates are
polynomials of the original coordinates. Given x ∈ Rd×V , we define the vectors
zj ∈ Rd recursively by

(10.29) zj =

∣∣∣∣∣∣∣∣∣
xj zi1 . . . zir

zTi1xj zTi1zi1 . . . zTi1zir
...

...
...

zTirxj zTirzi1 . . . zTirzir

∣∣∣∣∣∣∣∣∣ ,
where N(j)∩ [j] = {i1, . . . , ir}. (In this compact notation, the first row consists
of vectors, the later rows consist of numbers. Expanding the determinant gives a
meaningful expression.) This defines a map Ψ : x 7→ z.

Obviously, zj is a linear combination

(10.30) zj = αjxj+

r∑
t=1

βj,tzit ,

and it is orthogonal to zi1 , . . . , zir , since taking inner product with any of these
vectors, we get a determinant with two equal rows. It follows that z is an orthogonal
representation of G for every x ∈ Rd×V . It also follows by induction on j that each
entry of each zj is a polynomial in the coordinates of x.

We want to compare the vectors z with the vectors y = Φx. The following
lemma sums up some simple properties of this modified G-orthogonalization pro-
cedure.

Lemma 10.40. With the notation above, zj = 0 if and only if xj , zi1 , . . . , zir are
linearly dependent. The vector zj is a nonnegative scalar multiple of yj.

Proof. If xj , zi1 , . . . , zir are linearly dependent (in particular, if either one of
them is zero), then zj = 0, since the columns of the determinant (10.29) are linearly
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dependent. If xj , zi1 , . . . , zir are linearly independent, then the linear combination
as in (10.30) is unique, and

αj =

∣∣∣∣∣∣∣
zTi1zi1 . . . zTi1zir

...
...

zTirzi1 . . . zTirzir

∣∣∣∣∣∣∣ > 0,

so zj 6= 0.
For the second assertion, we prove by induction on j that if zj 6= 0, then

zj = αjyj . We know by the first assertion of the lemma that zit 6= 0 for 1 ≤ t ≤ r,
and hence zit = αityit by induction. It follows that zj is orthogonal to yi1 , . . . ,yir ,
and

1

αj
zj = xj+

r∑
t=1

βj,tαit
αj

yit .

Since these properties determine yj , we get that (1/αj)zj = yj . �

Suppose that we scale one of the vectors xj by a scalar λj 6= 0. From the
orthogonalization procedure we see that yi does not change for i 6= j, and yj is
scaled by λj . Trivially, the vectors zi do not change for i < j, and zj will be scaled
by λj . The vectors zi with i > j change by appropriate factors that are powers of
λj . It follows that if we want to scale each zj by some given scalar λj 6= 0, then
we can scale x1, . . . ,xn one by one to achieve that. As a consequence, we see that
the range Rng(Ψ) is closed under rescaling each vector independently by a nonzero
scalar.

Every orthogonal representation is a fixed point of Φ, and so Rng(Φ) = OR(G).
The range of Ψ depends on the ordering of the nodes: an orthogonal representation
is in the range of Ψ if and only if for every node with zj 6= 0 the vectors representing

the nodes in N(j)∩{1, . . . , j−1} are linearly independent. We have

(10.31) Rng(Ψ) ⊆ Rng(Φ) = OR(G),

and Example 10.39 shows that equality may not hold even for (n−d)-connected
graphs.

Every orthogonal representation in locally general position is in the range of
Ψ, so we have GOR(G) ⊆ LOR(G) ⊆ Rng(Ψ). This is uninteresting if G is not
(n−d)-connected (in this case GOR(G) = LOR(G) = ∅). Let us assume that G is
(n−d)-connected, then Φx is in general position for almost all x by Lemma 10.12,
and hence so is Ψx. Since Ψ is continuous, it follows that GOR(G) is dense in the
range of Ψ for every ordering of the nodes, and so for every (n−d)-connected graph
G,

(10.32) GOR(G) = LOR(G) = Rng(Ψ).

10.6.2. Irreducibility. One may wonder whether various algebraic proper-
ties of the varieties ORd(G), GORd(G) etc. have any combinatorial significance.
The dimension of this variety may be interesting, but the fact that this is an NP-
hard quantity even in the simplest case when d = 1 (Example 10.1) should warn
as that this dimension my be intractable. In this section we address only one
question, namely the irreducibility of ORd(G), which does have some interesting
combinatorial aspects.

A set A ⊆ RN is reducible if there exist two polynomials p, q ∈ R[x1, . . . , xN ]
such that their product pq vanishes on A, but neither p nor q vanishes on A;
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equivalently, the polynomial ideal {p : p vanishes on A} is not a prime ideal. If an
algebraic variety A is reducible, then it is the union of two algebraic varieties that
are both proper subvarieties, and therefore they can be considered “simpler”.

Proposition 10.41. If G is not (n−d)-connected, then the algebraic variety
ORd(G) of its orthogonal representations is reducible.

Proof. In this case G has no general position orthogonal representation in Rd
by Theorem 10.9. Hence equation (10.27) holds on ORd(G). On the other hand,
none of the equations

det(vi1 , . . . ,vid) = 0 (1 ≤ i1 < · · · < id ≤ n)

holds everywhere on ORd(G), because

vj =

{
ek, if j = ik, k = 1, . . . , d,

0, otherwise,

is an orthogonal representation with det(vi1 , . . . ,vid) 6= 0. �

In the opposite direction, we show the following.

Proposition 10.42. For every graph G, the semialgebraic variety GORd(G) of its
orthogonal representations in general position is irreducible.

Proof. Recall that GORd(G) is nonempty if and only if G is (n−d)-connected,
so the assertion is trivial unless G is (n−d)-connected. Let f and g be two poly-
nomials such that fg vanishes on GORd(G). Then fg vanishes on the closure of
GORd(G); by (10.32) this means that fg vanishes on the range of Ψ. In other
words, f(Ψx)g(Ψx) vanishes for all x ∈ Rd×V . Since f(Ψx) and g(Ψx) are polyno-
mials in x, it follows that either f(Ψx) or g(Ψx) vanishes identically; say the first
occurs, then f vanishes on Rng(Ψ), and hence also on GORd(G) by (10.32). �

From now on, we assume that G is (n−d)-connected. To exclude some trivial
complications, we assume that d < n, so thatG is connected. Since this connectivity
condition does imply a lot about orthogonal representations of G in Rd by Theorem
10.9, we might expect that ORd(G) will be irreducible in this case. Example 10.39
shows that this is false in general, so Proposition 10.41 cannot be reversed. Our
goal is to prove that, at least for d ≤ 4, this is essentially the only counterexample.
The case of higher dimensions remains open.

Theorem 10.43. Let G be an (n−d)-connected graph, where d ≤ 4. Then
GORd(G) is dense in ORd(G), and hence ORd(G) is irreducible, unless d = 4
and G has a connected component that is the skeleton of the 3-cube.

To give the proof, we need some definitions (just for this section). We say
that an orthogonal representation of a graph G in Rd is exceptional if it does not
belong to the topological closure of GORd(G). A graph G is exceptional, if it
is has an exceptional orthogonal representation. (If G is not (n−d)-connected,
then every representation in ORd(G) is exceptional, but we are interested in the
(n−d)-connected case.) By this definition, the set of exceptional orthogonal repre-
sentations of G in Rd is relatively open in ORd(G).

If an induced subgraph of a graph G is exceptional, then so is G itself: we can
extend the exceptional representation of the induced subgraph to an orthogonal
representation of the whole graph, and clearly this remains exceptional. (Note that
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every induced subgraph G′ is (|V (G′)|−d)-connected.) A graph G is minimally
exceptional, if it is exceptional, but no proper induced subgraph of it is exceptional.

Let x and y be orthogonal representations of G in Rd. If we keep x fixed and
make

∑
i |yi−xi| small enough, then for every S ⊆ V for which x(S) is linearly

independent, so is y(S), while some of the linear dependencies among the xi may
be broken. We say that the orthogonal representation x is locally freest, if for every
orthogonal representation y for which

∑
i |yi−xi| is small enough, and every subset

S ⊆ V , x(S) is linearly dependent if and only if y(S) is. Clearly every graph having
an exceptional representation in Rd has a locally freest exceptional representation
arbitrarily close to it. Equation (10.32) implies that if a locally freest orthogonal
representation is in locally general position, then it is in general position.

The following lemma summarizes some useful properties of minimally excep-
tional graphs and their locally freest exceptional representations. When a graph G
and an orthogonal representation x are understood, we define Au = lin

(
x(N(u))

)
for u ∈ V .

Lemma 10.44. Let G be a minimally exceptional graph, and let x be a locally
freest exceptional orthogonal representation of it.

(a) The complementary graph G is connected.

(b) For every u ∈ V , the set x(N(u)) is linearly dependent.

(c) Let S ⊆ V and u ∈ V \S. If xu ∈ lin
(
x(S)

)
, then A⊥u ⊆ lin

(
x(S)

)
.

(d) Any two vectors xu are linearly independent, and 2 ≤ dim(Au) ≤ d−2 for
every node u. In particular, no node is represented by the zero vector.

Proof. (a) Suppose that V (G) = V1∪V2 is a partition into nonempty sets so
that every node in V1 is adjacent to every node in V2 in G. Consider any orthogonal
representation x of G. Then the orthogonal representations of x|Vi of G[Vi] are
not exceptional, and so they can be approximated by general position orthogonal
representations yi. Then y1∪y2 is an orthogonal representation of G which is in
locally general position. By (10.32), y1∪y2 can be approximated by orthogonal
representations in general position, so x is not exceptional.

It follows that no node of G is isolated, and since every node of G has degree
at least n−d, we get that n ≥ d+2.

(b) Call a node v ∈ V fat if x
(
N(v)

)
is linearly independent and slim otherwise.

We want to prove that all nodes are slim. There must be at least one slim node
(else, the representation is in locally general position and hence in general position,
and not exceptional).

Suppose that G has a slim node i and a fat node j. Since G is connected, we
may choose i and j so that they are adjacent.

The representation x′ obtained by restricting x to V (G\j), is an orthogonal
representation of G′ = G\j, and hence there exists a y′ ∈ GORd(G′) arbitrarily
close to x′. We can extend y′ to an orthogonal representation y of G; since x′

(
N(j)

)
and y′

(
N(j)

)
are linearly independent, we can choose yj so that it is arbitrarily

close to xj if y′ is sufficiently close to x′.
This extended y is strictly locally freer than x: indeed, a fat node remains

fat (if x′ and y′ are close enough), and (since any d nodes different from j are
represented by linearly independent vectors) j is fat in y. This contradicts the
assumption that x is locally freest.
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(c) Clearly xu ∈ A⊥u . If A⊥u 6⊆ lin
(
x(S)

)
, then A⊥u contains a vector y arbitrarily

close to xu but not in lin
(
x(S)

)
. Replacing xu by y we obtain another orthogonal

representation of G which is strictly freer than x, contradicting the definition of
locally freest representations.

(d) For every node u, |N(u)| ≤ d−1 and the vectors in x(N(u)) are linearly
dependent by (a), hence dim(Au) ≤ d−2. Any two representing vectors must be
linearly independent: if xu = λxv, then by (b), A⊥u is contained in the linear span of
xv, which is impossible, since dim(A⊥u ) = d−dim(Au) ≥ 2. Since |N(u)| ≥ n−d ≥
2, this shows that dim(Au) ≥ 2. �

Using these facts about minimally exceptional graphs, we turn to the proof of
the main theorem.

Proof of Theorem 10.43. We may assume that G is a minimally exceptional
graph with an exceptional orthogonal representation x. We may assume that x
is locally freest. Lemma 10.44(d) implies that 2 ≤ d−2, which implies that in
the case d ≤ 3, no exceptional representations exist. Suppose that d = 4, then
Lemma 10.44(d) implies that G is 3-regular, and the subspaces Av defined above
have dim(Av) = 2. Any two vectors xu (u ∈ N(v)) generate Av, and thus the third
element of x(N(v)) is linearly dependent on them.

Let u and v be nonadjacent nodes. Then xu ∈ lin
(
x(N(v)\u)

)
= Av, and so

Lemma 10.44(c) implies that A⊥u ⊆ Av. Since these are 2-dimensional subspaces,
it follows that Au = A⊥v . Since G is connected, fixing any node v, the rest of the
nodes fall into two classes: those with Au = Av and those with Au = A⊥v . This
defines a bipartition V = U ∪W of G. By this argument, x(U) and x(W ) span
orthogonal 2-dimensional subspaces L and L⊥.

Let us try to replace xi by xi+εyi, where

(10.33) yi ∈

{
L⊥, if i ∈ U,
L, if i ∈W

(so the modifying vector yi is orthogonal to xi), and ε is sufficiently small. Let us
assume that the vectors yi satisfy the equations

(10.34) xT
iyj+xT

jyi = 0 for all ij ∈ E.

Then for every ij ∈ E and real ε, we have

(xi+εyi)
T(xj+εyj) = xT

ixj+ε(xT
iyj+xT

jyi)+ε2yT
i yj = 0,

so the modified vectors form an orthogonal representation of G. Choosing ε small
enough, the orthogonal representation x+εy will be arbitrarily close to x, and
hence it is a locally freest exceptional representation. This implies that sets {xi+
εyi : i ∈ U} and {xi+εyi : i ∈ W} span orthogonal 2-dimensional subspaces.
Thus (xi+εyi)

T(xj+εyj) = 0 for all i ∈ U and j ∈ W (not just for nonadjacent
pairs). Expanding this equation, we get that (10.34) holds for all i ∈ U and j ∈W .

One way to construct vectors yi satisfying (10.33) and (10.34) is the following:
we take any linear map B : L→ L⊥, and define

(10.35) yi =

{
Bxi if i ∈ U,
−BTxi if i ∈W.
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It is easy to check that these vectors satisfy (10.33) and (10.34). We claim that
this is all that can happen.

Claim. If the vectors yi ∈ R4 satisfy (10.33) and (10.34), then they can be obtained
as in (10.35).

To prove this, consider any linear relation
∑
i∈U αixi = 0 between the vectors

in x(U). Since (10.34) holds for all i ∈ U and j ∈W , it follows that∑
i∈U

αix
T
jyi = −

∑
i∈U

αix
T
iyj = 0

for every j ∈W . Since the vectors in x(W ) span L⊥, this implies that
∑
i∈U αiyi =

0. So every linear equation satisfied by the vectors xi (i ∈ U) is also satisfied by the
vectors yi. This implies by elementary linear algebra that there is a 2×2 matrix
B for which yi = Bxi. Substituting in (10.34), we get that xT

i (yj+BTxj) = 0. So

the vector yj+BTxj ∈ L is orthogonal to xi for every i ∈ N(j). This implies that
yj+BTxj = 0, proving the Claim.

Now it is easy to complete the proof. Equations (10.33) and (10.34), viewed as
a system of linear equations for the yi, have 4n unknowns, and with 2n+m = 7n/2
equations, so it has a solution set that is at least n/2-dimensional. By the Claim,
all these solutions can be represented by (10.35). This gives a 4-dimensional space
of solutions, so n ≤ 8. Thus G is a 3-regular bipartite graph on at most 8 nodes; it
is easy to see that this means that G = K3,3 or G = Q3. The former is ruled out

since G is connected. Thus the only minimally exceptional graph for d = 4 is Q3.
It follows that every exceptional graph G contains Q3 as an induced subgraph.

Since all degrees of G are at least n−4, it follows that Q3 is a component of G. �

10.6.3. More on algebraic properties. The algebraic structure of orthog-
onal representations has, quite probably, further interesting connections with the
combinatorial structure of the underlying graph.

For a subset S ⊆ Rn, we denote by I(S) the set of polynomials in n vari-
ables that vanish on all points of S. This is an ideal, whose algebraic properties
are closely related to geometric properties of S. We are interested in the ideals
Id = I

(
ORd(G)

)
and I ′d = I

(
GORd(G)

)
, both of which consist of polynomials in

variables xir, where i ∈ V and r ∈ [d].
Theorem 10.42, Proposition 10.41, and Theorem 10.43 can be recast in this

algebraic language. It follows that the ideal I ′d is a prime ideal if and only if G
is (n−d)-connected. If G is not (n−d)-connected, then Id is not prime. If G is
(n−d)-connected, then for d ≤ 3 the ideal Id is prime, and this also holds for d = 4
unless G has a connected component isomorphic to the 3-cube.

Another interesting ideal is Ld, generated by the polynomials xT
ixj =∑d

r=1 xirxjr, where ij ∈ E. It is clear that L ⊆ Id ⊆ I ′d for every dimension
d ≥ 1.

The ideal L1 is called an edge ideal, and many properties of it have been studied;
see e.g. [Morey–Villarreal 2012]. Their results easily imply that L1 = I ′1 = I1 for
any graph. The structure of the ideal L2 was studied in [Herzog et al. 2015].
Among others, they prove that this ideal is radical.

Exercise 10.1. Which graphs have an orthonormal representation in the plane?
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Exercise 10.2. Prove the edges of every graph on n nodes can be covered by
bn2/4c cliques, and show that this is best possible.

Exercise 10.3. Let G be a triangle-free graph and let u be an orthonormal
representation of G in Rd. Consider the matrix B ∈ RV×V defined by

Bij =

{
uT
iuj , if i 6= j,

0, if i = j.

Let sk be the sum of k-th powers of the eigenvalues of B, and let ak be the k-th
elementary symmetric polynomial of these eigenvalues. Prove that (a) s1 = a1 =
0, (b) a3 = 0, (c) s3 = 0, (d) n ≤ 2d.

Exercise 10.4. Prove the inequalities (10.22) and (10.21).

Exercise 10.5. Let Σ and ∆ be two planes in R3 that are neither parallel nor
weakly orthogonal. Select a unit vector a1 uniformly from Σ, and a unit vector
b1 ∈ ∆∩a⊥1 . Let the unit vectors a2 and b2 be defined similarly, but selecting
b2 ∈ ∆ first (uniformly over all unit vectors), and then a2 from Σ∩b⊥2 . Prove
that the distributions of (a1,b1) and (a2,b2) are different, but mutually absolutely
continuous.

Exercise 10.6. Let u : V → Rd be an orthogonal representation of the graph
G, and let S be a minimal set such that u(S) is linearly dependent. Prove that
G[S] is connected.

Exercise 10.7. Prove that for a graph G, the following properties are equivalent:
(i) G is (n−d)-connected; (ii) there is a G-matrix such that all d×d submatrices
are nonsingular; (iii) there is a positive semidefinite G-matrix of rank d such that
all d×d submatrices are nonsingular.

Exercise 10.8. Let G be a graph and let G′ be obtained from G by creating a
new node and connecting it to all nodes of G. Prove that wtr(G

′) = wtr(G)+1,
wpr(G

′) = wpr(G)+1 and walg(G′) = walg(G)+1.

Exercise 10.9. If x is transversal as a solution of a system of algebraic equations,
then it also has this property as a solution of any system obtained by dropping
some of the equations.

Exercise 10.10. A G-matrix A has the Strong Arnold Property if and only if for
every symmetric matrix B there exists a G-matrix B′ such that xT(B′−B)x = 0
for all vectors x in the nullspace of A.

Exercise 10.11. Let R̂k be the manifold of all (not necessarily symmetric) V ×V
matrices with rank k. Determine (a) dimension of R̂k, (b) the tangent space of

R̂k, and (c) the normal space R̂k at a matrix A ∈ R̂k.

Exercise 10.12. Let G be a graph, and let G = G1∪G2 where |V (G1)∩(G2)| =
1. Prove that walg(G) = max{walg(G1),walg(G2)}.
Exercise 10.13. Suppose that G has no K4 minor. Prove that wpr(G) ≤ 3, and
if wpr(G) = 3, then G contains ∆3 as a minor.

Exercise 10.14. (a) For every bipartite graph G, the graph G�K2 is a minor
of G�C4. (b) K2m+1 is a minor of Q2m+1.

Exercise 10.15. (a) Prove that if a graph G has node-expansion c, then its
treewidth is at least cn/(c+3)−1. (b) Prove that the treewidth of an n×n grid
graph is n. (c) Prove that the product-width of the n-cube is at least 2n−1.

Exercise 10.16. Determine all convex polytopes with an edge-transitive isometry
group for which uTv ≤ 0 for every edge uv.

Exercise 10.17. Prove that the variety {(u1,u2) : ui ∈ R2, uT
1u2 = 0} is

indecomposable.
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Exercise 10.18. Given a graph G, construct a real algebraic variety V that
consists of general position orthogonal representations, and every general position
orthogonal representation, after being scaled by a positive scalar, belongs to V.





CHAPTER 11

Orthogonal Representations: the Smallest Cone

In this chapter we generalize the discussion in the introductory Section 1.4,
and study orthogonal representations that are “economical” in a sense different
from dimension. It turns out that the smallest half-angle of a rotational cone
(in arbitrary dimension) that contains all vectors in an orthogonal representation
contains interesting information about the graph [Lovász 1979b]. To be precise,
we will work with a transformed version of this quantity, the “theta-function”.
This quantity will be related to the stability number, the clique number and the
chromatic number of graphs.

We describe several applications of this graph parameter, of which we mention
two problems in which this parameter yields the only known solution. One of these
is the problem of the Shannon capacity (or zero-error capacity) of a graph from
Section 1.4, which is a tough parameter to compute, and whose evaluation even for
a small graph like the pentagon needs the theta-function. The other application is
the computation of the clique number and chromatic number for perfect graphs in
polynomial time.

11.1. The theta-function

Let us start with the definition:

(11.1) ϑ(G) = min
u,c

max
i∈V

1

(cTui)2
,

where the minimum is taken over all orthonormal representations (ui : i ∈ V )
of G and all unit vectors c. We call c the “handle” of the representation (for the
origin of the name, see Example 1.2). If φ is the half-angle of the smallest rota-
tional cone with axis in the direction of c, containing all vectors in an orthonormal
representation, then clearly

(11.2) ϑ(G) =
1

(cosφ)2
.

Of course, we could fix c to be (say) the standard basis vector e1, but this is
not always convenient. We may always assume that the dimension d of the ambient
space is at most n. We could require that cTui ≥ 0 for all nodes, since we can
replace any ui by its negative. With just a little more complicated argument, we
may even require that

(11.3) cTui =
1√
ϑ(G)

183
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for every node i without changing the optimum value in (11.1). Indeed, let

αi = 1/(
√
ϑ(G)cTui), then 0 ≤ αi ≤ 1, and so we can replace ui by the (d+n)-

dimensional vector

u′i =

(
αiui√
1−α2

i ei

)
Extending c with n zeroes to get a unit vector c′, we get an orthonormal represen-
tation in which (c′)Tu′i = 1/

√
ϑ(G) for all i.

The following rather easy bounds will be very important.

Theorem 11.1. For every graph G,

α(G) ≤ ϑ(G) ≤ χ(G).

Proof. First, let S ⊆ V be a maximum stable set of nodes in G. Then in every
orthonormal representation (ui), the vectors {ui : i ∈ S} are mutually orthogonal
unit vectors. Hence

(11.4) 1 = |c|2 ≥
∑
i∈S

(cTui)
2 ≥ |S|min

i
(cTui)

2,

and so

max
i∈V

1

(cTui)2
≥ |S| = α(G).

This implies the first inequality. The second follows from the orthogonal represen-
tation constructed in Example 10.5, using c = (1/

√
m)1 as the handle. �

Our examples in Section 10.1 give further upper bounds on ϑ. Example 10.3
leads to the following construction: Assuming that there are no isolated nodes, we
assign to each node i ∈ V the vector ui ∈ RE defined by

(ui)e =


1√

deg(i)
if e is incident with i,

0, otherwise,

and define the handle c = (1/
√
m)1. Then cTui =

√
deg(i)/m, and so we get the

bound

ϑ(G) ≤ max
i

m

deg(i)
=

m

dmin
.

(The upper bound m/dmin for the stability number α(G) is easy to prove by count-
ing edges.) From Example 10.6 we get by elementary trigonometry that

(11.5) ϑ(C5) ≤
√

5.

Soon we will see that equality holds here.
It is clear that if G′ is an induced subgraph of G, then ϑ(G′) ≤ ϑ(G) (an

optimal orthonormal representation of G, restricted to V (G′), is an orthonormal
representation of G′). It is also clear that if G′ is a spanning subgraph of G
(i.e., V (G′) = V (G) and E(G′) ⊆ E), then ϑ(G′) ≥ ϑ(G) (every orthonormal
representation of G′ is an orthonormal representation of G).
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11.2. Duality for theta

11.2.1. Alternative definitions. The graph parameter ϑ has many equiv-
alent definitions. We are going to state some, which lead to an important dual
formulation of this quantity.

Vector chromatic number. The following geometric definition was proposed by
Karger, Motwani and Sudan. In terms of the complementary graph, this value is
called the “vector chromatic number”. As a motivation for this name, consider a t-
colorable graph (t ≥ 2), and let us color its nodes by t unit vectors f1, . . . , ft ∈ Rt−1,
pointing to the vertices of a regular simplex centered at the origin. We get a vector
labeling w (not an orthogonal representation of G, but closely related). It is not
hard to compute that fTk fl = −1/(t−1) for k 6= l, and so wT

iwj = −1/(t−1) for
ij ∈ E.

Now let us forget about the condition that wi must be one of the vectors
fk: define a (strict) vector t-coloring (t > 1) of the graph G as a vector labeling
i 7→ wi ∈ Rn such that |wi| = 1 for all i ∈ V , and wT

iwj = −1/(t−1) for all
ij ∈ E. (The dimension n in the definition above is just chosen to be large enough;
allowing a higher dimension would not make any difference.)

If G has at least one edge, then the last condition implies that t ≥ 2. The
smallest t for which the graph G has a vector t-coloring is called its (strict) vector
chromatic number, and is denoted by χvec. If E = ∅, so G is edgeless and χ(G) = 1,
then we define χvec = 1. For t = 2, the endpoints of any edge must be labeled by
antipodal unit vectors. It follows that every connected component of G is labeled
by two antipodal vectors only, and so G is bipartite. Conversely, every bipartite
graph has a strict vector 2-coloring.

It is clear from the construction above that χvec(G) ≤ χ(G) for every graph
G. Equality does not hold in general. Vector-labeling the nodes of a pentagon by
the vertices of a regular pentagon inscribed in the unit circle, so that the edges are
mapped onto the diagonals, we see that χvec(C5) ≤

√
5 < χ(C5) = 3. It is also easy

to see that χvec(G) ≥ ω(G).

Semidefinite matrices. Next, we give a couple of formulas for ϑ in terms of
semidefinite matrices. Let

ϑdiag = min
{

1+max
i∈V

Yii : Y ∈ RV×V , Y � 0, Yij = −1 (ij ∈ E)
}

(11.6)

and

ϑsum = max
{∑
i,j∈V

Zij : Z ∈ RV×V , Z � 0, Zij = 0 (ij ∈ E), tr(Z) = 1
}
.

(11.7)

It will turn out that these two values are equal. This equality is in fact a special case
of the Duality Theorem of semidefinite optimization. It is not hard to check that
(11.6) and (11.7) are dual semidefinite programs, and the first one has a strictly
feasible solution. So the Duality Theorem 13.5 of semidefinite programming applies,
and asserts that the two programs have the same objective value. However, we are
going to include a proof, to make our treatment self-contained.
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Dual orthogonal representation. We use orthonormal representations of the
complementary graph to define

(11.8) ϑdual = max
∑
i∈V

(dTvi)
2,

where the maximum extends over all orthonormal representations (vi : i ∈ V ) of
the complementary graph G and all unit vectors (handles) d.

11.2.2. The main duality result. The main theorem of this section asserts
that all these definitions lead to the same value.

Theorem 11.2. For every graph G,

ϑ(G) = χvec(G) = ϑdiag(G) = ϑsum(G) = ϑdual(G).

Proof. We prove the circle of inequalities

(11.9) ϑ(G) ≤ χvec(G) ≤ ϑdiag(G) ≤ ϑsum(G) ≤ ϑdual(G) ≤ ϑ(G).

To prove the first inequality, let t = χvec(G), and let (wi : i ∈ V ) be an
optimal vector t-coloring. Let c be a vector orthogonal to all the wi (we increase
the dimension of the space if necessary). Let

ui =
1√
t
c+

√
t−1

t
wi.

Then |ui| = 1 and uT
iuj = 0 for ij ∈ E, so (ui) is an orthonormal representation of

G. Furthermore, with handle c we have cTui = 1/
√
t, which implies that ϑ(G) ≤

χvec(G).
Second, let Y be an optimal solution of (11.6). We may assume that all di-

agonal entries Yii are the same number t, since we can replace all of them by the
largest without violating the other constraints. The matrix 1/(t−1)Y is positive
semidefinite, and so it can be written as Gram(wi : i ∈ V ) with appropriate vec-
tors (wi ∈ Rn). These vectors form a strict vector t-coloring. Since χvec(G) is the
smallest t for which this exists, this proves that χvec(G) ≤ t = ϑdiag.

The main step in the proof is to show that ϑdiag ≤ ϑsum. Fix any t > ϑsum;
it is easy to see that ϑsum ≥ 1 and hence t > 1. Let L denote the linear space of
symmetric V ×V matrices satisfying Zij = 0 (ij ∈ E) and (tI−J) ·Z = 0, and let
P denote the cone of positive semidefinite V ×V matrices.

We claim that P∩L = {0}. Suppose, to the contrary, that there is a symmetric
matrix Z 6= 0 such that Z ∈ P∩L. Clearly tr(Z) > 0, and so, by scaling, we may
assume that tr(Z) = 1. Then Z satisfies the conditions in the definition of ϑsum,
and so ϑsum ≥ J ·Z = tI ·Z = t, contradicting the choice of t.

So the linear space L touches the convex cone P at its apex only, and hence
there is a hyperplane H such that L ⊆ H and H∩P = {0}. Let Y ·X = 0 be the
equation of H (where Y 6= 0 is a symmetric V ×V matrix); we may assume that
Y ·X ≥ 0 for all X ∈ P. This means that Y is in the dual cone of P. This dual
cone is P itself, which means that Y � 0. Furthermore, L ⊆ H means that the
equation of H is a linear combination of the equations defining L, i.e., there are
real numbers aij (ij ∈ E) and b such that

Y =
∑
ij∈E

aijEij+b(tI−J).
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Considering a positive diagonal entry of Y , we see that b > 0, and since we are free
to scale Y by positive scalars, we may assume that b = 1. But this means that Y
satisfies the conditions in the definition of ϑdiag, and so ϑdiag ≤ 1+maxi Yii = t.
Since this holds for every t > ϑsum, this implies that ϑdiag ≤ ϑsum.

To prove the fourth inequality in (11.9), let Z be an optimum solution of the
program (11.7) with objective function value ϑsum. We can write Z as Gram(zi : i ∈
V ) where zi ∈ Rn. Let us rescale the vectors zi to get the unit vectors vi = z0

i

(if zi = 0, then we take a unit vector orthogonal to everything else as vi). Define
d = (

∑
i zi)

0.
By the properties of Z, the vectors vi form an orthonormal representation of

G, and hence

ϑdual ≥
∑
i

(dTvi)
2.

To estimate the right side, we use the equations∑
i

|zi|2 =
∑
i

zTi zi = tr(Z) = 1,
∣∣∣∑
i

zi

∣∣∣2 =
∑
i,j

zTi zj =
∑
i,j

Zij = ϑsum,

and the Cauchy–Schwarz Inequality:∑
i

(dTvi)
2 =

(∑
i

|zi|2
)(∑

i

(dTvi)
2
)
≥
(∑

i

|zi|dTvi

)2

=
(∑

i

dTzi

)2

=
(
dT
∑
i

zi

)2

=
∣∣∣∑
i

zi

∣∣∣2 = ϑsum.

This proves that ϑdual ≥ ϑsum.
Finally, to prove the last inequality in (11.9), it suffices to prove that if (ui : i ∈

V ) is an orthonormal representation of G in Rn with handle c, and (vi : i ∈ V ) is
an orthonormal representation of G in Rm with handle d, then

(11.10)
∑
i∈V

(dTvi)
2 ≤ max

i∈V

1

(cTui)2
.

The tensor product vectors ui ◦vi (i ∈ V ) are mutually orthogonal unit vectors.
Indeed, (ui ◦vi)T(uj ◦vj) = (uT

iuj)(v
T
i vj) = 0, since either ui is orthogonal to uj

or vi is orthogonal to vj . Hence

(11.11)
∑
i

(cTui)
2(dTvi)

2 =
∑
i

(
(c◦d)T(ui ◦vi)

)2 ≤ 1.

On the other hand,∑
i

(cTui)
2(dTvi)

2 ≥ min
i

(cTui)
2
∑
i

(dTvi)
2,

which implies that ∑
i

(dTvi)
2 ≤ 1

min
i

(cTui)
2

= max
i

1

(cTui)2
.

This proves (11.10) and completes the proof of Theorem 11.2. �
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We can state the theorem more explicitly as the following sequence of formulas.

ϑ(G) = min
{

max
i∈V

1

(cTui)2
: u ONR of G, |c| = 1

}
(11.12)

= min
{
t > 1 : |wi| = 1, wT

iwj = − 1

t−1
(ij ∈ E)

}
(11.13)

= min
{

1+max
i∈V

Yii : Y � 0, Yij = −1 (ij ∈ E)
}

(11.14)

= max
{∑
i,j∈V

Zij : Z � 0, Zij = 0 (ij ∈ E), tr(Z) = 1
}

(11.15)

= max
{∑
i∈V

(dTvi)
2 : v ONR of G, |d| = 1

}
.(11.16)

From this form it is clear (and we have seen this in the proof as well) that the
powerful step in this sequence of formulas is the equality (11.14)=(11.15), where
an expression as a minimum switches to an expression as a maximum. Note that
before this equality we have conditions on the edges of G, which then get replaced
by conditions on the edges of G for the last two rows.

Remark 11.3. If we want to get a better upper bound on α(G) than ϑ(G), we can
relax the conditions in (11.12), (11.13) or (11.14). This is equivalent to tightening
the conditions in the dual optimization problems (11.15) or (11.16).

[McEliece–Rodemich–Rumsey 1978] and [Schrijver 1979] proposed to tighten
the conditions in (11.15) by requiring that Zij ≥ 0 for all i and j. This is equiv-

alent to relaxing the conditions in (11.14) by requiring only Yij ≥ −1 for ij ∈ E.
The resulting quantity ϑ−(G) is still a well-characterized (and polynomial time
computable) upper bound on α(G), tighter than ϑ(G). The other characterizations
of ϑ(G) have natural modifications to yield ϑ−(G).

If we want to get a better bound on χ(G), we need to relax the conditions in
(11.14), or tighten the conditions in (11.15). [Szegedy 1994] studied the quantity
obtained by adding the conditions Aij ≥ −1 (ij ∈ E) in (11.14). This is equivalent
to relaxing the conditions in (11.15) by requiring only Zij ≤ 0 for ij ∈ E. This
results in a quantity ϑ+(G), which is again well-characterized and polynomial time
computable.

These quantities satisfy the inequalities

α(G) ≤ ϑ−(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G).

The two modified graph parameters lack some of the more algebraic properties of
ϑ (for example, Theorem 11.8 below), but they give better bounds on α(G) and
χ(G), respectively. See Exercises 11.5–11.8 for more on these parameters.

11.2.3. Consequences of duality. From the fact that equality holds in
(11.9), it follows that equality holds in all of the arguments above. Let us for-
mulate some consequences. From the fact that equality must hold in (11.11), and
from the derivation of this inequality, we see that for an optimal orthonormal rep-
resentation (u, c) and an optimal dual orthonormal representation (v,d), the unit
vector c◦d must be a linear combination of the mutually orthogonal unit vectors
ui ◦vi. The coefficients are easy to figure out, and we get

(11.17) c◦d =
∑
i

(cTui)(d
Tvi)(ui ◦vi),
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or in a matrix form:

(11.18) cdT =
∑
i

(cTui)(d
Tvi)uiv

T
i .

This equation gives (upon multiplying by d from the right and by cT from left,
respectively) two equations expressing the handles as linear combinations of the
(primal and dual) orthonormal representations:

(11.19) c =
∑
i

(cTui)(d
Tvi)

2ui, d =
∑
i

(cTui)
2(dTvi)vi.

Using an optimal orthonormal representation with cTui = 1/
√
ϑ, we get the simpler

formulas

(11.20) c =
1√
ϑ(G)

∑
i∈V

(dTvi)
2ui, d =

1

ϑ(G)

∑
i∈V

(dTvi)vi.

There is a simple relationship between the theta value of a graph and of its
complement.

Proposition 11.4. For every graph G, we have ϑ(G)ϑ(G) ≥ n.

Proof. Let (u, c) be an optimal orthogonal representation of G. Then applying
(11.16) to the complementary graph, we get

ϑ(G) ≥
∑
i

(cTui)
2 ≥ nmin

i
(cTui)

2 =
n

ϑ(G)
. �

Equality does not hold in 11.4 in general, but it does when G has a node-
transitive automorphism group. To prove this, we need an important fact about
the symmetries of orthogonal representations. We say that an orthonormal repre-
sentation (ui, c) in Rd of a graph G is automorphism invariant, if every automor-
phism γ ∈ Aut(G) can be lifted to an orthogonal transformation Oγ of Rd such that
Oγc = c and uγ(i) = Oγui for every node i. An optimal orthonormal representation
(say, in the sense of (11.12)) is not necessarily invariant under automorphisms, but
there is always one that is (see Figure 11.1). The representation on the left is also
optimal with respect to minimizing the dimension, and it is not hard to see that C4

has no automorphism invariant orthonormal representation in R2. So minimizing
the dimension and minimizing the cone behave differently from this point of view.

cu
1
=u

2

u
3
=u

4

Figure 11.1. An optimal orthonormal representation of C4 that
is not invariant under its automorphisms, and one that is.
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Theorem 11.5. Every graph G has an optimal orthonormal representation and an
optimal dual orthonormal representation that are both automorphism invariant.

Proof. We give the proof for the dual orthonormal representation. The opti-
mum solutions of the semidefinite program in (11.6) form a bounded convex set,
which is invariant under the transformations Z 7→ PT

αZPα, where Pα is the permu-
tation matrix defined by an automorphism α of G. If Z is an optimizer in (11.15),
then so is PT

αZPα for every automorphism α ∈ Aut(G), and hence also

Ẑ =
1

|Aut(G)|
∑

α∈Aut(G)

PT
αZPα.

This matrix satisfies PT
αZPα = Z for all automorphisms α.

The construction of an orthonormal representation of G in the proof of ϑdiag ≤
ϑsum in Theorem 11.2 can be done in a canonical way: we choose the columns of Z1/2

as the vectors zi, and use them to construct the dual orthonormal representation
with vi = z0

i and d = (
∑
i zi)

0. The optimal dual orthonormal representation
constructed this way will be invariant under the automorphism group of G. �

Corollary 11.6. If G has a node-transitive automorphism group, then

ϑ(G)ϑ(G) = n.

Proof. It follows from Theorem 11.5 that G has an orthonormal representation
(vi,d) in Rn such that

∑
i(d

Tvi)
2 = ϑ(G), and dTvi is the same for every i. So

(dTvi)
2 = ϑ(G)/n for all nodes i, and hence

ϑ(G) ≤ max
i

1

(dTvi)2
=

n

ϑ(G)
.

Since we already know the reverse inequality (Proposition 11.4), this proves the
Corollary. �

Corollary 11.7. If G is a self-complementary graph with a node-transitive auto-
morphism group, then ϑ(G) =

√
n. In particular, ϑ(C5) =

√
5. �

A further important feature of the theta-function is its nice behavior with
respect to graph product; we will see that this is what underlies its applications in
information theory.

There are many different ways of multiplying two simple graphs G and H, of
which we need one in this chapter. The strong product G�H is defined on the
underlying set V (G)×V (H). Two nodes (u1, v1) and (u2, v2) are adjacent if and
only if either ij ∈ E and uv ∈ E(H), or ij ∈ E and u = v, or i = j and uv ∈ E(H).
It is easy to see that this multiplication is associative and commutative (up to
isomorphism). The product of two complete graphs is a complete graph.

Theorem 11.8. For any two graphs G and H, we have ϑ(G�H) = ϑ(G)ϑ(H).

Proof. Let (ui : i ∈ V ) be an optimal orthogonal representation of G
with handle c (ui, c ∈ Rn), and let

(
vj : j ∈ V (H)

)
be an optimal orthog-

onal representation of H with handle d (vj ,d ∈ Rm). Recalling the identity
(u◦v)T(x◦y) = (uTx)(vTy) (used in the Introduction), we see that the vectors
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ui ◦vj ((i, j) ∈ V (G)×V (H)) form an orthogonal representation of G�H. Fur-
thermore, taking c◦d as its handle, we have(

(c◦d)T(ui ◦vj)
)2

= (cTui)
2(d◦vj)2 ≥ 1

ϑ(G)
· 1

ϑ(H)
,

and hence

ϑ(G�H) ≤ max
i,j

1(
(c◦d)T(ui ◦vj)

)2 ≤ ϑ(G)ϑ(H).

To prove that equality holds, we use the duality established in Section 11.2.
Let (vi,d) be an orthonormal representation of G which is optimal in the sense
that

∑
i(d

Tvi)
2 = ϑ(G), and let (wj , e) be an orthonormal representation of H

such that
∑
i(e

Twi)
2 = ϑ(H). It is easy to check that the vectors vi ◦wj form an

orthonormal representation of G�H, and so using handle d◦e we get

ϑ(G�H) ≥
∑
i,j

(
(d◦e)T(vi ◦wj)

)2
=
∑
i,j

(dTvi)
2(eTwj)

2 = ϑ(G)ϑ(H).

We already know the reverse inequality, which completes the proof. �

11.2.4. Eigenvalues and theta. To motivate the identities and inequalities
to be proved in this section, let us survey some of the classical results which use
spectral properties of graphs, or more generally linear algebra techniques, to bound
quantities like the stability number α = α(G), the clique number ω = ω(G), or the
chromatic number χ = χ(G) in terms of the eigenvalues of the adjacency matrix
A = AG. It turns out that several of these results could be used to define ϑ(G), if
generalized appropriately.

Let us start with an almost trivial inequality:

(11.21) ω ≤ 1+λmax(A).

In terms of the complementary graph,

(11.22) α ≤ 1+λmax(AG).

Indeed, the matrix A+I contains an ω×ω submatrix Jω of 1’s, so 1+λmax(A) =
λmax(A+I) ≥ λmax(Jω) = ω. Note that in this argument, only the matrix entries in
adjacent and diagonal positions are used. We could consider any symmetric matrix
A′ obtained from A by substituting arbitrary real numbers for the remaining entries
(which are originally zeroes), to minimize the bound λmax(A′)+1. (We keep A′

symmetric, to have real eigenvalues.) What is the best bound on ω we can obtain
this way?

The following lower bound on the chromatic number of a graph [Hoffman 1970]
is more difficult to prove:

(11.23) χ ≥ 1− λmax(A)

λmin(A)

(note that λmin(A) < 0 if G has at least one edge, which we may assume). We will
not go through the proof; but if you do, you realize that it uses only the 0’s in the
adjacency matrix, so we can play with the 1’s to get the sharpest possible lower
bound. What is the best bound on χ we can obtain this way?
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Hoffman (unpublished) proved the following upper bound on α, somewhat anal-
ogous to the bound (11.23): If G is a d-regular graph, then

(11.24) α(G) ≤ −nλmin(A)

d−λmin(A)
=

−nλmin(A)

λmax(A)−λmin(A)
.

Looking at the proof, one realizes that we use here where the 0’s of A are, and also
the fact that all row sums are the same; but not the actual values of the entries
corresponding to edges. What is the best bound we can obtain by playing with the
entries in adjacent positions?

Perhaps it is not surprising that the answer to the first two questions posed
above is ϑ(G), and the answer to the third is closely related. This will fol-
low from the next identities. The first and third formulas below were proved in
[Lovász 1979b], the second, in [Knuth 1994].

Proposition 11.9. For every graph G,

(11.25) ϑ(G) = min
U

λmax(U),

where U ranges over all V ×V -matrices with Uij = 1 for ij ∈ E and also for i = j.
Furthermore,

(11.26) ϑ(G) = max
W

λmax(W ),

where W ranges over all positive semidefinite V ×V -matrices with Wij = 0 for
ij ∈ E and Wii = 1 for i ∈ V . Furthermore,

(11.27) ϑ(G) = 1+max
T

λmax(T )

|λmin(T )|
,

where T ranges over all symmetric nonzero V ×V -matrices with Tij = 0 for ij ∈ E
and also for i = j.

Note that (11.26) can be written as

(11.28) ϑ(G) = max
v

λmax

(
Gram(v)

)
,

where v ranges over dual orthonormal representations of G (see Exercise 11.12 for
the connection of this formula with the definition 11.16 of ϑ).

Proof. Let Y be a minimizer matrix in (11.14), let D be the diagonal matrix
obtained from Y by changing all off-diagonal entries to 0, and define U = I+D−Y .
Then U satisfies the conditions in the Proposition, and (using that Y � 0)

λmax(U) ≤ λmax(I+D) = 1+max
i∈V

Yii = ϑ(G).

The reverse inequality follows similarly, by starting with a minimizer in (11.25),
and considering Y = λmax(U)I−U .

To prove (11.26), let Z be a minimizer in (11.15), and define a V ×V matrix
B by

Wij =
Zij√
ZiiZjj

.

Then W satisfies the conditions in (11.26). Define a vector x ∈ RV by xi =
√
Zii,

then x is a unit vector and

λmax(B) ≥ xTWx =
∑
i,j

Zij = ϑ(G).
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The reverse inequality follows similarly, by starting with an optimizer W in (11.26),
and scaling its rows and columns by the entries of an eigenvector belonging to
λmax(W ).

Finally, to prove (11.27), consider an optimizer T in it, then W = I− 1
λmin(T )T

is positive semidefinite, has 0′s in adjacent positions and 1’s on the diagonal. Hence
by (11.26), we have

ϑ(G) ≥ λmax(W ) = 1− λmax(T )

λmin(T )
.

The reverse inequality follows by a similar argument. �

Proposition 11.9 can be combined with different known estimates for the largest
eigenvalue of a matrix. As an example, using that the largest eigenvalue of a matrix
is bounded above by the largest `1-norm of its rows, we get that for every optimal
dual orthogonal representation v,

(11.29) ϑ(G) ≤ max
i

∑
j

|vT
i vj |.

Finally, we show how a strengthening of Hoffman’s bound (11.24) can be derived
from Proposition 11.9.

Proposition 11.10. Let G be a d-regular graph. Then for every symmetric nonzero
V ×V -matrix M such that Mij = 0 for ij ∈ E and also for i = j, and M has equal
row-sums, we have

ϑ(G) ≤ −nλmin(M)

λmax(M)−λmin(M)
.

If the automorphism group of G is transitive on the nodes, then there is such a
matrix M attaining equality. If the automorphism group is transitive on the edges,
then equality holds for M = AG.

Proof. Let M have eigenvalues λ1 = d ≥ λ2 ≥ · · · ≥ λn. The matrix J− tM
satisfies the conditions in (11.25) for every value of t. Using the condition that all
row-sums of M are the same, we see that 1 is a common eigenvector of J and M ,
and it follows that all eigenvectors of M are eigenvectors of J as well. Hence the
eigenvalues of J− tM are n− td,−tλ2, . . . ,−tλn. From the fact that the trace of
M is zero, and hence λn < 0, it follows that the largest eigenvalue of J− tM is
either n− td or −tλn, and we get the best bound if we choose t so that these two
are equal: t = n/(d−λn), giving the bound in the Proposition.

We can see just as in the proof of Theorem 11.5 that there is an optimizing
matrix U in (11.25) that is invariant under the automorphisms. So if G has a
node-transitive automorphism group, then the row-sums of this matrix are equal,
and the same holds for M = J−U . This matrix M satisfies the conditions in the
Proposition, and attains equality.

If G has an edge-transitive automorphism group, then all nonzero entries of M
are the same, and hence M = tAG for some t 6= 0. The value of t cancels from the
formula, so M = AG also provides equality. �

11.3. Computing the theta-function

Perhaps the most important consequence of the formulas proved in
Section 11.2 is that the value of ϑ(G) is polynomial time computable
[Grötschel–Lovász–Schrijver 1981]. More precisely,
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Theorem 11.11. There is an algorithm that computes, for every graph G and
every ε > 0, a real number t such that

|ϑ(G)− t| < ε.

The running time of the algorithm is polynomial in n and log(1/ε).

Algorithms proving this theorem can be based on almost any of our formulas
for ϑ. The simplest is to refer to Theorem 11.2 giving a formulation of ϑ(G) as the
optimum of a semidefinite program (11.6), and the polynomial time solvability of
semidefinite programs (see Chapter 13).

The significance of this fact is underlined if we combine it with Theorem 11.1:
The two important graph parameters α(G) and χ(G) are both NP-hard, but they
have a polynomial time computable quantity sandwiched between them.

Computability of the theta-function in an approximate sense, with an arbitrary
small error, is an important fact, but not always satisfactory. Often we want explicit
algebraic expressions, or at least explicit bounds. For example, it is important to
know that ϑ(C5) =

√
5, not just that it is between 2.23606 and 2.23607. In the

rest of this section we compute the theta-function of several classes of graphs, to
illustrate the use of the formulas in the previous sections.

Example 11.12 (Cycles). Even cycles are trivial: If n is even, then α(Cn) =
ϑ(Cn) = χ(Cn) = n/2 and α(Cn) = ϑ(Cn) = χ(Cn) = 2. To derive the theta-
function on odd cycles, we can use Proposition 11.10: The eigenvalues of Cn are
2 cos(2kπ/n) (k = 0, 1, . . . , n−1), of which k = 0 gives the largest (which is 2) and
k = (n−1)/2 gives the smallest one (which is 2 cos

(
(n−1)π/n

)
= −2 cos(π/n).

Hence

ϑ(Cn) =
n cos(π/n)

1+cos(π/n)
.

Since Cn has a node-transitive automorphism group, this implies that

ϑ(Cn) = 1+
1

cos(π/n)
.

In particular, ϑ(Cn)→ 2 as n→∞. �

Example 11.13 (Kneser graphs). The Kneser graph Kn
k is defined on node set(

[n]
k

)
, by connecting two k-sets if and only if they are disjoint (1 ≤ k ≤ n). Let us

assume that n ≥ 2k to exclude the trivial case of a graph with no edges. The set
of k-sets containing any fixed element of [n] is stable, hence α(Kn

k ) ≥
(
n−1
k−1

)
. The

Erdős–Ko–Rado Theorem asserts that this is the exact value; this fact will follow
from our considerations below.

To compute the theta-function of this graph, we use the eigenvalues of its
adjacency matrix. These are well known from coding theory:

λt = (−1)t
(
n−k− t
k− t

)
, (t = 0, 1, . . . , k).(11.30)

The multiplicity of eigenvalue λt is
(
n
t

)
−
(
n
t−1

)
(but this will not be important here).

The largest eigenvalue in
(
n−k
k

)
(the degree of each node), while the smallest is the

next one, −
(
n−k−1
k−1

)
.
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We apply the formula in Proposition 11.10, and get

(11.31) ϑ(Kn
k ) ≤

n
(
n−k−1
k−1

)(
n−k
k

)
−
(
n−k−1
k−1

) =

(
n−1

k−1

)
.

Comparing this upper bound with the lower bound on α(Kk
n), we see that they are

equal, and so

(11.32) ϑ(Kn
k ) = α(Kn

k ) =

(
n−1

k−1

)
.

In particular, the Petersen graph K5
2 has ϑ(K5

2 ) = 4.
Since Kn

k has a node-transitive automorphism group, it follows that

ϑ(K
n

k ) =

(
n

k

)/(n−1

k−1

)
=
n

k
.

This is quite close to α(K
n

k ) = bn/kc, but can be arbitrarily far from the chromatic
number of Kn

k , which is known to be n−2k+2. �

Example 11.14 (Paley graphs). The Paley graph Palp is defined for a prime p ≡ 1
(mod 4). We take the {0, 1, . . . , p−1} as nodes, and connect two of them if their
difference is a quadratic residue. It is clear that these graphs have a node-transitive
automorphism group, and it is easy to see that they are self-complementary. So
Corollary 11.7 applies, and gives that ϑ(Palp) =

√
p. To determine the stability

number of Paley graphs is an unsolved number-theoretic problem; it is conjectured
that α(Palp) = O

(
(log p)2

)
. �

Example 11.15 (Cycles with diagonals). For graphs with a node-transitive
automorphism group, the existence of automorphism-invariant optima can be very
useful. We illustrate this on the graph Wn obtained of an even cycle Cn with its
longest diagonals added. The graph W6 is just the Kuratowski graph K3,3, W8

is the Wagner graph from Example 10.36. In fact, we can restrict our attention
to the case when n = 4k is a multiple of 4, since otherwise Wn is bipartite and
ϑ(Wn) = α(Wn) = n/2. We can observe the easy bounds 2k−1 ≤ ϑ(Wn) ≤ 2k,
since Wn has 2k−1 nonadjacent nodes and can be covered by 2k edges.

Let V (Wn) = {0, 1, . . . , n−1}, where the nodes are labeled in the order of the
original cycle. There exists an optimizing matrix U in (11.25) that is invariant
under rotation, which means that it has only three different entries:

Uij =


1+a, if j− i ≡ ±1 (mod 4k),

1+b, if j− i ≡ 2k (mod 4k),

1, otherwise.

It is easy to see that for every (4k)-th root of unity ε, the vector
(1, ε, ε2, . . . εn−1) is an eigenvector of U . (This is a complex vector, so if we want
to stay in the real field, we have to consider its real and imaginary parts; but it is
more convenient here to do computations with complex vectors.) The eigenvalue
λr corresponding to ε = e2πir/n is easy to compute:

λ0 = 4k+2a+b,
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and

λr = 1+aε+ε2 + · · ·+bε2k+ε2k+1 + · · ·+aεn−1 = a(ε+ε)+bε2k

= 2a cos
rπ

2k
+b(−1)r (r > 0).

We want to minimize maxr λr. Each λr = λr(a, b) is a linear function of a and b,
so we can find ϑ as the optimum of the linear program in 3 variables a, b and t:

(11.33) ϑ(Wn) = min
a,b

max
r
λr(a, b) =

{
minimize t

subject to λr(a, b) ≤ t, r = 1, . . . , n−1.

There are many ways to do a back-of-the-envelope computation here; one gets that
a = −k, b = −k+k cos(π/k) is an optimal solution, giving

(11.34) ϑ(Wn) = k+k cos
π

k
.

The main point in this example is to illustrate that for graphs with a node-transitive
automorphism group, the value of the theta-function can be computed by a linear
program, analogous to (11.33), where the number of unknowns is the number of
orbits of the automorphism group on the edges. This may or may not lead to
simple formula like in this case, but the computation is easy to perform, often even
by hand. �

Example 11.16 (Self-polar polytopes). A polytope P ⊆ Rd is called self-polar,
if P ∗ = −P . Note that this condition implies that for each vertex v, the inequality
(−v)Tx ≤ 1 defines a facet Fv of P , and we obtain all facets this way. We call
two vertices v and v′ of P opposite, if v′ lies on Fv. In other words, vTv′ = −1,
which shows that this is a symmetric relation. We call the polytope strongly self-
polar, if it is inscribed in a ball centered at the origin, in other words, there is
an r > 0 such that |v| = r for all vertices v. For two opposite vertices we have
1 = vTu < |v| |u| = r2, and hence r > 1. It also follows that the distance of
any facet from the origin is 1/r, so the sphere with radius 1/r about the origin is
contained in P and touches every facet.

In dimension 2, regular polygons with an odd number of vertices, with appro-
priate edge length, are strongly self-polar. It was proved in [Lovász 1983b] that for
every dimension d and ε > 0 there exist strongly self-polar polytopes inscribed in
a sphere with radius r < 1+ε.

Let P be a strongly self-polar polytope in Rd, and let G be the graph on
V = V (P ), in which two vertices are connected if and only of they are opposite. It
was proved in [Lovász 1983b] that χ(G) ≥ d+1.

We can estimate ϑ(G) and ϑ(G) as follows. Let us label each vertex v of P
with the vector

uv =
1√
r2 +1

(
v

1

)
.

This is trivially a unit vector in Rd+1, and uv ⊥ uv′ for opposite vertices v and v′.
So u is an orthonormal representation of G. Using the vector ed+1 as handle, we
see that

ϑ(G) ≤ max
v

1

(eT
d+1uv)2

= r2 +1,
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and
ϑ(G) ≥

∑
v

(eT
d+1uv)2 =

n

r2 +1
.

In particular, we see that χ(G) can be arbitrarily large while ϑ(G) can be arbitrarily
close to 2. �

Example 11.17 (Random graphs). Consider the most basic random graph
G(n, 1/2) (as usual, G(n, p) denotes a random graph on n nodes with edge prob-
ability p). It is a nontrivial problem to determine the theta-function of a ran-
dom graph, and not completely solved. To start with a heuristic, recall Corollary
11.7: a self-complementary graph G with a node-transitive automorphism group
has ϑ(G) =

√
n. As a special case, the Paley graph Palp is quasirandom (infor-

mally, it behaves like a random graph in many respects) with edge-density 1/2 and
ϑ(Palp) =

√
p.

The graph G(n, 1/2) is, of course, not self-complementary, and its automor-
phism group is trivial, with high probability. However, its distribution is invariant
under complementation and also under all permutations of the nodes. Informally, it
is difficult to distinguish it from its complement (as it is difficult to distinguish any
two random graphs with the same edge-density), and apart from a little variance in
the degrees, it is difficult to distinguish any two nodes. So perhaps it does behave
like a self-complementary graph with a node-transitive automorphism group would!

This heuristic predicts the right order of magnitude of ϑ
(
G(n, 1/2)

)
, namely it

is of the order
√
n. However, no proof is known that would build on the heuristic

above. It was proved in [Juhász 1982] that with high probability,

(11.35)
1

3

√
n < ϑ

(
G
(
n, 1

2

))
< 3
√
n.

The method extends to estimating the theta-function for random graphs with
other edge-densities. If p is a constant and n→∞, then with high probability,

1

3

√
pn

1−p
≤ ϑ

(
G(n, p)

)
≤ 3

√
(1−p)n

p
.

The analysis can be extended to the case when (lnn)1/6/n ≤ p ≤ 1−(lnn)1/6/n
[Coja-Oghlan–Taraz 2004] (see [Coja-Oghlan 2003] for more results about the con-
centration of this value).

We sketch the proof in the case p = 1/2. First, consider the upper bound. The
proof of Juhász refers to a result of [Füredi–Komlós 1981] bounding the eigenvalues
of random matrices. Let A be the matrix defined by

Aij =

{
−1, if ij ∈ E,
1, otherwise.

Note that E(Aij) = 0 and A2
ij = 1 for i 6= j. The matrix A satisfies the conditions in

Proposition 11.9, and hence the results of [Füredi–Komlós 1981] provide the bound

ϑ(G) ≤ λmax(A) ≤ 3
√
n.

To prove the lower bound, it suffices to invoke Lemma 11.4 and apply the upper
bound to the complementary graph:

ϑ
(
G
(
n, 1

2

))
= ϑ

(
G
(
n, 1

2

))
≥ n

ϑ
(
G
(
n, 1

2

)) ≥ n

3
√
n

=
1

3

√
n
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with high probability. �

11.4. Stable sets

11.4.1. Stability number and theta. We have introduced ϑ(G) as an upper
bound on the stability number α(G). How good an approximation of the stability
number is obtained this way? We have seen in Theorem 11.1 that

α(G) ≤ ϑ(G) ≤ χ(G).

But α(G) and χ(G) can be very far apart, and unfortunately, the approximation of
α by ϑ can be quite as poor. We have seen that for a random graph G with edge
density 1/2, we have α(G) = O(lnn), but ϑ(G) = Θ(

√
n) (with high probability

as n → ∞). Even worse examples can be constructed [Feige 1995]: sequences of
graphs G for which α(G) = no(1) and ϑ(G) = n1−o(1); in other words, ϑ/α can be
larger than n1−ε for every ε > 0. (The existence of such graphs also follows from
the P 6= NP hypothesis and the results of [H̊astad 1999], asserting that it is NP-
hard to determine α(G) with a relative error less than n1−ε.) By [Szegedy 1994],
this also implies that ϑ(G) does not approximate the chromatic number within a
factor of n1−ε.

These constructions do leave a little room for something interesting, namely in
the cases when either α is very small, or if ϑ is very large. There are indeed (rather
weak, but useful) results in both cases.

First, consider the case when α is very small. [Konyagin 1981] proved that
if α(G) = 2 then ϑ(G) = O(n1/3), and constructed a graph with α(G) = 2 and
ϑ(G) = Ω(nc) for c > 0. The matching lower bound of Ω(n1/3) was proved by Alon
[Alon 1994], improving a slightly weaker lower bound of [Kashin–Konyagin 1981]).
(The construction, which is quite involved, is not reproduced here.) For general
α(G), [Alon–Kahale 1998] proved the following theorem:

Theorem 11.18. Let G be a graph with n nodes and α(G) = k. Then

ϑ(G) ≤ 16n
k−1
k+1 .

To prove this theorem, we need a lemma that facilitates recurrence when bound-
ing the theta-function.

Lemma 11.19. Let G be a graph, and for i ∈ V , let Gi = G[N(i)]. Then

ϑ(G) ≤ 1+max
i∈V

√
|N(i)|ϑ(Gi).

Proof. Let (vi,d) be an optimal dual orthonormal representation of G. By
inequality (11.29),

ϑ(G) ≤ max
i

∑
j

|vT
i vj | = 1+max

i

∑
j∈N(i)

|vT
i vj |.

For any given i, we use the Cauchy–Schwarz Inequality:( ∑
j∈N(i)

|vT
i vj |

)2

≤ |N(i)|
∑

j∈N(i)

(vT
i vj)

2 ≤ |N(i)|ϑ(Gi),

since we can consider
(
vj : j ∈ N(i)

)
as a dual orthonormal representation of Gi

with handle vi. Combining these two inequalities, we get the Lemma. �



11.4. STABLE SETS 199

Proof of Theorem 11.18. The case k = 1 is trivial, so assume that k > 1.
We use induction on the number of nodes. Let ∆ = maxi |N(i)| and Gi = G[N(i)],
then α(Gi) ≤ k−1 for every node i, and hence ϑ(Gi) ≤ 16∆(k−2)/k. So Lemma
11.19 implies that

ϑ(G) ≤ 1+max
i

√
|N(i)|ϑ(Gi) ≤ 1+

√
∆ ·(16∆

k−2
k ) = 1+4∆

k−1
k .

If ∆ ≤ 3nk/(k+1), then

1+4∆
k−1
k ≤ 1+4 ·3

k−1
k n

k
k+1

k−1
k < 1+12n

k−1
k+1 < 16n

k−1
k+1 ,

and we are done. If ∆ > 3nk/(k+1), then let i be a node with |N(i)| = ∆, and
consider the partition of the nodes into the sets S1 = N(i) and S2 = {i}∪N(i).
Note that α(G[S2]) ≤ α(G)−1 = k−1. So by induction on the number of nodes,

ϑ(G) ≤ ϑ(G[S1])+ϑ(G[S2]) ≤ 16∆
k−2
k +16(n−∆)

k−1
k+1

= 16∆
k−2
k +16n

k−1
k+1

(
1−∆

n

) k−1
k+1

< 16∆
k−2
k +16n

k−1
k+1

(
1− k−1

k+1
·∆
n

)
= 16n

k−1
k+1 +16∆

(
∆−

2
k − k−1

k+1
n−

2
k+1

)
≤ 16n

k−1
k+1 +16∆n−

2
k+1

(
3−

2
k − k−1

k+1

)
≤ 16n

k−1
k+1 .

�

To motivate the next theorem, let us think of the case when the chromatic
number is small, say χ(G) ≤ t, where we think of t as a constant. Trivially, α(G) ≥
n/t, and nothing better can be said. From the weaker assumption that ω(G) ≤ t
we get a much weaker bound: using the result of [Ajtai–Komlós–Szemerédi 1980]
in the theory of off-diagonal Ramsey numbers, one gets (essentially) a power of n
as a lower bound:

(11.36) α(G) = Ω

(( n

log n

) 1
t−1

)
.

The inequality ϑ(G) ≤ t is a condition that is between the previous two, and the
following theorem of [Karger–Motwani–Sudan 1994] does give a lower bound on
α(G) that is better than (11.36) (for t > 2). In addition, the proof provides a
polynomial time randomized algorithm to construct a stable set of the appropriate
size, whose use we will explain later.

Theorem 11.20. Let G be a graph and t = ϑ(G). Then

α(G) ≥ n
3

t+1

10
√

lnn
.

Proof. The case t = 2 is easy (cf. Exercise 11.1), so we assume that t > 2. By
Theorem 11.2, t is the strict vector chromatic number of G, and hence there are
unit vectors ui ∈ Rk (in some dimension k) such that uT

iuj = −1/(t−1) whenever
ij ∈ E.

Let w be a random point in Rd whose coordinates are independent standard
Gaussian random variables. Fix an s > 0, and consider the set S = {i : wTui ≥
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s}. The inner product wTui has standard Gaussian distribution, and hence the
probability that a given node belongs to S is

Q(s) =
1√
2π

∞∫
s

e−x
2/2 dx,

and the expected size of S is E|S| = Q(s)n.
Next we show that S does not induce too many edges. Let ij ∈ E, then

|ui+uj |2 = (2t−4)/(t−1), and so the probability that both nodes ui and uj
belong to S can be estimated as follows:

P(wTui ≥ s, wTuj ≥ s) ≤ P(wT(ui+uj) ≥ 2s) = Q
(√2t−2

t−2
s
)
.

Hence the expected number of edges spanned by S satisfies

E
∣∣E[S]

∣∣ ≤ Q(√2t−2

t−2
s
)
m,

where m = |E|. We can delete at most |E[S]| nodes from S (one from each edge it
induces) to get a stable set T with expected size

E|T | ≥ E(|S|−|E[S]|) = E|S|−E|E[S]| ≥ Q(s)n−Q
(√2t−2

t−2
s
)
m.

We want to choose s so that it maximizes the right hand side. By elementary
computation we get that

s =

√
2t−4

t
ln
m

n
is an approximately optimal choice. Using the well known estimates

(11.37)
1√
2π

1

s
e−s

2/2 < Q(s) <
1√
2π

s

s2 +1
e−s

2/2,

we get

α(G) ≥ 1

10
√

ln(m/n)
m−

t−2
t n

2t−2
t .

If m < n(2t+1)/(t+1), then this proves the theorem.
If m ≥ n(2t+1)/(t+1), then there is a node i with degree ∆ ≥ 2m/n ≥ 2nt/(t+1).

Clearly ϑ(G[N(i)]) ≤ t−1 (see Exercise 11.3), and hence by induction on n, G[N(i)]

has a stable set of size at least ∆3/t/(10
√

ln ∆) > n3/(t+1)/(10
√

lnn). This proves
the theorem in this case as well. �

11.4.2. The stable set polytope. Stable sets and cliques give rise to impor-
tant polyhedra associated with graphs. After summarizing some basic properties
of these polyhedra, we show that orthogonal representations provide an interesting
related convex body, with nice duality properties.

The stable set polytope STAB(G) of a graph G is the convex hull of incidence
vectors of all stable sets. This gives us a polytope in RV . The stability number
α(G) can be obtained by maximizing the linear function

∑
i∈V xi over this polytope,

which suggests that methods from linear programming can be used here.
With this goal in mind, we have to find a system of linear inequalities whose

solution set is exactly the polytope STAB(G). It would be best to find a minimal
such system, which is unique. If we can find this system, then the task of computing
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the stability number α(G) of G reduces to maximizing
∑
i∈V xi subject to these

constraints, which means solving a linear program. Unfortunately, this system of
linear inequalities is in general exponentially large and very complicated. But if we
find at least some linear inequalities valid for the stable set polytope, then solving
the linear program we get an upper bound on α(G), and for special graphs, we get
the exact value.

So we want to find linear inequalities (constraints) valid for the incidence vector
of every stable set. We start with the trivial nonnegativity constraints:

(11.38) xi ≥ 0 (i ∈ V ).

The fact that the set is stable is reflected by the edge constraints:

(11.39) xi+xj ≤ 1 (ij ∈ E).

Inequalities (11.38) and (11.39) define the fractional stable set polytope FSTAB(G).
Integral points in FSTAB(G) are exactly the incidence vectors of stable sets, but
FSTAB(G) may have other (nonintegral) vertices, and is in general larger than
STAB(G) (cf. Exercise 11.18). The case of equality has a nice characterization.

Proposition 11.21. STAB(G) = FSTAB(G) if and only if G is bipartite. �

Let αf (G) denote the maximum of
∑
i xi over x ∈ FSTAB(G). Trivially

α(G) ≤ αf (G), and αf (G) is computable in polynomial time (since (11.38) and
(11.39) describe a linear program defining αf ). The difference αf −α will play a
role in Chapter 18.

We can strengthen the edge constraints if the graph has larger cliques. Every
clique B gives rise to a clique constraint:

(11.40)
∑
i∈B

xi ≤ 1.

Inequalities (11.38) and (11.40) define a polytope QSTAB(G), the clique-
constrained fractional stable set polytope of G. Since cliques in G correspond to
stable sets in G and vice versa, it is easy to see that QSTAB(G) is just the an-
tiblocker of STAB(G) (cf. Section C.3).

Again, we can introduce a corresponding relaxation of the stability number,
namely the quantity α∗(G) defined as the maximum of

∑
i xi over x ∈ QSTAB(G).

This quantity is a sharper upper bound on α(G) then αf , but it is NP-hard to
compute [Grötschel–Lovász–Schrijver 1984]. See also Exercise 11.20.

The polytope QSTAB(G) is contained in FSTAB(G), but is still larger than
STAB(G) in general. The case of equality leads us to an interesting and rich class
of graphs, of which we give a very brief survey.

11.4.3. Perfect graphs. Recall again the basic inequality

α(G) ≤ ϑ(G) ≤ χ(G).

For graphs with α(G) = χ(G), we have equality here, so ϑ is an integer. To know
this is useful; just to mention one consequence, calling the approximation algorithm
in Theorem 11.11 with an error bound of 1/3 gives the exact value of ϑ.

But which graphs have this nice property? It turns out that the condition
α(G) = χ(G) does not say much about the structure of G, but a strengthened
version of it leads to a very interesting class of graphs. A graph G is called perfect,
if for every induced subgraph G′ of G, we have ω(G′) = χ(G′). Every bipartite
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graph is perfect, since they satisfy ω(G) = χ(G) = 2 (if they have an edge) or
ω(G) = χ(G) = 1 (if they have no edge), and their induced subgraphs are also
bipartite. Figure 11.2 shows some perfect and nonperfect graphs.

Figure 11.2. Some perfect graphs (first row) and some nonperfect
graphs (second row).

To be perfect is a rather strong structural property; nevertheless, many inter-
esting classes of graphs are perfect (bipartite graphs, their complements and their
linegraphs, interval graphs, comparability and incomparability graphs of posets,
chordal graphs, split graphs, etc.).

The following deep characterization of perfect graphs was conjectured by
Berge in 1961 and proved by Chudnovski, Robertson, Seymour and Thomas
[Chudnovsky et al. 2006].

Theorem 11.22 (Strong Perfect Graph Theorem). A graph is perfect if and
only if neither the graph nor its complement contains a chordless odd cycle longer
than 3. �

As a corollary we can state the “Weak Perfect Graph Theorem” proved earlier
[Lovász 1972]:

Theorem 11.23. The complement of a perfect graph is perfect. �

From this theorem it follows that in the definition of perfect graphs we could
replace the equation ω(G′) = χ(G′) by α(G′) = χ(G′). Perfectness can also be
characterized in terms of the stable set polytope [Chvátal 1975]:

Theorem 11.24. STAB(G) = QSTAB(G) if and only if G is perfect. �

Based on our remark above, the condition STAB(G) = QSTAB(G) is equiva-
lent to saying that STAB(G) and STAB(G) are antiblockers, which is a condition
symmetric in G and G. So Theorem 11.24 implies Theorem 11.23.

Turning to algorithms, Theorem 11.11 implies:

Corollary 11.25. The stability number and the chromatic number of a perfect
graph are polynomial time computable.

Using the algorithms of Corollary 11.25 one can compute more than just these
values: one can compute a maximum stable set and an optimal coloring in a perfect
graph in polynomial time (see Exercise 11.19).
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It is interesting (and somewhat frustrating) that the only other way of comput-
ing the stability number of a perfect graph in polynomial time is to use the very ad-
vanced structure theory of perfect graphs, developed more recently by Chudnovski,
Robertson, Seymour and Thomas [Chudnovsky et al. 2006]. This deep theory is
combinatorial, but quite involved.

Theorem 11.11 extends to the weighted version of the theta-function. Maximiz-
ing a linear function over STAB(G) or QSTAB(G) is NP-hard; but, surprisingly,
TSTAB behaves much better: Every linear objective function can be maximized
over TSTAB(G) (with an arbitrarily small error) in polynomial time. This ap-
plies in particular to ϑ(G), which is the maximum of

∑
i xi over TSTAB(G). See

[Grötschel–Lovász–Schrijver 1988, Knuth 1994] for more detail.

11.4.4. Orthogonality constraints. For every orthonormal representation
(ui, c) of G, we consider the linear constraint

(11.41)
∑
i∈V

(cTui)
2xi ≤ 1,

which we call an orthogonality constraint. The solution set of nonnegativity and
orthogonality constraints is denoted by TSTAB(G). It is clear that TSTAB is
a closed, full-dimensional, convex set. The orthogonality constraints are valid if
x is the indicator vector of a stable set of nodes (cf. (11.4)), and therefore they
are valid for STAB(G). Furthermore, every clique constraint is an orthogonality
constraint. Indeed, for every clique B, the constraint

∑
i∈B xi ≤ 1 is obtained from

the orthogonal representation

i 7→

{
e1, i ∈ B,
ei, otherwise,

c = e1.

Hence

(11.42) STAB(G) ⊆ TSTAB(G) ⊆ QSTAB(G)

for every graph G.
There are several other characterizations of TSTAB. These are based on an

extension of the theta-function to the case when we are also given a weighting
w : V → R+. Generalizing the formulas (11.12)-(11.16), the quantity ϑ(G,w) can
be defined by any of the following formulas [Grötschel–Lovász–Schrijver 1986]:

ϑ(G,w) = min
{

max
i∈V

wi
(cTui)2

: u ONR of G, |c| = 1
}

(11.43)

= min
{
t ≥ 2 : |yi|2 = t−wi, yT

i yj = −√wiwj (ij ∈ E)
}

(11.44)

= min
{

max
i∈V

(Yii+wi) : Y � 0, Yij = −√wiwj (ij ∈ E)
}

(11.45)

= max
{∑
i,j∈V

wiwjZij : Z � 0, Zij = 0 (ij ∈ E),
∑
i

Zii = 1
}

(11.46)

= max
{∑
i∈V

wi(d
Tvi)

2 : v ONR of G, |d| = 1
}
.(11.47)

The equivalence of (11.43)–(11.47) can be obtained extending the proof Theorem
11.2 to the node-weighted version (at the cost of a little more computation), which is
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described in the book [Grötschel–Lovász–Schrijver 1988], and we do not reproduce
the proof here.

Similarly as in the unweighted case, the optima in (11.43) and (11.47) satisfy
the relations

(11.48) cdT =
∑
i

(cTui)(d
Tvi)uiv

T
i

and its consequences formulated there. (The node-weights don’t enter this relation.)
For every orthonormal representation u = (ui : i ∈ V ) with handle c, we call

the vector
(
(cTui)

2 : i ∈ V
)

the profile of the representation. We can state two
further characterizations of TSTAB(G):

Proposition 11.26. (a) x ∈ TSTAB(G) if and only if ϑ(G, x) ≤ 1.

(b) The body TSTAB(G) is exactly the set of profiles of dual orthonormal rep-
resentations of G.

Proof. (a) follows from (11.47).
(b) The profile of every dual orthonormal representation belongs to TSTAB(G);

this is equivalent to (11.11). Conversely, let x ∈ TSTAB(G). Then ϑ(G, x) ≤ 1 by
(a), so (11.43) implies that there is a dual orthonormal representation v of G with
handle d for which xi ≤ dTvi for all nodes i ∈ V . Thus the vectors v′i = (xi/d

Tvi)vi
satisfy dTv′i = xi. The vectors v′i are not of unit length, but the vectors

v′′i =

(
v′i√

1−|v′i|2ei

)
and d′′ =

(
d

0

)
form a dual orthonormal representation of G with profile x. �

The last characterization of TSTAB(G) is equivalent to the following duality
result.

Corollary 11.27. TSTAB(G) is the antiblocker of TSTAB(G). �

Next we determine the vertices of TSTAB(G). Recall that a vertex of a con-
vex body K is a boundary point v that is the unique point of intersection of all
hyperplanes supporting K at v. This means that there is a pointed convex cone
containing K with v as its vertex. This is to be distinguished from an extreme
point, which is the unique point of intersection of a hyperplane supporting K with
K.

Theorem 11.28. The vertices of TSTAB(G) are exactly the incidence vectors of
stable sets in G.

Does this imply that TSTAB(G) = STAB(G)? Of course not, since TSTAB(G)
(as every convex body) is the convex hull of its extreme points, but not necessarily
of its vertices.

Proof. The vector 1A, where A is a stable set of nodes, is the unique common
point of n supporting hyperplanes xi = 1 (i ∈ A) and xi = 0 (i ∈ V \A), and so it
is a vertex of TSTAB(G).

Conversely, let z = (zi : i ∈ V ) be a vertex of TSTAB(G). If zi = 0 for
some node i, then we can delete i: We get a graph G′ for which TSTAB(G′) =
TSTAB(G)∩{zi = 0}, and so z|V \i is a vertex of TSTAB(G′), and we can proceed
by induction.
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So we may assume that zi > 0 for all i ∈ V . Since z ∈ TSTAB(G), we can
write zi = (dTvi)

2 for some dual orthonormal representation (vi : i ∈ V ) of G and
unit vector d.

Let aTx ≤ 1 be a hyperplane that supports TSTAB(G) at z. Then a ∈
TSTAB(G) by Corollary 11.27, and hence there is an orthonormal representation
(ui : i ∈ V ) of G and unit vector c such that ai = (cTui)

2. From (11.48), we get

d =
∑
i

(cTui)
2(dTvi)vi.

Multiplying by any vector y, we get

dTy =
∑
i

(cTui)
2(dTvi)(v

T
i y) =

∑
i

ai(d
Tvi)(v

T
i y).

Thus if y is not orthogonal to d, then the point z′ defined by z′i =
(dTvi)(v

T
i y)/(dTy) is contained in the supporting hyperplane

∑
i aixi = 1. This

holds for every supporting hyperplane at z. Since z is a vertex, the only com-
mon point of hyperplanes supporting TSTAB(G) at z is z itself (here we use
that z is a vertex, not just an extreme point). Thus z′ = z, which means that
vT
i y = (dTvi)(d

Ty) for all i (here we use that zi 6= 0 for all i). This relation holds
for almost all y, which implies that vi = (dTvi)d, and since vi is a unit vector, we
get vi = d. So no two vectors vi are orthogonal, and thus G has no edges. But
then z = 1V is the incidence vector of a stable set as claimed. �

Example 11.29. Consider the graph C5, with node set {1, . . . , 5}. The polytope
STAB(C5) has 11 vertices (the origin, the basic unit vectors, and the incidence
vectors of nonadjacent pairs of nodes). The facets are defined by the nonnegativity
constraints, edge constraints, and single further inequality

(11.49) x1 +x2 +x3 +x4 +x5 ≤ 2.

Since C5 has no triangles, we have QSTAB = FSTAB. This polytope has a single
vertex (1

2 , . . . ,
1
2 ) in addition to the incidence vectors of stable sets.

Turning to TSTAB, we know by Theorem 11.28 that it has 11 vertices, the
same vertices as STAB. The umbrella construction in Example 10.6 gives a point

(11.50)
( 1√

5
, . . . ,

1√
5

)T
∈ TSTAB(C5)

which is not in STAB(G) by (11.49). Applying the umbrella construction to the
complement, and scaling, we get an orthogonality constraint

(11.51) x1 + · · ·+x5 ≤
√

5,

showing that the special vertex of FSTAB(C5) does not belong to TSTAB(C5). �

This example shows that not every orthogonality constraint follows from the
clique constraints. In fact, the number of essential orthogonality constraints is
infinite unless the graph is perfect.

Proposition 11.30. TSTAB(G) is polyhedral if and only if the graph is perfect.

Proof. If G is perfect, then STAB(G) = QSTAB(G) by Theorem 11.24, and
(11.42) implies that TSTAB(G) = STAB(G) = QSTAB(G), so TSTAB(G) is poly-
hedral. To prove the converse, suppose that TSTAB(G) is polyhedral, then Theo-
rem 11.28 implies that TSTAB(G) = STAB(G). We can apply this argument to G,
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since the antiblocker TSTAB(G)abl = TSTAB(G) is also polyhedral; we get that

TSTAB(G) = TSTAB(G)abl = STAB(G)abl = QSTAB(G).

So STAB(G) = TSTAB(G) = QSTAB(G), which implies that G is perfect by
Theorem 11.24. �

11.5. Applications

11.5.1. Shannon capacity. In the introduction, we have described how to
use orthogonal representations to determine the Shannon zero-error capacity of the
pentagon. What happens with other confusion graphs?

Let V be an alphabet with confusion graph G = (V,E). To describe the
confusion graph of longer messages, we use the strong product of two graphs. In
these terms, α(G�k) is the maximum number of non-confusable words of length k:
words composed of elements of V , so that for every two words there is at least one
i (1 ≤ i ≤ k) such that the i-th letters are different and nonadjacent in G, i.e.,
non-confusable. It is easy to see that

(11.52) α(G�H) ≥ α(G)α(H).

This implies that

(11.53) α(G�(k+l)) ≥ α(G�k)α(G�l),

and hence

(11.54) α(G�k) ≥ α(G)k.

The Shannon capacity (zero-error capacity, if we want to be pedantic) of a
graph G is the value

(11.55) Θ(G) = lim
k→∞

α(G�k)1/k.

Inequality (11.53) implies, via Fekete’s Lemma, that the limit exists, and (11.54)
implies that

(11.56) Θ(G) ≥ α(G).

Rather little is known about this graph parameter for general graphs. For example,
it is not known whether Θ(G) can be computed for all graphs by any algorithm
(polynomial or not), although there are several special classes of graphs for which
this is not hard. The behavior of Θ(G) and the convergence in (11.55) are rather
erratic; see [Alon 1998, Alon–Lubetzky 2006].

Let us describe a few facts we do know. First, let us generalize the argument
from the Introduction bounding Θ(C4). Let χ(G) denote the minimum number
of complete subgraphs covering the nodes of G (this is the same as the chromatic
number of the complementary graph.) Trivially

(11.57) α(G) ≤ χ(G).

Any covering of G by χ(G) cliques and of H by χ(H) cliques gives a “product
covering” of G�H by χ(G)χ(H) cliques, and so

(11.58) χ(G�H) ≤ χ(G)χ(H).

Hence

α(G�k) ≤ χ(G�k) ≤ χ(G)k,
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and thus

(11.59) Θ(G) ≤ χ(G).

It follows that if α(G) = χ(G), then Θ(G) = α(G); for such graphs, nothing better
can be done than reducing the alphabet to the largest mutually non-confusable
subset. In particular, this answers the Shannon capacity problem for perfect graphs.

Instead of χ, we can use ϑ to bound the Shannon capacity:

α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k,

which implies

Proposition 11.31. For every graph G,

Θ(G) ≤ ϑ(G).

Since ϑ(C5) =
√

5, we get that equality holds in Example 1.2: Θ(C5) =
√

5.
This argument can be generalized to an infinite class of graphs:

Corollary 11.32. If G is a self-complementary graph with a node-transitive auto-
morphism group, then Θ(G) =

√
n.

Proof. The diagonal in G�G is stable, so α(G�G) = α(G�G) ≥ n, and
hence Θ(G) ≥

√
n. On the other hand, Θ(G) ≤ ϑ(G) =

√
n by Corollary 11.7. �

Example 11.33 (Paley graphs II). Paley graphs form a class of graphs to which
this corollary applies, and whose Shannon capacity can be determined exactly:
Θ(Palp) = ϑ(Palp) =

√
p. Assuming that the stability number of a Paley graph is

polylogarithmic in p (as conjectured), for this infinite family of graphs the Shannon
capacity is much higher than the stability number. �

The tensor product construction in the proof of Theorem 11.8 shows that if
G has an orthonormal representation in dimension c, and H has an orthonormal
representation in dimension d, the G�H has an orthonormal representation in
dimension cd. It follows that the minimum dimension of any orthonormal repre-
sentation is an upper bound on Θ(G). Exercise 11.2 shows that this bound is never
better than ϑ(G).

However, if we consider orthogonal representations over fields of finite charac-
teristic, then the analogue of ϑ is not defined, but the minimum dimension in which
an orthogonal representation exists may provide a better bound on the Shannon
capacity than ϑ. More generally, consider a G-matrix A with nonzero diagonal en-
tries. Haemers [Haemers 1979] proved that rk(A) is an upper bound on the Shannon
capacity of G, and constructed matrices (over an appropriate finite field) for which
this bound is better that ϑ (see Exercise 11.17). There are examples where such a
matrix has rank 3 while ϑ = Ω(n1/4) [Alon 2018]. Random graphs behave in the
opposite way: by Example 11.17, ϑ

(
G(n, 1/2)

)
= O(n1/2) with high probability,

while for every fixed field (finite or infinite), every matrix A with the properties
above has rank Ω(n/ log n) [Alon at al. 2018].

We’ll return to the Shannon capacity in a quantum communication setting in
Chapter 12.
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11.5.2. Approximate coloring. Suppose that somebody gives us a graph
and guarantees that the graph is 3-colorable, without telling us the 3-coloring it-
self. Can we find this 3-coloring? (This “hidden 3-coloring problem”may sound
artificial, but this kind of situation does arise in cryptography and other data se-
curity applications; one can think of the hidden 3-coloring as a “watermark” that
can be verified if we know where to look.)

It is easy to argue that knowing that the graph is 3-colorable does not
help: it is still NP-hard to find the 3-coloration. But suppose that we would
be satisfied with finding a 4-coloration, or 5-coloration, or (log n)-coloration;
is this easier? It is known that to find a 4-coloration is still NP-hard
[Khanna–Linial–Safra 2000] (see also [Garey–Johnson 1976] for inapproximability
results about larger chromatic number), but little is known above this. Improving
earlier results, [Karger–Motwani–Sudan 1994] gave a polynomial time algorithm
that, given a 3-colorable graph, computes a coloring with O(n1/4(lnn)3/2) col-
ors. This was improved in several papers; the current best exponent is O(n0.19996)
[Kawarabayashi–Thorup 2014].

We sketch the algorithm of [Karger–Motwani–Sudan 1994]. Theorem 11.20

implies that G contains a stable set of size at least n3/4/(10
√

lnn), and the proof
can be converted to a randomized polynomial time algorithm to find such a set.
Color this set with one color, delete its nodes, and repeat the procedure with the
remaining graph G1.

We claim that this procedure results in a coloring of G with 40n1/4
√

lnn colors.
Indeed, the number of nodes in G1 is

n1 ≤ n−10
n3/4

10
√

lnn
= n

(
1− 1

10n1/4
√

lnn

)
,

then by induction, the number of colors we use is at most

1+40n
1/4
1

√
lnn1 ≤ 1+40n1/4

(
1− 1

10n1/4
√

lnn

)1/4√
lnn

≤ 1+40n1/4
(

1− 1

40n1/4
√

lnn

)√
lnn = 40n1/4

√
lnn.

Exercise 11.1. If ϑ(G) = 2, then G is bipartite.

Exercise 11.2. Prove that the minimum dimension in which a graph G has an
orthonormal representation is at least ϑ(G).

Exercise 11.3. Let G be a graph and v ∈ V . (a) ϑ(G\v) ≥ ϑ(G)−1. (b) If v is
an isolated node, then ϑ(G\v) = ϑ(G)−1. (c) If v is adjacent to all other nodes,
then ϑ(G\v) = ϑ(G).

Exercise 11.4. Let G be a graph and let V = S1∪· · ·∪Sk be a partition of V .
(a) ϑ(G) ≤

∑
i ϑ(G[Si]). (b) If no edge connects nodes in different sets Si, then

equality holds. (c) Suppose that any two nodes in different sets Si are adjacent.
How can ϑ(G) be expressed in terms of the ϑ(G[Si])?

Exercise 11.5. Prove that the graph parameter ϑ−(G) introduced in Remark
11.3 could be defined in any of the following ways: (a) tightening the conditions
in (11.16) by requiring that vT

ivj ≥ 0 for all i and j; (b) relaxing the conditions

in (11.13) by requiring only wT
iwj ≤ −1/(t−1) for ij ∈ E; (c) relaxing the

orthogonality conditions in (11.12) by requiring only uT
iuj ≤ 0 for ij ∈ E.
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Exercise 11.6. Formulate and prove the analogue of Exercise 11.5 for the graph
parameter ϑ+(G).

Exercise 11.7. Prove that ϑ−(G)ϑ+(G) ≥ n for every graph G.

Exercise 11.8. Prove the following weak converse to Proposition 11.4
[Szegedy 1994]: Every graph G has a nonempty subset S ⊆ V such that

ϑ(G) ≤
(

1+
1

2
+ · · ·+ 1

n

) |S|
ϑ(G[S])

.

Exercise 11.9. Prove that allowing orthogonal representations in the complex
Hilbert space (define!) does not change the value defined by formula (11.16).

Exercise 11.10. Prove the formula (11.34) for even cycles with their longest
diagonals added, by showing that the solution given above it is optimal.

Exercise 11.11. Construct an optimal dual orthogonal representation for the
Kneser graph Kn

k .

Exercise 11.12. Let v1, . . . ,vn ∈ Rn be any set of vectors, and let A = Gram(v).
Prove that

λmax(A) = max
{∑

i

(dTvi)
2 : d ∈ Rd, |d = 1|

}
.

Exercise 11.13. Let a be the profile of an orthogonal representation (u, c) of G

in Rd, and let z be the profile of an orthogonal representation (v,d) of G in Re.
Suppose that aTz = 1.

(a) Prove that such orthogonal representations exist.

(b) Prove that
∑
i(c

Tui)(d
Tvi)(ui ◦vi) = c◦d.

(c) Defining ûi = (dTvi)ui and v̂i = (cTui)vi, Prove that the matrices U =
(û1, . . . , ûn, c) and W = (v̂1, . . . , ûn,−d) satisfy UWT = 0. (So the columns of
W almost form a Gale dual of the columns of U : only “almost”, because ranks of
U and W do not necessarily add up to n+1.)

Exercise 11.14. With the notation of Lemma 11.19, every graph G satisfies

ϑ(G)(ϑ(G)−1)2 ≤
∑
i∈V

ϑ(Gi)
2.

Exercise 11.15. Prove that the length of the sum of n unit vectors such that
among any three of them some two are orthogonal is at most 4n2/3. Prove that
this is best possible up to the constant.

Exercise 11.16. (a) Show that any stable set S provides a feasible solution of

the dual program in (11.6). (b) Show that any k-coloring of G provides a feasible
solution of the primal program in (11.6). (c) Give a new proof of the Sandwich
Theorem 11.1 based on (a) and (b).

Exercise 11.17. Let G be a graph and let A be a G-matrix with nonzero diagonal
entries. (a) Prove that α(G) ≤ rk(A); (b) prove that Θ(G) ≤ rk(A); (c) these
estimates are valid for matrices A over any field. (d) Construct a graph G and a
matrix A as above (over some field) for which rk(A) < ϑ(G).

Exercise 11.18. Prove that the vertices of FSTAB(G) are half-integral, and show
by an example that they are not always integral.

Exercise 11.19. Show that for a perfect graph, a maximum stable set and a
coloring with minimum number of colors can be computed in polynomial time.
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Exercise 11.20. The fractional chromatic number χ∗(G) is defined as the least
real number t for which there exists a family (Aj : j = 1, . . . , p) of stable sets
in G, and nonnegative weights (τj : j = 1, . . . , p) such that

∑
j τj = t and∑

j τj1Aj ≥ 1V . The fractional clique number ω∗(G) is the largest real number s

for which there exist nonnegative weights (σi : i ∈ V ) such that
∑
i σi = s and∑

i∈A σi ≤ 1 for every stable set A.

(a) Prove that ω(G) ≤ ω∗(G) and χ(G) ≥ χ∗(G).

(b) Prove that χ∗(G) = ω∗(G).

(b) Prove that ϑ(G) ≤ χ∗(G).



CHAPTER 12

Orthogonal Representations: Quantum Physics

As the basic setup in quantum physics, the state of a physical system can be
described by a vector of unit norm in a (complex) Hilbert space. (In the simple
systems we need, this space will be finite dimensional.) A measurement on a system
in quantum state is performed by applying a self-adjoint linear operator to it. The
simplest measurement operator is the orthogonal projection of the state vector onto
a one-dimensional subspace; such an experiment can be thought of as checking a
particular property of the state x. If u is the vector generating this subspace (which
is unique up to a scalar of absolute value 1), then the probability that the property
checks out is the squared inner product of u and x.

The fact that quantum physics assigns vectors to discrete objects like “proper-
ties” suggests analogies with orthogonal representations and other geometric repre-
sentations treated in this book. As it turns out, this is more than just an analogy.

The most successful area of applying quantum physics in computer science, at
least so far, has been quantum information theory. Using phenomena of quantum
physics (for example, entanglement of particles), one can create communication
channels that are more efficient than classical communication channels. We will
discuss a quantum version of the Shannon capacity problem from the Introduction,
along with two further interesting applications of orthogonal representations, to the
theory of hidden variables, and in the construction of strangely entangled states.

12.1. Preliminaries: quantum states and entanglement

As it happens, the applications we are going to discuss are all about entangle-
ment, so let us introduce this notion first.

We write u ·v for the inner product of two vectors u,v ∈ Cd, to emphasize that
it is used in the Hilbert space sense: u ·v =

∑
i uivi. However, allowing complex

entries will not play any important role.1

The simplest example of a quantum physical system is a qubit: a qubit is a unit
vector in C2. We fix a basis {e0, e1} in C2. The vector e0 corresponds (in a sense)
to the logical value “NO” of the bit, while e1, to the value “TRUE”. Qubits are
the basic units of quantum computation and quantum information theory, just like
bits are for the classical versions.

Consider two quantum physical systems A and B. Separately, their states can
be described by unit vectors x ∈ Cd and y ∈ Ce. The state of the union of the two
systems can be described by a vector in the tensor product space Cd⊗Ce. If the
two systems in states x and y are “independent” (unentangled), their joint state

1We digress from the standard physics notation, where a row vector is denoted by 〈x|, a
column vector, by |y〉, and their inner product by 〈x|y〉. This would make reading this chapter
easier for physicists, but not for mathematicians. Since most of this book is about mathematics,

I do not change notation for this single chapter.

211
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is x◦y, which is then called a product state. However, this will not be the case in
general, as a vector z ∈ Cd⊗Ce cannot generally be written as the tensor product
of two vectors in Cd. A state that cannot be written as such a tensor product is
called entangled. Every state in Cd⊗Ce can be written as

z =

d∑
i=1

e∑
j=1

Sij(ei ◦ fj),

where {e1, . . . , ed} is the standard basis in Cd, and f1, . . . , fe is the standard basis
in Ce. The coefficients Sij are complex numbers with

∑
i,j |Sij |2 = 1. Sometimes

it is convenient to describe z by the d×e complex matrix S = (Sij). In the case of
two isomorphic systems (so e = d), the state

z =
d∑
i=1

1√
d

ei ◦ei.

is maximally entangled: in a sense, farthest from a product state. The rank of
the matrix S is 1 in the case of a product state, and d in the case of the above
maximally entangled state (when the matrix is the identity).

Measurement in a quantum system is a complicated issue, but we need only a
very simple special case. We have mentioned that checking a property of the quan-
tum state x corresponds to projecting it onto a one-dimensional subspace. Given
mutually orthogonal vectors a1, . . . ,aq ∈ Cd, we can think of them as represent-
ing q different values of the same property, which are mutually exclusive (this is
not hard to see). We can check these properties simultaneously (since projections
to these one-dimensional subspaces commute), and tell which of them holds: the
property described by ai will be found to hold with probability |ai ·x|2. If q = d,
then exactly one of them will hold.

12.2. Capacity of quantum channels

Entanglement leads to rather paradoxical behavior of particles; this was pointed
out by Einstein, Podolsky and Rosen in 1935. Consider a pair of maximally en-
tangled particles with a 2-dimensional state space: say two electrons, whose spin
can be either “up” or “down”. The maximally entangled state to consider here is
1√
2
e1 ◦e1 + 1√

2
e2 ◦e2. Such a pair of particles is often called an Einstein–Podolsky–

Rosen pair or EPR pair. Both elements of such a pair represent a qubit: the same
qubit for each.

Suppose that Alice and Bob split an EPR pair between themselves (while it
remains in the same entangled state), and they travel to different far away places. If
Alice measures the state of her electron, she will find it in one of the states e1 and e2

with the same probability. Say it is in state e1, then the entangled state collapses to
e1 ◦e1 immediately. These long range correlated events could be interpreted from
the point of view of Alice as an action apparently faster than light, so it would
contradict special relativity - but only apparently. If Bob measures the state of his
electron, then it will be in state e1; but if they do the measurements in different
order what they observe will come out the same. You can play around with more
EPR pairs to convince yourself that no information can be transmitted between
Alice and Bob using only such pairs.
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While splitting an EPR pair cannot be used to transmit information faster than
light, such a strange behavior can be utilized in information theory and computer
science. One important feature of sharing such an EPR pair is that Alice and
Bob obtain the same random bit, which is very secure, since by the principles of
quantum physics, nobody can learn this bit without destroying the entanglement.

Here we utilize EPR pairs in a different way. One can ask for analogues of the
Shannon zero-error capacity in quantum information theory. Let us start with an
example showing that using entanglement does improve the efficiency of communi-
cation in certain cases.

Example 12.1. While entanglement does not allow to send information directly
(faster than the speed of light) between two people, it does allow to make bet-
ter use of classical communication channels. The following example is due to
[Cubitt et al. 2010].

We need a graph G with the following properties:

(a) its edges can be covered by r complete d-subgraphs H1, . . . ,Hr;

(b) some q of these, say H1, . . . ,Hq, partition the node set;

(c) α(G) < q;

(d) G has a dual orthonormal representation v in Rd.
Several constructions of such graphs are known, it is perhaps easiest to describe

such a graph with d = 4 and q = 6 [Peres 1991]. The node set of this graph can be
defined as the set of vectors in R4 with coordinates 0, 1 or −1, where the number of
nonzero coordinates is 1, 2 or 4, and the first nonzero coordinate is 1. We connect
two of these nodes by an edge if they are orthogonal. By definition, this graph has
a dual orthonormal representation in R4. To verify that properties (a)–(c) above
are satisfied as well is a tedious but routine exercise.

Next we construct a (noisy) classical communication channel: Its input alpha-
bet is V , its output alphabet is [r], and on input a ∈ V it outputs one of the indices
i for which a ∈ V (Hi). The output i is chosen randomly and uniformly from all
such i. Thus two inputs a and b are confusable if and only if there is a chance that
they lead to the same output, i.e., if there is an i ∈ [r] such that a, b ∈ V (Hi). This
is equivalent to ab ∈ E, so the confusability graph of the channel is G. The number
of inputs that can be used without any danger of confusion is α(G) < q.

Now we endow the channel with an extra feature: we construct two copies a
quantum system with a d-dimensional state space Cd, and prepare them by bringing
them to the above maximally entangled state. Alice and Bob get one of the two
copies each.

We use the dual orthonormal representation to show that in the presence of
such entanglement, one can safely transmit q different one-letter messages. Alice
wants to send message x ∈ [q] to Bob. She measures the state of her side in
the orthonormal basis {vs : s ∈ V (Hx)}. As discussed above, the result of the
measurement will be a random element vs of this basis. After that, the entangled
system will be in the state vs ◦vs.

Alice sends s to Bob through the noisy channel. Bob receives an index i for
which V (Hi) 3 s. (If i ≤ q, this would be the intended information x, but the noisy
channel may have output any such index i.) Since Hi is complete, Bob can measure
the state of his side in the orthonormal basis {vt : t ∈ V (Hi)}, and determine s.
Since there is a unique x ∈ [q] for which s ∈ V (Hx), this determines x.
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It is interesting to notice that while in Section 11.5.1, as well as in the rest
of this section, orthogonal representations are used to prove upper bounds on the
capacity of a channel, here we have used dual orthogonal representations to design
better protocols. �

So we see that using an entangled state can improve the zero-error capacity of a
noisy channel. How much is the improvement? [Beigi 2010] and [Cubitt et al. 2011]
prove that the theta-function is still an upper bound. One can use an entanglement-
assisted channel repeatedly to gain in its capacity just like in the classical case. Since
the theta-function is multiplicative, it remains an upper bound on the zero-error
capacity.

Theorem 12.2. Suppose that Alice and Bob are connected by a classical noisy
channel with confusability graph G. In addition, there is an entangled state u ∈
Cd ◦Cd, where Alice has access to the first factor and Bob has access to the second
factor. Then the maximum number of one-letter messages that Alice can transmit
without the possibility of confusion is bounded by ϑ(G).

Proof. Let the noisy channel have input alphabet X and output alphabet
Z. For each input x, let Zx ⊆ Z be the set of outputs that occur with positive
probability. (Since we are interested in zero-error, the actual probabilities do not
matter.) Two elements x and y are confusable if and only if Zx∩Zy 6= ∅.

The other part of the equipment is the shared entangled state u ∈ Cd⊗Cd,
which we consider as a d×d complex matrix S such that S ·S = tr(SS

T
) =∑

u,v |Suv|2 = 1.
The use of this entanglement-assisted channel can be described like this. Alice

wants to transmit a message i ∈ [m]. She performs a measurement on her half of
u; this collapses the joint state to a state u′. She transmits a message x ∈ X that
depends on i and the result of the measurement. Once Bob gets the message (more
exactly, he gets some message z ∈ Zx), he performs a measurement (depending on z)
on his half of u′, which has m possible outcomes; the outcome of this measurement
is supposed to coincide with Alice’s intended message i.

To set up the linear algebra for the analysis of this protocol, let Alice apply
an operator Ai⊗I to u. As the result of the measurement she gets an eigenvector
of Ai. Let Axi be the orthogonal projection onto the subspace of Cd generated by
those eigenvectors that lead to message x. The fact that always exactly one message
x ∈ X must be sent means, by the laws of quantum physics, that AxiA

y
i = 0 for

x 6= y and
∑
iA

x
i = I for each x ∈ X. This measurement collapses u to the state

u′ described by the matrix Axi S.
Bob’s measurements consist of m orthogonal projections Bz1 , . . . , B

z
m onto ap-

propriate subspaces of Cd. Similarly as before, we have Bzi B
z
j = 0 for i 6= j and∑

iB
z
i = I. Measurement Bzj collapses the state u′ to Axi SB

z
j . The fact that Bob

is able to recover i means that Axi SB
z
j = 0 if z ∈ Zx and i 6= j.

We claim that

(12.1) (Axi S) ·(AyjS) = 0

in the following cases: (a) i = j, x 6= y; (b) i 6= j, x = y; (c) i 6= j, xy ∈ E. Case

(a) is easy, since we can write (Axi S) ·(Ayi S) = tr(S
T
AxiA

y
i S), and, as we have seen,

AxiA
y
i = 0. In cases (b) and (c) there is an element z ∈ Zx∩Zy, and using this we
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get

(Axi S) ·(AyjS) = tr(AyjSS
T
Axi ) = tr

(
AyjS

(∑
k

Bzk
)
S
T
Axi
)

=
∑
k

tr
(
AyjSB

z
kS

T
Axi
)

= 0,

since for every k, either AyjSB
z
k = 0 or BzkS

T
A
x

i = 0. This proves (12.1).
Define an X×X matrix M by

Mx,y =

m∑
i,j=1

(Axi S) ·(AyjS).

If xy ∈ E, then Mx,y = 0, since every term is zero by conditions (a) and (c) above.
It is easy to see that M is positive semidefinite. Furthermore, using (b),

tr(M) =
∑
x

m∑
i,j=1

(Axi S) ·(AxjS) =
∑
x

S ·S = m,

and

tr(JM) =
∑
x,y,i,j

tr
(
S
T
AxiA

y
jS
)

=
∑
i,j

tr
(
S
T(∑

x

Axi
)(∑

y

Ayj
)
S
)

= m2tr(S
T
S) = m2.

This shows that the matrix 1
mM almost fulfils definition (11.15) of ϑ, except that

it is not necessarily real. But Z = 1
2m (M+M

T
) is real, and has the same trace and

sum of entries, so ϑ(G) ≥ m. �

One can consider quantum physical communication channels more general than
entanglement-assisted classical channels. The theta-function can be generalized to
such channels, so that it remains an upper bound on the zero–error capacity of the
channel [Duan–Severini–Winter 2013]; see also [Cubitt et al. 2011].

12.3. Hidden variables

Let us return to the Einstein–Podolsky–Rosen objection to quantum physics.
One way out of the paradox of sustained correlations between the results of inde-
pendently performed, spatially separated quantum measurements is the theory of
hidden variables. Perhaps the states of the electrons of Alice and Bob are already
determined when the pair is formed? Then there is nothing surprising in the fact
that the two particles are found in the same state. In the well known parable of
Schrödinger’s cat, this argument would mean that the cat in the closed chamber at
a given moment in time is either dead or alive—we just do not know which.

This interpretation, which arose from the objection to the nondeterministic–
random interpretation of quantum events, suggests that if we knew the exact state
of each particle (its “hidden parameters”), then we could predict quantum events
with certainty. A consequence would be that even if we are not able to observe
certain events simultaneously, they do actually occur.

Based on the work in [Cabello–Severini–Winter 2014], we describe a connec-
tion between the theta-function and this fundamental issue in quantum physics.
Consider a quantum system, and let e1, . . . , en be observable events. Construct a
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graph G on V = [n] in which ij ∈ E if and only if ei and ej are exclusive (cannot
occur simultaneously). We call G the exclusivity graph of the system e1, . . . , en of
events.

How many of these events occur?
We can observe any particular event ei, but this observation changes the state

of the system, so we cannot observe all of the events. If we repeat the experiment,
even if we can create the same starting state and observe the same event, we may
get a different answer. But if we choose the event ei uniformly at random from the
set {e1, . . . , en}, and we repeat the experiment with the same starting state many
times, then we can find, experimentally, the probability p that the observed event
does occur. The expected number of events that occur is then pn.

What can we say about p? In the classical setting, when e1, . . . , en are observ-
able events in a probability space (no quantum effects), we would have a probability
distribution on the stable subsets of nodes of G. The number pn would be the ex-
pected size of this set, i.e., the expected number of events that occur simultaneously.
It is trivial that this number is at most α(G), so we get the inequality

(12.2) p ≤ α(G)

n
.

The same inequality can be derived in quantum physics, if we assume that it makes
sense to talk about the number of events ei that actually hold in the given experi-
ment (even though we can only check one of them). In the usual “hidden variable”
interpretation of quantum physics this is the case.

John Bell was the first to suggest simple measurement schemes and derive for
them inequalities, which are related to (12.2), and could be experimentally verified
(or rather falsified) [Bell 1964]. Since their derivation depends on the theory of
hidden variables, disproving such an inequality disproves the hidden variable theory
(at least in its simplest form).

From basic quantum physical principles (not using hidden variables) one can
only derive the weaker inequality

(12.3) p ≤ ϑ(G)

n
.

Indeed, state x is a unit vector in a complex Hilbert space H. Observing the event
ei means projecting x to a one-dimensional subspace, spanned by a unit vector
ui ∈ H; the probability that the event occurs is just the squared length of the
projection, pi = |x ·ui|2. Thus

p =
1

n
(p1 + · · ·+pn) =

1

n

∑
i

|x ·ui|2.

Two events that exclude each other must correspond to projections onto orthogonal
vectors, and hence u is a dual orthogonal representation of G in a Hilbert space.
This is a complex Hilbert space, but it is not hard to see that the value of the
maximum in definition (11.8) of the theta-function does not change if we take
complex Hilbert space instead of the real (Exercise (11.9)). Hence we get

p =
1

n

∑
i

|x ·ui|2 ≤
ϑ(G)

n
.

From even weaker (simpler) principles, one gets an even weaker inequality. The
exclusivity principle says that the sum of probabilities of mutually exclusive events
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is at most 1. This implies the inequality∑
i∈B

pi ≤ 1

for every clique B in G; in the language of Section 11.4.2, the vector (p1, . . . , pn)
must belong to the clique-constrained fractional stable set polytope QSTAB(G),
and so it follows that

(12.4) p =
1

n
(p1 + · · ·+pn) ≤ α∗(G)

n
.

Two special cases have been studied extensively. In the Clauser–Horne–
Shimony–Holt version of the Bell experiment, one creates two entangled particles,
say electrons, whose spins can be “up” or “down”; so the state of each particle is
described by a 2-dimensional unit vector. These are sent to two far away observers,
called (as usual) Alice and Bob. Alice has two possible settings a and a′ of her
equipment measuring the spin, which means that she can choose one of these, and
perform a measurement which returns “up” or “down”. Bob has, similarly, two
settings b and b′ (not the same settings as Alice). Let a+ denote the event that
Alice measures “up” in setting a. We have 8 analogous events.

To reformulate this in our setting, consider the following 8 events:
a+b+, a−b−, a

′
+b+, a

′
−b−, a+b

′
+, a−b

′
−, a

′
+b
′
−, a

′
−b
′
+ (note the twist in the last two

terms!). The exclusivity graph of these events is the Wagner graph W8 familiar
from Example 11.15 (Figure 12.1(b)). Looking at the picture, it is easy to see
that α(G) = 3. Let p denote the probability that selecting one of them uniformly
at random and performing the corresponding measurements (one by Alice, one by
Bob), the event does occur. Repeating the experiment many times, the value of p
can be determined experimentally.

a
+
b

+ 

a
-
b

- 

a
-
✁�

- 

a
+
✂✄

+ 

☎�
-
b

- 

☎�
+
b

+ 
☎�

+
✁�

- 

✆✄
-
✂✄

+ 

Figure 12.1. The exclusivity graph V8 of the Clauser–Horne–
Shimony–Holt experiment. The edge between (say) a′−b

′
+ and

a−b
′
− indicates that they cannot occur simultaneously: for these

two events, test b′ returns different results.

Inequality (12.2) says in this case that

p ≤ α(G)

n
=

3

8
= 0.375.(12.5)

Recall that this inequality follows from the theory of hidden variables. Since there
are trivial linear equations relating the probabilities of the events a+b+ etc., this
inequality can be written in several equivalent forms, of which (12.5) is the most
convenient for us.
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We have ϑ(G) = 2+
√

2 (see Example 11.15), so the inequality

p ≤ ϑ(G)

n
=

2+
√

2

8
≈ 0.427 . . .(12.6)

follows by (12.3) without the hypothesis of hidden variables, just by the laws of
quantum physics.

Remark 12.3. Traditionally, the inequality in the Clauser–Horne–Shimony–Holt
experiment is expressed in terms of the quantum correlations, defined by

E(a+, b+) = E
(
(−1)1(a+)+1(b+)

)
,

and similarly for the other events. The CHSH inequality is then

(12.7) E(a+, b+)+E(a+, b−)+E(a−, b+)−E(a−, b−) ≤ 2.

This inequality can be expressed in terms of probabilities as

(12.8) P(a−b−) ≤ P(a+b
′
−)+P(a′−b+)+P(a′+b

′
+),

which in turn is equivalent to (12.5) (see Exercise 12.1).

Returning to the bounds (12.5) and (12.6), which of these bounds is the
“truth”? After a long line of increasingly sophisticated experiments, recent re-
ports [Hensen et al. 2015], [Giustina et al. 2015], [Shalm et al. 2015] claim to have
eliminated all the implicit assumptions (“loopholes”), and show that the bound
(12.5) does not hold in general. The experiment in [Hensen et al. 2015] provides
the value p ≈ 0.401. This value is about half way between the bounds in (12.5) and
(12.6), and it can be considered as a disproof of the “hidden variable” interpretation
of quantum physics (at least in its basic form). Whether other experimental setup
will get even closer to the bound in (12.6) is an open question.

The experiment described in [Klyachko et al. 2008] works in a similar spirit, and
leads to a more complicated measurement setup but to a simpler graph, namely
C5; see also [Cabello–Severini–Winter 2014]. In this latter paper it was also shown
that (12.3) is best possible in a sense: for every simple graph G one can con-
struct mathematical models of quantum physical systems in which equality holds.
[Howard et al. 2014] describes potential applications of these ideas to quantum com-
puting.

12.4. Unextendible product bases

This application of orthogonal representations leads to the construction of
highly entangled states.

Our introductory discussion of two entangled states easily extends to a quantum
physical system consisting of m parties. If the state of the i-th party is described
by a unit vector in a complex Hilbert space Cdi , then a state of the whole system
is described by a vector in the tensor product H = Cd1⊗· · ·⊗Cdm . A product
state is a vector of the form v1 ◦· · ·◦vm, where vi ∈ Cdi , |vi| = 1. Physically, this
corresponds to the states of the individual parties to be “independent”, more exactly
disentangled. We exclude trivial cases only if we assume that m, d1, . . . , dm ≥ 2.

For every product state v, let’s write v = v1 ◦· · ·◦vm, where vi ∈ Cdi and
|vi| = 1. This decomposition is unique up to scalars of absolute value 1, which we
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can choose arbitrarily. The inner product of two product states can be computed
as follows:

(12.9) u ·v = (u1 ·v1) · · · (um ·vm).

An incomplete orthogonal product basis, or shortly product basis is a system of
mutually orthogonal product states in H. A product basis B is unextendible, if it is
not the subset of a larger product basis. In other words, the orthogonal complement
B⊥ of the linear span of the basis vectors contains no product state.

Unextendible product bases were introduced in [Bennett et al. 1999] in order
to construct highly entangled states. In fact, they proved that such a state leads to
high entanglement in two different senses. We state these consequences informally,
without giving the exact definition and explaining their significance, which would
lead us too far into physics.

• From the mixed state obtained as the uniform distribution over all states
(unit vectors) in B⊥ no product space can be “distilled” by local measurements
and classical communication.

• The states in an unextendible product basis are locally immeasurable, i.e.,
none of them can be distinguished from the others by local measurements and
classical communication.

There are trivial unextendible product bases: taking any orthonormal basis
bi1, . . . ,b

i
di

in each Cdi , the set of all vectors of the form b1
j1
◦· · ·◦bmjm forms a

full orthonormal basis in H, of cardinality d1 · · · dn. Our goal is to construct an
unextendible product basis as small as possible.

Lemma 12.4. If {v1, . . . ,vn} is any unextendible product basis in H, then n ≥
1+
∑m
i=1(di−1). If equality holds, then the vectors {vis : s = 1, . . . , n} are in

general position in Cdi for every 1 ≤ i ≤ m.

Proof. If n ≤
∑m
i=1(di−1), then we can partition the basis into m sets

B1, . . . Bm, where |Bi| ≤ di−1. Then there is a unit vector ui that is orthogo-
nal to the |Bi| vectors vis (s ∈ Bi), and hence the vector u1 ◦· · ·◦um is orthogonal
to every v ∈ B. This contradicts the assumption that B is unextendible.

In the case of equality, the same argument can be applied provided one of the
sets Bi has di elements but the vectors {vis : s ∈ Bi} do not span Cdi . �

The following result of [Alon–Lovász 2001] translates the question whether
equality can be attained in Lemma 12.4 into a purely graph-theoretic question.

Lemma 12.5. Let n = 1+
∑m
i=1(di−1). Then there exists an unextendible product

basis with n elements in H if and only if there exists a decomposition Kn = G1∪
· · ·∪Gm into edge-disjoint graphs such that Gi does not contain a complete bipartite
subgraph with di+1 nodes (i = 1, . . . ,m).

As we have used before, the condition on Gi is equivalent to saying that its com-
plement Gi is (n−di)-connected.

Proof. I. Suppose that there is an unextendible product basis {v1, . . . ,vn} in
H. For i = 1, . . . ,m, we define a graph Gi on V = [n] as follows: we connect two
nodes s, t ∈ V by an edge if vis ·vit = 0. The condition that vs ·vt = 0 implies by
(12.9) that every pair (s, t) of nodes will be connected in at least one graph Gi. (If
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the pair gets connected in more than one graph Gi, we can delete this edge from
all but one of the graphs.)

We have to show that Gi does not contain a complete bipartite subgraph on di+
1 nodes. Suppose it does, and let U,W ⊆ V be the color classes, where |U |, |W | ≥ 1
and |U |+ |W | ≥ di+1. For every s ∈ U and t ∈ W , we have vis ·vit = 0. So the
subspaces A = lin{uis : s ∈ U and B = lin{uis : s ∈ W (over C) are orthogonal to
each other, which implies that dim(A)+dim(B) ≤ di. It follows that one of U and
W , say W , consists of linearly dependent vectors, contradicting Lemma 12.4.

II. Suppose that Kn has a decomposition as described. Theorem 10.9 implies
that Gi has an orthogonal representation (uit : t ∈ V ) in Rdi in general position.
The vectors vt = u1

t ◦· · ·◦umt (t = 1, . . . , n) form a product basis: if 1 ≤ s < t ≤ n,
then

vs ·vt = (u1
s ·u1

t ) · · · (ums ·umt ) = 0,

since st ∈ E(Gi) for some i, and then uis ·uit = 0.
We show that the product basis {v1, . . . ,vn} is unextendible. Indeed, suppose

that it could be extended by a product state w. Then w is orthogonal to every
vector vt, and hence

(w1 ·u1
t ) · · · (wm ·umt ) = 0 (t = 1, . . . , n).

Hence for every 1 ≤ t ≤ n there is an index 1 ≤ i ≤ m for which wi ·uit = 0. But
since the vectors ui1, . . . ,u

i
n are in general position, one and the same index i could

serve at most di−1 choices of t. Hence n ≤
∑
i(di−1), a contradiction. �

Unfortunately, the condition given in Lemma 12.4 is not always sufficient for
the existence of a decomposition of Kn as in the lemma. Suppose that equality
holds:

(12.10) n = 1+
∑
i

(di−1),

and there is a decomposition Kn = G1∪· · ·∪Gm as in the lemma. Since Gi contains
no K1,di , the maximum degree in Gi is at most di−1. So (12.10) implies that Gi is
regular of degree di−1. This is impossible if n is odd and di is even. Another, more
trivial exception is when m = 2 and d1 = 2 ≤ d2 (or the other way around): Then
G1 must be a perfect matching, and so G2 contains a complete bipartite graph
K2,n−2 = K2,d2−1.

It was shown in [Alon–Lovász 2001] that these are the only exceptional cases:

Theorem 12.6. Let m, d1, . . . , dm ≥ 2, and n = 1+
∑m
i=1(di−1). Assume that if

n is odd then every di is odd, and if m = 2 then d1, d2 ≥ 3. Then there exists an
unextendible product basis with n elements in Cd1⊗· · ·⊗Cdm . �

The proof uses Lemma 12.5, by constructing an appropriate decomposition of
Kn. For the details, we refer to [Alon–Lovász 2001]. Other constructions, settling
several of the exceptional cases, were given by [Chen–Johnston 2014].

Exercise 12.1. Prove that (12.5) is equivalent to the simpler inequality
P (a+b+) ≤ P (a+b

′
−)+P (a′−b+)+P (a′+b

′
+).



CHAPTER 13

Semidefinite Optimization

In our treatment of orthogonal representations, a major tool was the duality
theory for the theta-function (Section 11.2). We have remarked there that the main
step could be considered as a special case of semidefinite duality. Since semidefinite
optimization has other important applications in discrete mathematics, foremost in
the area of approximation algorithms, but also in constructing geometric represen-
tations, it is now time to survey some of the key results and illustrate the general
technique that leads to these applications.

13.1. Linear and semidefinite programs

Linear programming has been perhaps the most fundamental and successful
tools in optimization and discrete mathematics. We assume some basic familiarity
with this theory; see e.g. [Vanderbei 2001], [Schrijver 2003], [Korte–Vygen 2008].

Linear programs are special cases of convex programs; semidefinite programs
are more general than linear programs but still convex programs, to which
many of the useful properties of linear programs extend. For more compre-
hensive presentations of semidefinite optimization, see [Vandeberghe–Boyd 1996],
[Wolkowicz–Saigal–Vandenberghe 2000].

13.1.1. Different forms of semidefinite programs. A semidefinite pro-
gram is an optimization problem of the following form:

minimize cTx(13.1)

subject to x1A1 + · · ·+xnAn−B � 0.

Here A1, . . . , An, B are given symmetric m×m matrices, and c ∈ Rn is a given
vector. Recall that M � 0 means that M is positive semidefinite. We can think of∑
i xiAi−B as a matrix whose entries are linear functions of the variables.

As usual, any choice of the values xi that satisfies the given constraint is called a
feasible solution. A solution is strictly feasible, if the matrix

∑
i xiAi−B is positive

definite. We denote by vprimal the infimum of the objective function.
The special case when A1, . . . , An, B are diagonal matrices is just an arbitrary

linear program, and it is very fruitful to think of semidefinite programs as general-
izations of linear programs. But there are important technical differences. Unlike
in the case of linear programs, the infimum may be finite but not a minimum, i.e.,
not attained by any feasible solution.

221
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Example 13.1. Consider the following simple semidefinite program in two real
variables x and y:

minimize x(13.2)

subject to

(
x 1
1 y

)
� 0.

The constraint means that x ≥ 0, y ≥ 0 and xy ≥ 1, which implies that x > 0, but
x can be arbitrarily close to 0. �

As in the theory of linear programs, there are a large number of equivalent
formulations of a semidefinite program. Of course, we could consider minimization
instead of maximization. We could allow additional linear constraints on the vari-
ables xi (inequalities and/or equations). These could be incorporated into the form
above by extending the Ai and B with new diagonal entries.

We could introduce the entries of the matrix X =
∑
i xiAi−B as variables, in

which case the fact that they are linear functions of the original variables translates
into linear equations between them. Straightforward linear algebra can be used to
transform (13.1) into an optimization problem of the form

minimize C ·X(13.3)

subject to X � 0

Di ·X = di (i = 1, . . . , k)

where C,D1, . . . , Dk are symmetric m×m matrices and d1, . . . , dk ∈ R. Note that
C ·X is the general form of a linear combination of entries of X, and so Di ·X = di
is the general form of a linear equation in the entries of X. It is easy to see
that we would not get any substantially more general problem if we allowed linear
inequalities in the entries of X in addition to the equations.

With these variants in mind, it should be clear that equations (11.6) and (11.7)
express the theta-function as optima of semidefinite programs. The relationship
between these programs will be discussed next.

13.1.2. Duality. Duality is one of the most important aspects of linear pro-
grams, and we continue our treatment with generalizing duality to semidefinite
programs. We start with generalizations of the Farkas Lemma, which in its original
form characterizes the solvability of systems of linear inequalities. Let S denote
the linear space of real symmetric m×m matrices, and P ⊆ S, the set of positive
semidefinite matrices. The set P is a convex pointed cone. Let P ′ be the set of
positive definite matrices, which is just the interior of P.

Lemma 13.2 (Farkas Lemma, homogeneous version). Let L ⊆ S be a linear
space of symmetric matrices. Then exactly one of the following alternatives holds:

(i) There is a matrix X ∈ L, X � 0.

(ii) There is a matrix Y ∈ L⊥, Y 6= 0, Y � 0.

We could state this fact as follows: either both L and L⊥ contain nonzero
positive semidefinite matrices, or one of them contains a positive definite matrix.

Proof. Suppose that both alternatives hold. Then the conditions X ∈ L and
Y ∈ L⊥ imply that X ·Y = 0, while the conditions X � 0, Y � 0 and Y 6= 0 imply
that XẎ > 0. (To see this, use an orthonormal basis in which Y is diagonal.)



13.1. LINEAR AND SEMIDEFINITE PROGRAMS 223

Conversely, suppose that L∩P ′ = ∅. Then there is a hyperplane H ⊆ S
containing L but disjoint from P ′. The equation of this hyperplane is Y ·X = 0
with some symmetric matrix Y 6= 0. Clearly Y ∈ L⊥. Assuming that P ′ is on the
positive side of H, we have Y ·X > 0 for every positive definite matrix X, which
implies that Y ·X ≥ 0 for every positive semidefinite matrix X. This implies that
Y � 0. �

Depending on how the subspace L is given, the Lemma can be reformulated
in several ways. For example, let A1, . . . , An be symmetric m×m matrices. Then
exactly one of the following alternatives holds:

(i) There are x1, . . . , xn ∈ R such that x1A1 + · · ·+xnAn � 0.

(ii) There exists a symmetric matrix Y 6= 0, Y � 0 such that A1 ·Y = · · · =
An ·Y = 0.

The Semidefinite Farkas Lemma has several inhomogeneous versions; here we
state one (see the exercises for others).

We need some notation. Let A be an affine subspace of a Euclidean space S
that does not contain 0, and let A∗ = {Y ∈ S : Y ·X = −1 ∀X ∈ A}. It is easy

to see that (A∗)∗ = A. Let Â denote the linear subspace obtained by translating

A to the origin, and let Â∗ be obtained similarly from A∗. It is easy to see that Â
and Â∗ are orthogonal linear subspaces with dim(Â)+dim(Â∗) = dim(S)−1, and

Â∗ = lin(A)⊥.
Suppose that A is defined by the set of equations Ai ·X = ci, i = 1, . . . , n.

Then elementary linear algebra gives the following expressions for the associated
spaces:

Â =
{
X ∈ S : A1 ·X = · · · = An ·X = 0

}
,(13.4)

Â∗ =
{∑

i

xiAi :
∑
i

xici = 0
}
,

A∗ =
{∑

i

xiAi :
∑
i

xici = −1
}
.

Now let S be the set of symmetric m×m matrices. It is trivial that A and A∗
cannot both contain positive semidefinite matrices. It would be nice if one of them
always did, but this is not true, as the following example shows.

Example 13.3. Let

A =
{(0 1

1 t

)
: t ∈ R

}
,

then

A∗ =
{( s − 1

2
− 1

2 0

)
: s ∈ R

}
,

and these subspaces contain no positive semidefinite matrices (Figure 13.1). Both
A and A∗ are disjoint from P, but they get arbitrarily close. �

But we can state the following.

Lemma 13.4. Let A be an affine space of symmetric m×m matrices that does not
contain the 0 matrix. Then either A or A∗ contains a nonzero positive semidefinite

matrix, or both Â and Â∗ contain nonzero positive semidefinite matrices.
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x11
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x22

�
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✂

Figure 13.1. The space of 2×2 symmetric matrices, the positive
semidefinite cone P, and an affine subspace A getting arbitrarily
close to P. The subspace A∗ has similar properties.

If the last alternative occurs, then Lemma 13.2 implies that lin(A) and lin(A∗)
contain no positive definite matrices.

Proof. Clearly Â is a linear hyperplane in lin(A). If there is a positive semi-

definite matrix Z ∈ lin(A)\Â that is on the same side of Â as A, then Z has
a positive multiple in A and we are done. So we may assume that P∩ lin(A) is

contained in the closed halfspace of lin(A) bounded by Â not containing A.

This implies that Â contains no positive definite matrix, and hence there is a

matrix Y 6= 0 such that the hyperplane Y ⊥ = {X ∈ S : X ·Y = 0} contains Â but
no positive definite matrix. We may assume that X ·Y > 0 for all X ∈ P ′, then
X ·Y ≥ 0 for all X ∈ P, and hence Y � 0.

If Y /∈ lin(A)⊥ = Â∗, then Y ⊥∩ lin(A) = Â, and so Y ⊥∩A = ∅, which implies
that Y ·A = a < 0 for all A ∈ A. Then −(1/a)Y is positive semidefinite matrix in

A∗, and we are done. If Y ∈ Â∗, then Â∗ contains a positive semidefinite matrix.

The conclusion follows for Â similarly. �

Now we turn to duality. Recall the meaning of the dual variables in linear
programming: they are multipliers for the constraints so that a linear combination
of the constraints with these coefficients gives the sharpest possible bound on the
objective function. With this view in mind, it is clear that equalities can have
arbitrary real multipliers, and inequalities must have nonnegative multipliers (or
nonpositive ones, if we want to reverse the direction of the inequality). If we want
to construct a dual program in semidefinite programming, the only (but nontrivial!)
addition is that the multiplier for a semidefiniteness constraint X � 0 is a positive
semidefinite matrix Y � 0. This is based on the fact that X � 0 is equivalent to
X ·Y ≥ 0 for every Y � 0.
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Consider a semidefinite program, which we recall for convenience:

minimize

n∑
i=1

cixi(13.5)

subject to

n∑
i=1

xiAi � B.

We can follow the “rules” above for defining multipliers for the constraints, and
formulate the dual program:

maximize B ·Y(13.6)

subject to Ai ·Y = ci (i = 1, . . . , n)

Y � 0.

Note that this too is a semidefinite program in the general sense. We denote by
vdual the supremum of the objective function.

With this notion of dual programs, the Duality Theorem holds un-
der additional conditions (which cannot be omitted!); see [Wolkowitz 1981],
[Vandeberghe–Boyd 1996], [Ramana 1997].

Theorem 13.5. Assume that both the primal program (13.5) and the dual pro-
gram (13.6) have feasible solutions. Then vprimal ≥ vdual. If, in addition, the dual
program has a strictly feasible solution, then the primal optimum is attained and
vprimal = vdual.

It is easy to see that the roles of primal and dual could be interchanged: if the
dual program has a strictly feasible solution, then the primal optimum is attained,
and the two optima are equal. In particular, if both programs have strictly feasible
solutions, then the supremum, respectively infimum, of the objective functions are
attained and are equal.

Proof. Let x be a feasible solution of the primal program (13.5) and Y , a
feasible solution of the dual program (13.6). Then
(13.7)∑

i

cixi =
∑
i

(Ai ·Y )xi =
(∑

i

xiAi

)
·Y =

(∑
i

xiAi−B
)
·Y +B ·Y ≥ B ·Y.

This proves that vprimal ≥ vdual.
Suppose that the primal program (13.5) has a strongly feasible solution, but

either vprimal 6= vdual or the dual optimum is not attained. In either case, the
dual has no solution with objective value t = vprimal. This means that the affine
subspace A of S defined by

(13.8) B ·Y = t, Ai ·Y = ci (i = 1, . . . , n)

contains no positive semidefinite matrix.
Next, assume that the subspace A∗ contains a positive semidefinite matrix X.

By the representation (13.4), this has the form

(13.9) X = x0B+

n∑
i=1

xiAi, where x0t+

n∑
i=1

xici = −1.
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For any dual solution Y , we have

X ·Y = x0B ·Y +

n∑
i=1

xiAi ·Y = x0B ·Y +

n∑
i=1

xici = x0(B ·Y − t)−1,

and since B ·Y < t, we must have x0 < 0. Hence −(1/x0)X is a solution of the
primal program (13.6) with objective value t+1/x0 < t, contradicting the definition
of t.

Thus neither A nor A∗ contains a positive semidefinite matrix. By Lemma
13.4, this implies that neither lin(A) nor lin(A∗) can contain a positive definite
matrix. But for a strongly feasible primal solution, the matrix

∑
i xiAi−B is a

positive definite matrix in lin(A∗), a contradiction. �

The following complementary slackness condition also follows from (13.7).

Proposition 13.6. Let x be a feasible solution of the primal program (13.5) and
Y , a feasible solution of the dual program (13.6). Then both x and Y are optimal
solutions if and only if (

∑
i xiAi−B) ·Y = 0.

Using that for two positive semidefinite matrices X and Y , we have X ·Y = 0
if and only if XY = 0 (matrix product!), we see that the complementary slackness
condition is equivalent to (

∑
i xiAi−B)Y = 0.

13.1.3. Algorithms for semidefinite programs. There are two essentially
different algorithms known that solve semidefinite programs in polynomial time:
the ellipsoid method and interior point/barrier methods. Both of these have many
variants, and the exact technical descriptions are quite complicated; we refer to
[Porkoláb–Khachiyan 1997, Ramana 1997] for discussions of these.

The first polynomial time algorithm to solve semidefinite optimization prob-
lems in polynomial time was the ellipsoid method. This is based on the general
fact that if we can test membership in a convex body K ⊆ Rd (i.e., we have a
subroutine that, for a given point x ∈ Rd, tells us whether or not x ∈ K), then
we can use the ellipsoid method to optimize any linear objective function over K
[Grötschel–Lovász–Schrijver 1988]. The precise statement of this fact needs non-
trivial side-conditions.

For any semidefinite program (13.1), the set K of feasible solutions is convex.
With rounding and other tricks, we can make it a bounded, full-dimensional set in
Rn. To test membership, we have to decide whether a given point x belongs to K;
ignoring numerical problems, we can use Gaussian elimination to check whether the
matrix Y =

∑
i xiAi−B is positive semidefinite. Thus using the ellipsoid method

we can compute, in polynomial time, a feasible solution x that is approximately
optimal.

Unfortunately, the above argument gives an algorithm which is polynomial,
but hopelessly slow, and practically useless. Semidefinite programs can be solved in
polynomial time and also practically reasonably efficiently by interior point methods
[Overton 1988, Alizadeh 1992, Alizadeh 1995]. The algorithm can be described
very informally as follows. We consider the form (13.3), denote by K the set of its
feasible solutions (these are symmetric matrices), and want to minimize a linear
function C ·X over X ∈ K. The set K is convex, but the minimum will be attained
on the boundary of K, and this boundary is neither smooth nor polyhedral in
general. Therefore, neither gradient-type methods nor simplex-type methods of
linear programming can be used.
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The main idea of barrier methods is that instead of minimizing a linear objective
function CTX, we minimize the convex function Fλ(x) = − log det(X)+λCTX for
some parameter λ > 0. Since Fλ tends to infinity on the boundary of K, the
minimum will be attained in the interior. Since Fλ is convex and analytic in the
interior, the minimum can be very efficiently computed by a variety of numerical
methods (conjugate gradient etc.)

Of course, the point we obtain this way is not what we want, but if λ
is large it will be close. If we do not like it, we can increase λ and use
the minimizer for the old Fλ as the starting point for a new gradient type
algorithm. One can show that (under some technical assumptions about the
feasible domain) this algorithm gives a good approximation of the optimum
in polynomial time (see [Alizadeh 1995],[Vandeberghe–Boyd 1996] and the book
[Nesterov–Nemirovsky 1994]) .

13.2. Geometric representations from semidefinite optimization

13.2.1. Unit distance representation. Given a graph G, how can we rep-
resent it by unit distances? To be precise, a unit distance representation of a graph
G is a geometric representation u : V → Rd for some d ≥ 1 such that |ui−uj | = 1
for every ij ∈ E (we allow that |ui−uj | = 1 for some nonadjacent nodes i, j).

Every finite graph has a unit distance representation in a sufficiently high di-
mension. (For example, we can map its nodes onto the vertices of a regular sim-
plex with edges of length 1.) The first problem that comes to mind, raised in
[Erdős–Harary–Tutte 1965], is to find the minimum dimension d in which a graph
has a unit distance representation. Figure 13.2 shows a 2-dimensional unit distance
representation of the Petersen graph. Similarly to orthogonal representations of the
complement (and by a very similar argument) the minimum dimension d of a unit
distance representation is linked to the chromatic number of the graph:

(13.10)
1

2
logχ(G) ≤ d ≤ χ(G)−1.

Figure 13.2. A unit distance representation of the Petersen graph
in the plane.

There are many other senses in which we may want to find the most economical
unit distance representation. We only discuss one: what is the smallest radius of a
ball containing a unit distance representation of G (in any dimension)?

Considering the Gram matrix A = Gram(u) of a vector labeling u, it is easy
to obtain the following: A graph G has a unit distance representation in a ball of
radius R (in some appropriately high dimension) if and only if there exists a positive
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semidefinite matrix A such that Aii ≤ R2 for all (i ∈ V ) and Aii−2Aij+Ajj = 1
for all (ij ∈ E). In other words, the smallest radius R is the square root of the
optimum value of the following semidefinite program (and so it is polynomial time
computable with arbitrary precision):

minimize w(13.11)

subject to A � 0

Aii ≤ w (i ∈ V )

Aii−2Aij+Ajj = 1 (ij ∈ E).

Example 13.7. The unit distance embedding of the Petersen graph in Figure 13.2
is optimal if we want to minimize the dimension, but not if we want to minimize
the circumradius. Let us illustrate how semidefinite optimization can find the
optimal embedding by determining this for the Petersen graph. In the formulation
above, we have to find a 10×10 positive semidefinite matrix A satisfying the given
linear constraints. For a given w, the set of feasible solutions is convex, and it
is invariant under the automorphisms of the Petersen graph. Hence there is an
optimum solution which is invariant under these automorphisms (in the sense that
if we permute the rows and columns by the same automorphism of the Petersen
graph, we get back the same matrix).

Now we know that the Petersen graph has a very rich automorphism group: not
only can we transform every node into every other node, but also every edge into
every other edge, and every nonadjacent pair of nodes into every other nonadjacent
pair of nodes. A matrix invariant under these automorphisms has only 3 different
entries: one number in the diagonal, another number in positions corresponding
to edges, and a third number in positions corresponding to nonadjacent pairs of
nodes. This means that this optimal matrix A can be written as

A = xP +yJ+zI,

where P is the adjacency matrix of the Petersen graph. So we only have these 3
unknowns x, y and z to determine.

The linear conditions above are easily translated into the variables x, y, z. But
what to do with the condition that A is positive semidefinite? Luckily, the eigen-
vectors of P are also eigenvectors of J and I, and hence the eigenvalues of A are
the corresponding linear combinations of the eigenvalues of P , J and I. The eigen-
values of P are well known (and easy to compute): they are 3, 1 (5 times) and -2
(4 times). So the nonnegativity of the eigenvalues of A, together with the linear
conditions gives the linear inequalities in (13.11) give us the linear program

minimize y+z

subject to


3x+10y+z ≥ 0,

x+z ≥ 0,

−2x+z ≥ 0,

2z−2x = 1.

It is easy to solve this: x = −1/4, y = 1/20 and z = 1/4. Thus the smallest
radius of a ball in which the Petersen graph has a unit distance representation is√
y+z =

√
3/10. The corresponding matrix A has rank 4, so this representation

is in R4.
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It would be difficult to draw a picture of this representation, but we can offer
the following nice matrix, whose columns realize this representation:

(13.12)
1

2


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


This matrix reflects the fact that the Petersen graph is the complement of the
line-graph of K5. The center of the smallest ball containing it is not the origin;
translating it to the origin, we get a representation in 4-space, but with a less
transparent matrix. �

Unit distance representations are not only analogous to orthogonal represen-
tations, but in fact closely related; see Exercises 13.2, 13.3. They are also special
cases of bar-and-joint frameworks, to be discussed in Chapter 15.

13.2.2. Boolean variables and semidefinite optimization. Discrete opti-
mization problems typically ask for an optimal subset of a set with given properties,
and with maximum or minimum weight, or some other extremal property. A solu-
tion of such a problem can be encoded as a Boolean vector. Often the constraints
and the objective function can be expressed as quadratic functions of these vari-
ables. If this is the case, we have a chance to use semidefinite optimization to obtain
good bounds on the optimum.

In the following general description, we consider the Boolean values of the
variables as real variables x1, . . . , xn, where xi = 1 means TRUE and xi = 0 means
FALSE. The quadratic equation x2

i = xi expresses that x is 0-1 valued. For this
discussion, assume that the problem is a maximization problem with some (typically
NP-hard) optimum value vopt. It is often useful to homogenize the problem; for
this, we introduce x0 = 1. The condition on the xi becomes x2

i −xix0 = 0, and we
also have x2

0 = 1.
The symmetric matrix X = (xixj)

n
i,j=0 is positive semidefinite. There are some

further general conditions following just from the definition of X:

X00 = 1,(13.13)

Xi0 = X0i = Xii (i = 1, . . . , n).(13.14)

This is not all; as an example, the following inequality is often useful (it can be
verified by checking the possible values of xi, xj and xk; it does not follow from
positive semidefiniteness):

(13.15) Xij+Xjk ≤ Xjj+Xik (1 ≤ i, j, k ≤ n).

To obtain a semidefinite relaxation of the problem, we express the conditions
as linear constraints on the entries of X. This step is of course problem-specific,
and we will discuss some important applications in the sect sections.

Then we solve the semidefinite optimization problem with these constraints,
and obtain an optimizer matrix X and an optimum value vsd. Since the semidefinite
problem is a relaxation, we have vopt ≤ vsd. How good is this approximation? And,
equally importantly, how to get an optimum solution of the original problem from
X?
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We can write X = Gram(u) for some vector labeling u. Equation (13.13)
implies that u0 is a unit vector; the vectors ui (i > 0) satisfy uT

i (u0−ui) = 0,
so the vectors ui, u0−ui and u0 form a right triangle. We can also say that ui
lies on the Thales sphere with diameter [0,u0]. Condition (13.15) translates into
(uj−ui)

T(uj−uk) ≥ 0, which in the geometric language means that no three of
the labeling vectors form an obtuse triangle.

More generally, the vector labels satisfy algebraic conditions that are formally
similar to original quadratic constraints. For example, a constraint xixj = 0 implies
Xij = 0, which implies uT

iuj = 0. If we are lucky and the vectors ui all belong
to the same 1-dimensional space, then we get an optimal solution of the discrete
problem right away.

But in general we are not so lucky, and we need to extract and approximate
solution from the vectors ui. The simplest method is to generate a random unit
vector v, and define

xi =

{
1, if vTui >

1
2vTu0,

0, otherwise.

Geometrically, we take a random hyperplane through the center of the Thales
sphere, and define x as the incidence vector of the set of nodes represented in
the halfspace not containing the origin. The difficult question is, how far is this
solution from the optimum? The analysis of a few important applications in the
next sections shows that the answer to this question is often not easy, but the
method is quite powerful.

This method can augmented with several nontrivial tricks, and other extrac-
tion methods have also been developed; and refer to [Feige–Langberg 2006] and
[Laurent–Rendl 2005] for more.

While it is more common to use xi = 0 for FALSE, one could also use xi =
−1 to encode this. This means only a linear transformation, and sometimes one,
sometimes the other is more useful. In the examples below, both approaches come
up.

13.2.3. Stable sets. We want to find a maximum stable set S in the graph
G. We can assign 0-1 valued variables xi to the nodes, where xi = 1 means that
i ∈ S. The condition that S is stable means that xixj = 0 for all edges ij, and
the cardinality of S is just the sum

∑
i xi. It will be convenient to homogenize by

introducing a new variable x0 = 1. Then our conditions are x2
i = x0xi for every

node i, and xixj = 0 for every edge ij. The objective function to maximize can be
written as

∑
i∈V x

2
i .

In terms of the (n+1)×(n+1) matrix X = (xixj)
n
i,j=0, we have

maximize
∑
i∈V

Xii

subject to A � 0,

X00 = 1,

Xi0 = X0i = Xii (i ∈ V ),(13.16)

Xij = 0 (ij ∈ E).

Writing X = Gram(w), we get an orthogonal representation together with a unit
vector w0. The vectors vi = w0

i form a dual orthonormal representation with
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handle d = w0. We know that wi, d−wi and d form a right triangle, which means
that wi is the orthogonal projection of d onto vi, and hence |wi| = dTvi. Thus the
value of the objective function is∑

i∈V
Xii =

∑
i∈V
|wi|2 =

∑
i∈V

(dTvi)
2.

Since ϑ(G) is the maximum of the right hand side over all orthonormal representa-
tions, it follows that vsd ≤ ϑ(G). It is easy to check that we have equality here. So
ϑ can be defined as the most basic semidefinite relaxation of the stability number.

A next step is to extract a reasonably large stable subset from the optimum
solution of (13.16). We have done so in Section 11.4.1 (with a very large error, but
as remarked there, one cannot expect to do better).

13.3. Maximum cut

Next we describe the application of semidefinite optimization combined with
geometric techniques to another basic algorithmic problem, due to Goemans and
Williamson [Goemans–Williamson 1995].

13.3.1. The Maximum Cut Problem. A cut in a graph G is the set of
edges connecting a set S ⊆ V to V \S, where ∅ ⊂ S ⊂ V . The Maximum Cut
Problem is to find a cut with maximum cardinality. We denote by maxcut(G) this
maximum. (More generally, we can be given a weighting w : V → R+, and we
could be looking for a cut with maximum total weight. To keep things simple,
however, we restrict our discussion to the unweighted case.)

The Maximum Cut Problem is NP-hard; it was one of the first problems shown
to be NP-hard by Karp. A natural next step is to find an “approximately” maxi-
mum cut. Formulated in different terms, [Erdős 1967] described the following sim-
ple heuristic algorithm for the Maximum Cut Problem: for an arbitrary ordering
(v1, . . . , vn) of the nodes, we color v1, v2, . . . , vn successively red or blue. For each
i, vi is colored blue if and only if the number of edges connecting vi to blue nodes
among v1, . . . , vi−1 is less than the number of edges connecting vi to red nodes in
this set; otherwise, it is colored blue. Then the cut formed by the edges between
red and blue nodes contains at least half of all edges. In particular, we get a cut
that is at least half as large as the maximum cut.

There is an even easier randomized algorithm to achieve this approximation, at
least in expected value. Let us 2-color the nodes of G randomly, so that each node
is colored red or blue independently, with probability 1/2. Then the probability
that an edge belongs to the cut between red and blue is 1/2, and so the expected
number of edges in this cut is m/2.

These algorithms show that the maximum cut can be approximated from be-
low in polynomial time with a multiplicative error of at most 1/2. Can we do
better? The fundamental paper [Goemans–Williamson 1995], building on results
of [Mohar–Poljak 1990, Poljak–Rendl 1992, Delorme–Poljak 1993a], gives a polyno-
mial time algorithm that approximates the maximum cut in a graph with a relative
error of less than 13%:

Theorem 13.8. One can find a cut with at least .878maxcut(G) edges in polyno-
mial time.
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What is this strange constant? The proof below will show that its exact value
is 2c/π, where c is the largest positive number for which

(13.17) arccos t ≥ c(1− t)

for −1 ≤ t ≤ 1 (Figure 13.3). It can be shown that 2c/π is an irrational number,
of which the value .878 in the theorem is only an approximation.

  

arccos x 

c(1-x) 

0 1 -1 

✂/2 

| 

Figure 13.3. The constant c in the Goemans–Williamson algorithm

Can we do even better? Not likely. [H̊astad 1997] showed that it is NP-hard
to find a cut with more than (16/17)maxcut(G) ≈ .941maxcut(G) edges, so we
cannot get arbitrarily close to the optimum. The constant 2c/π ≈ .878 would seem
like a “random” byproduct of a particular proof, and one would expect that the
“truth” (the best achievable constant) is somewhere between .878 . . . and .941 . . . ,
perhaps some nice number like 9/10. However, it turns out that if we assume the
complexity theoretic hypothesis called the “Unique Games Conjecture” (stronger
than P 6= NP ), then the constant 2c/π is optimal [Khot et al. 2007]: no polynomial
time randomized algorithm can produce a cut that for every graph would contain
at least amaxcut(G) edges, where a > 2c/π.

13.3.2. Semidefinite formulation. Let us assign a ±1 variable xi to each
node, where the sign encodes the two sides of the cut we want to find. These
variables satisfy x2

i = 1. There are no instance-dependent constraints. For an edge
ij, the difference xi−xj is zero if i and j are on the same side of the cut, and ±2
otherwise. Hence the number of edges in the cut can be expressed as

(13.18)
1

4

∑
ij∈E

(xi−xj)2 =
1

4
xTLx

(where L is the Laplacian of the graph). In terms of the symmetric V ×V matrix
X = xxT = (xixj)i,j∈V , we have the semidefinite optimization problem

maximize
1

4
L ·X(13.19)

subject to X � 0

Xii = 1 (i ∈ V )

It is not hard to see that the maximum is attained, since the conditions Xii = 1
imply that |Xij | ≤ 1 for all i and j and so the set of solutions is compact. This
semidefinite program is only a relaxation of the maximum cut problem: the matrix
X has the additional property that its rank is 1. This property, however, cannot
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be expressed as a linear condition on the matrix entries. Let γ(G) denote optimum
value in (13.19).

We can write the optimizer in (13.19) as X = Gram(u), then the vector labeling
u consists of unit vectors, and the objective function is

(13.20)
m

2
−
∑
ij∈E

uT
iuj .

13.3.3. The dual problem. During our treatment of orthogonal representa-
tions and the theta-function, we have seen that semidefinite duality has played a
crucial role, leading not only to the technical tools of Theorem 11.2, but also to
duality relations between the graph and its complement (Proposition 11.4, Corol-
lary 11.6 and Corollary 11.27). Let us conclude with describing the duality of the
semidefinite relaxation of the maximum cut problem. It is not hard to see that the
dual of (13.19) can be written as

minimize
1

4

∑
i∈V

zi(13.21)

subject to diag(z)−L � 0

In words, we want to add to the diagonal entries of −L as little as possible to make
it positive semidefinite. Clearly both (13.19) and (13.21) have strictly feasible
solutions, and both optima are attained and equal to γ(G).

In terms of the adjacency matrix, we can rewrite this as

γ(G) =
m

2
+

1

4
min

{
1
Tx : diag(x)+AG � 0

}
(13.22)

So we want to increase the diagonal entries of the adjacency matrix AG to make
it positive semidefinite, and want to minimize the total increase. This minimum is
just γ(G)−m/2.

We can write a solution as diag(z)−L = Gram(v), then the vector labeling v
satisfies

(13.23) vT
i vj =

{
1, if ij ∈ E,
0, if ij ∈ E,

and, letting v run over all vector labelings satisfying (13.23),

(13.24) γ(G) = min
v

1

4

∑
i∈V

(
|vi|2 +deg(i)

)
=
m

2
+

1

4
min
v

∑
i∈V
|vi|2.

We see that this is always at least m/2, as it should be. Note that v is a particularly
nice orthogonal representation.

An argument similar to the proof of Theorem 11.5 shows that if the graph has a
node-transitive automorphism group, then adding the same value in the diagonal is
optimal. This implies that for a graph with a node-transitive automorphism group,

(13.25) γ(G) =
m

2
− n

4
λmin.

In particular,

γ(Kn) =
1

2

(
n

2

)
+
n

4
=
n2

4
, γ(Kn/2,n/2) =

n2

4
.
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Example 13.9. Bipartite graphs G are trivial examples for the Maximum Cut
Problem, since all edges can be included in a cut. How is the semidefinite pro-
gramming bound? We claim that adding the degrees deg(i) in the diagonal of the
adjacency matrix, we get a positive semidefinite matrix. Indeed, multiplying the
rows and columns corresponding to nodes in one color class (which does not change
the signs of the eigenvalues), we get LG, which is positive semidefinite.

This implies, by (13.22), that

γ(G) ≤ m

2
+

1

4

∑
i

deg(i) =
m

2
+
m

2
= m.

Since a cut of size m can be attained, it follows that γ(G) = m, and that xi = deg(i)
is an optimizer in (13.22). �

Example 13.10. Consider the line-graph H = L(G) of a simple connected graph
G. The maximum cut of H is not hard to compute [Guruswami 1999]. A partition
of V (H) = E corresponds to a partition E′∪E′′ = E. Let deg(i) and deg′(i)
denote the degree of node i in G and in (V,E′), respectively. Then the number
of edges of H between E′ and E′′ is the number of pairs of edges e′ ∈ E′ and
e′′ ∈ E′′ that share an endpoint i, and so it is

∑
i∈V deg′(i)

(
deg(i)−deg′(i)

)
.

Clearly deg′(i)
(

deg(i)−deg′(i)
)
≤ bdeg(i)2/4c, and hence

maxcut(H) ≤
∑
i∈V

⌊deg(i)2

4

⌋
.

This upper bound can be attained except in one case, when it can be improved by
1 (see Exercise 13.8):

(13.26) maxcut(H) =
∑
i∈V

⌊deg(i)2

4

⌋
−ε,

where ε = 1 if G is an eulerian graph with an odd number of edges, and ε = 0
otherwise.

To estimate the upper bound γ, we assign to each edge ij the vector 1{i,j} ∈ RV .
Then we get an orthogonal representation with properties (13.23), and so

(13.27) γ(H) ≤ |E(H)|
2

+
m

2
=
∑
i∈V

deg(i)2

4
.

Equality does not hold in all cases, but it does when G has a node-transitive auto-
morphism group. We see that for a line-graph H, the value γ(H) is a reasonable
bound on maxcut(H); it is equal to maxcut(H), among others, when G is an euler-
ian graph with an even number of edges, and asymptotically equal if the degrees of
G are large. �

13.3.4. Extracting a cut. The semidefinite optimization problem (13.19)
can be solved in polynomial time (with an arbitrarily small relative error; let’s
not worry about this error here). The optimum value γ(G) is a polynomial time
computable upper bound on the size of the maximum cut.

Following the general method, we write the optimal matrix as X = Gram(u),
to get a vector labeling with unit vectors in some space Rd, for which the objective
function (13.20) is maximized. To define the cut, we generate a random hyperplane
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Figure 13.4. A cut in the graph given by a random hyperplane

in Rd (its normal vector should be uniformly distributed over Sd), and define the
two sides of the cut as the two sides of this hyperplane (Figure 13.4).

How good is this cut? Let ij ∈ E and let ui,uj ∈ Sn−1 be the corresponding
vectors in the representation constructed above. It is easy to see that the probability
that a random hyperplane H through 0 separates ui and uj is (arccos uT

iuj)/π.
Using the constant c introduced above, the expected number of edges intersected
by H is

(13.28)
∑
ij∈E

arccos uT
iuj

π
≥
∑
ij∈E

c
1−uT

iuj
π

= −2c

π
γ(G) ≥ 2c

π
maxcut(G).

This completes the analysis of the algorithm, and proves Theorem 13.8.

Remark 13.11. Often the Max Cut Problem arises in a more general setting,
where the edges of a the graph have nonnegative weights (or values), and we want
to find a cut with maximum total weight. The algorithm described above is easily
extended to this case, by using the weights as coefficients in the sums (13.18),
(13.19) and (13.28).

Remark 13.12. It is not quite obvious how to generate a random hyperplane in
a high-dimensional linear space. We want that the random hyperplane does not
prefer any direction, which means the normal vector of the hyperplane should be
uniformly distributed over the unit sphere in Rn. Such a vector can be generated
by normalizing a standard Gaussian (see (C.15) in the Appendix).

Another objection to the above algorithm could be that it uses random real
numbers. This can be replaced by random integers from a polynomial-size set, simi-
larly as at the end of Section 3.3.3. In fact, the algorithm can be fully derandomized
by well established (but nontrivial) techniques. We do not discuss this issue here;
see e.g. [Alon–Spencer 1992], Chapter 15 for a survey of derandomization methods.

13.3.5. Springs. A different path leading to the same algorithm reaches back
to the idea of rubber band representations—with a twist. Suppose that we have
somehow placed the nodes of the graph in space, conveniently on the unit sphere
in some Euclidean space. Take a random hyperplane H through the origin. This
partitions the nodes into two classes (Figure 13.4). We “hope” that this will give a
good partition.
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How justified is this hope? If the nodes are placed in a random position (say,
their location is independently selected uniformly from the unit ball centered at the
origin), then it is easy to see that we get half of the edges in expectation.

Can we do better by placing the nodes in a more sophisticated way? Still
heuristically, an edge that is longer has a better chance of being cut by the random
hyperplane. So we want a construction that pushes adjacent nodes apart; one
expects that for such a placement, the random cut will intersect many edges. In
other words, we want to replace the edges not by rubber bands (as in Chapter
3), but by springs! Our springs will be, however, very peculiar springs, since the
farther the endpoints are, the larger the force with which they push their endpoints
apart. (This is certainly counterintuitive, but mathematically definable. In a small
neighborhood of a given length, the “spring” image can be helpful, and will be used
in Chapter 15 again.)

Clearly we have to constrain the nodes to a bounded region, and the unit sphere
Sd−1 is a natural choice. (The unit ball would work just as well.) Mathematically
speaking, we want to find a representation i 7→ ui (i ∈ V ) of the nodes of the graph
on the unit sphere in Rd so that the following “energy” is minimized:

(13.29) −
∑
ij∈E

(ui−uj)
2.

What is the minimum of this energy? If we work in R1, then the problem is
equivalent to the Maximum Cut problem: each node is represented by either 1 or
−1, which means that a placement is equivalent to a partition of the node set; the
energy is the negative of the number of edges connecting the two partition classes.
So at least we have been able to relate our placement problem to the Maximum
Cut problem.

Unfortunately, the argument above also implies that for d = 1, the optimal
representation is NP-hard to find. For d > 1, the negative of the minimum energy
−Eopt may not be equal to the size of the maximum cut, but it is still an upper
bound. While I am not aware of a proof of this, it is probably NP-hard to find
the placement with minimum energy for d = 2, and more generally, for any fixed
d. The surprising fact is that if we do not fix d (equivalently, for d = n), such
a representation can be found in polynomial time using semidefinite optimization!
This has been the content of our discussion in this section.

13.4. The MAX-3SAT problem

The Satisfiability Problem is perhaps the most central algorithmic problem in
computer science. We have Boolean variables x1, . . . , xn. A literal is a variable or
its negation. A clause is a disjunction of literals: c = y1∨· · ·∨yk. A conjunctive
normal form is a conjunction of clauses: Φ(x1, . . . , xn) = c1∧· · ·∧cm. A k-form is
a conjunctive normal form in which every clause contains k literals.

The Satisfiability Problem asks for finding values for the variables making
Φ(x1, . . . , xn) true (in other words, making every clause true). This is an NP-hard
problem (in a sense, the quintessential NP-hard problem), and therefore many
versions and special cases have been studied. It is known that the Satisfiability
Problem is polynomially solvable for 2-forms, but NP-hard for 3-forms.

The MAX-3SAT problem is a variant in which, given a 3-form Φ, we want to
find an assignment of values to the variables which makes as many clauses true
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as possible. We denote by maxsat(Φ) this maximum number. This is, of course,
NP-hard as well, but in this setting we may be interested in good approximation
algorithms.

Here we sketch an algorithm that solves the MAX-3SAT Problem within a
factor of 7/8 of the optimum, using semidefinite optimization and the geometric
representation obtained from it. We follow the general path outlined above: we
consider the Boolean variables as real variables of value 0 or 1. Each clause c has a
boolean value, indicating the truth of it: c = 1 if c is satisfied and c = 0 otherwise.
The objective function is simply

∑
c c.

As before, we use a new variable x0 = 1 to make the system homogeneous, and
want to make use of the semidefiniteness of the matrix X = xxT = (xixj)0≤i,j≤n.
The validity of a clause c = yi∨yj ∨yk can be expressed in an algebraic form:

c = 1−(1−yi)(1−yj)(1−yk).

Here yi = xi if xi is unnegated, and yi = 1−xi otherwise. Unfortunately, this
inequality is cubic, which does not lead to linear conditions on the entries of the
matrix X. But we are only looking for a relaxation, so we might use upper bounds
instead of an exact expression of c. A simple bound is

c ≤ yi+yj+yk,

but this is not powerful enough. We go sort of half way, using a quadratic upper
bound:

(13.30) c ≤ yi+yj+yk−yiyj−yiyk,

which is easy to check. There are three ways to separate one of the variables yi from
a given clause, so every clause gives rise to three inequalities of the form (13.30).

Defining the symmetric (n+1)×(n+1) matrix X = (xixj)
n
i,j=0, we want to

maximize
∑
c

(Xc
0i+Xc

0j+Xc
0j−Xc

ij−Xc
ik)(13.31)

subject to X � 0,

X00 = 1,

X0i = Xi0 = Xii (1 ≤ i ≤ n),

where

Xc
ij =


Xij , if i and j are not negated in c,

Xii−Xij , if i is not negated in c but j is,

Xjj−Xij , if j is not negated in c but i is,

X00−Xii−Xjj+Xij , if both i and j are negated in c.

The optimum value of this semidefinite program, along with the optimizing matrix
X, is polynomial time computable. This optimization problem is a relaxation of the
MAX-3SAT problem: every solution of the MAX-3SAT problem yields a solution
of (13.31) (but unfortunately not the other way around). So the optimum value of
(13.31) is at least maxsat(Φ).

The rest of the algorithm is similar to the maximum cut algorithm. We write
X = Gram(u) with an appropriate vector labeling u in Rd. Note that u0 is a unit
vector, and all the other vectors ui are contained in the sphere with radius 1/2
about (1/2)u0 (the “Thales sphere” of [0,u0]). Taking a random hyperplane H
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through (1/2)u0, and assigning xi = 1 if ui is on the same side of H as u0, and
xi = 0 otherwise, we get an assignment of boolean values.

It can be proved that the expected number of satisfied clauses is at
least 7

8maxsat(Φ); this was conjectured, and proved in some special cases in
[Karloff–Zwick 1997], and proved completely in [Zwick 2002]. This latter proof
is computer-assisted, and we do not reproduce it here. The constant 7/8 is best
possible [H̊astad 1997].

Exercise 13.1. How do the bounds (13.10) change if we insist that different
nodes be represented by different points of Rd?
Exercise 13.2. Let d1 denote the smallest dimension in which a given graph G
has a unit distance representation, and let d2 denote the smallest dimension in
which G has an orthonormal representation. Prove that d1 ≤ d2 ≤ 4d1 .

Exercise 13.3. Prove that every graph G has a unit distance representation (in
some dimension) contained in a ball with radius√

1

2
− 1

2ϑ(G)
.

If the graph has a node-transitive automorphism group, then this is the smallest
possible radius.

Exercise 13.4. Construct the dual of the semidefinite program (13.2). Does it
have an optimal solution? Does it have a strictly feasible solution?

Exercise 13.5. Let A1, . . . , An be symmetric m×m matrices. Then exactly
one of the following alternatives holds: (i) There are x1, . . . , xn ∈ R such that
x1A1 + · · ·+xnAn � 0 and

∑n
i=1 xiAi 6= 0. (ii) There exists a matrix Y � 0 such

that Ai ·Y = 0 (i = 1, . . . , n).

Exercise 13.6. Let A be an affine subspace of S. Then exactly one of the
following alternatives holds: (i) There is an X ∈ A, X � 0. (ii) There exists a
matrix Y 6= 0, Y � 0 such that either X ·Y ≤ 0 for all X ∈ L.

Exercise 13.7. Let A1, . . . , An be symmetric m×m matrices and bi, . . . , bn ∈ R.
Then exactly one of the following alternatives holds: (i) There exist x1, . . . , xn ∈ R
such that x1A1 + · · ·+xnAn � 0,

∑
i xibi ≤ 0, and if

∑
i xibi = 0 then

∑
i |bi| > 0

and yTAiy = 0 for all y ∈ Rm with (x1A1 + · · ·+xnAn)y = 0. (ii) There exists a
matrix Y � 0 such that Ai ·Y = bi for all i.

Exercise 13.8. Let G be a connected simple graph. (a) If G is eulerian with an
even number of nodes, then it has a spanning subgraph G′ such that every node
i is incident with deg(i)/2 edges of G′. (b) If G is eulerian with an odd number
of nodes, then it has a spanning subgraph G′ such that every node except one
i is incident with deg(i)/2 edges of G′. (c) If G is not eulerian, then it has a
spanning subgraph G′ such that every node i is incident with either bdeg(i)/2c or
ddeg(i)/2e edges of G′.

Exercise 13.9. Show that the Maximum Cut Problem is a special case of the
MAX-2SAT problem.

Exercise 13.10. Find infinitely many linegraphs for which equality does not hold
in (13.27).



CHAPTER 14

Stresses

We can introduce this chapter as picking up the topic of Chapter 3, studying
frameworks in equilibrium in which the edges are rubber bands and also springs
and rigid bars; mathematically, all that matters are the forces that act along the
edges, which we describe as equilibrium stresses on frameworks. The physical in-
terpretation of the edges does not matter here: in this setting, stresses (as well as
braced stresses, to be introduced below) are simply solutions of appropriate linear
equations.

Physical experience helps to visualize several of the arguments. Depending on
what carries the force along the edges, we can think of various physical models that
can be described by the above mathematical definition.

— We can think of an edge ij with a positive stress as a rubber band with this
strength. As we have done before, we think of an edge with negative stress as a
peculiar “spring” that pushes its endpoints apart.

— We can think of all edges as rigid bars, to get a bar-and-joint framework.
In a resting position, such a framework will not carry any stress, but if we replace,
say, one edge by a rubber band, then it will either move or carry a stress. Stresses
are important tools in understanding the rigidity of the framework.

— One can extend the previous model by taking the signs of stresses into
account. An edge that can carry a positive stress, but not a negative stress, is
called a cable; if it is the other way around, it is called a strut. A framework with
its edges classified as “cables” and “struts” is called a tensegrity framework.

From an engineering point of view, this chapter studies static properties of
(say) bar-and-joint frameworks; dynamic properties will be the subject matter of
the next chapter. Our main goal is to point out the many interesting connections
between graph theory and geometry this setup leads to, so we do not attempt to
be “practical”.

14.1. Stresses and stress matrices

Let us fix a vector-labeling u : V → Rd of the graph G. A function S : E → R
will called an equilibrium stress (or simply a stress) on (G,u) if

(14.1)
∑

j∈N(i)

Sij(uj−ui) = 0 (for every i ∈ V ).

Since the stress is defined on edges, rather than oriented edges, we have tacitly
assumed that Sij = Sji. We will extend the notation to nonadjacent pairs i, j by
Sij = 0 (the values Sii play no role here; we will return to a useful way of defining
them soon.)

239
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In the language of physics, we want to keep node i in position ui (think of the
case d = 3), and we can do that through forces acting along the edges of G. Then
the force acting along edge ij is parallel to uj−ui, and so wit can be written as
Sij(uj−ui). Newton’s Third Law implies that Sij = Sji. The stress on an edge can
be zero, negative or positive. A positive stress pulls each endpoint in the direction
of the other, a negative stress pushes them apart. Equation (14.1) means that every
node is in equilibrium. The framework is stressed, if it carries a not-identically-zero
equilibrium stress, and stress-free otherwise.

Let us emphasize the importance of the symmetry Sij = Sji. Without this,
equations (14.1) would be independent for different nodes i, and a nonzero stress
would simply mean that at least one node and its neighbors are affine dependent.

We can arrange a stress on the given framework into a matrix S ∈ RV×V ,
where Sij = 0 if ij ∈ E, and the diagonal entries are defined by

(14.2) Sii = −
∑

k∈N(i)

Sik

(so that each row-sum is zero). This matrix is symmetric. Combining the vectors
ui into a d×V matrix U , the definition of a stress and the definition of the diagonal
entries can be expressed as

(14.3) US = 0 and 1
TS = 0.

If the representation is affinely full-dimensional, then the vector 1 and the rows
of U are d+1 linearly independent vectors in the nullspace of S, giving an upper
bound on its corank:

(14.4) cork(S) ≥ d+1.

In a rubber band representation, the strengths of the edges “almost” form a
stress: (14.1) holds for all nodes that are not nailed. In this language, Exercise 3.5
says the following: Every rubber band representation of a simple 3-connected planar
graph with an infinite triangular country has a stress that is 1 on the internal edges
and negative on the boundary edges.

1 

1 

1 1 

-1 -1 

�✁

✁✂

✂✄

✄�
-�✂

-✄✁

(a) (b) (c)

Figure 14.1. (a) A framework consisting of a square with diag-
onals and a stress on it. Simple edges represent positive stress
values (pulling), double edges represent negative ones. (b) Stress
on a “general” quadrilateral. The intersection point of the diago-
nals divides them in the ratio of β : δ and α : γ, respectively. (c)
Stress from a rubber band representation: 1 on the interior edges,
negative on the boundary edges.
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Every stress on a framework (G,u) defines a G-matrix. Clearly stresses on a
given graph G with a given vector-labeling u form a linear space, which we can
consider as a space StrG,u ⊆ RE .

For this chapter and the next, we assume that the graphs we consider have no
isolated nodes; this excludes some trivial complications here and there.

14.1.1. Stability and the spectrum of the stress matrix. Consider a
framework with a stress S on the edges. As before, we consider S as a symmetric
matrix, whose diagonal entries are defined by (14.2), so that (14.3) holds. Let us
interpret the edges as rubber bands and springs, where rubber bands correspond
to positive stresses and springs correspond to negative stresses. The stress Sij
describes the strength of the edge ij. The definition of a stress means that the
framework is in equilibrium. Is this equilibrium stable? In other words, can we
move the nodes so as to decrease the energy of the framework?

For any vector labeling u, and stresses Sij , define the energy as

E(u) =
∑
ij∈E

Sij |uj−ui|2.

If the equilibrium condition (14.1) holds, then

(14.5) E(u) =
∑
ij∈E

Sij |uj−ui|2 = −
∑
i

∑
j∈N(i)

Siju
T
i (uj−ui) = 0.

A similar computation gives more. Suppose that we move each node i to a new
position ui+vi; then the energy of the new framework is

E(u+v) =
∑
ij∈E

Sij |uj−ui|2 +
∑
ij∈E

Sij |vj−vi|2 +2
∑
ij∈E

Sij(vj−vi)
T(uj−ui).

Using the equilibrium condition, we see that the last term vanishes:

2
∑
ij∈E

Sij(vj−vi)
T(uj−ui)

=
∑
i

∑
j∈N(i)

Sijv
T
i (uj−ui)+

∑
j

∑
i∈N(j)

Sijv
T
j (ui−uj) = 0.

Thus we get that if in position u the framework is in equilibrium, then

(14.6) E(u+v) = E(v).

It follows that the framework is in stable equilibrium if and only if E(v) ≥ 0 for
every assignment of vectors vi to the nodes. It is easy to check that for every vector
x ∈ RV ,

xTSx = −
∑
ij∈E

Sij(xi−xj)2.

Thus E(v) ≥ 0 for every vector labeling v if and only if S is negative semidefinite.
To sum up,

Proposition 14.1. A framework (G,u) in Rd with stress matrix S is in stable
equilibrium if and only if it is in equilibrium and S is negative semidefinite. �

Notice that if S is a stress on a framework, then so is −S; but if S 6= 0 is stable,
then −S is not stable, since the negation of a negative semidefinite nonzero matrix
is never negative semidefinite.
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Let S be a negative semidefinite G-matrix with zero row sums (and column
sums). Then the corresponding energy function satisfies

E(u) =
∑
i,j

Sij |ui−uj |2 =
∑
i,j

Sij |ui|2 +
∑
i,j

Sij |ui|2−2
∑
i,j

Siju
T
iuj .

The first two terms are zero, and hence E(u) ≥ 0; furthermore, equality holds if
and only if

∑
j Sijuj = 0 for every node i. This is clearly equivalent to saying that

S is a stress on (G,u).
A further consequence of equation (14.6) characterizes equilibrium positions as

stationary positions for the energy function (cf. Exercise 14.5).

14.1.2. Stresses on convex polygons. We study planar frameworks that
consist of a convex polygon and some of its diagonals.

Example 14.2. Let us consider the first nontrivial case, the complete graph K4

represented in the plane by the vertices of a convex quadrilateral P . This framework
must carry a stress; if we delete an edge, and realize the remaining edges by rigid
bars, then we get a rigid framework, so if we put back the edge as a rubber band,
the geometry does not change. This means that the force with which this last edge
acts must be counterbalanced by forces acting along the other edges, which yields
a stress S. (This stress is explicitly computed in Figure 14.1.)

The equilibrium condition (14.1) implies that if S is positive on one of the
boundary edges, then it must be positive on all other boundary edges, and negative
on the diagonals. This implies that the stress is uniquely determined up to scaling
(from two essentially different equilibrium stresses we could create one that is zero
on one edge but not all by taking linear combination). By (14.4), the rank of S is
1. It is not hard to see that the sum of stresses on the three edges incident with a
given node is positive, so the diagonal entries are negative. This implies that the
one nonzero eigenvalue of S is negative. Thus S is negative semidefinite. �

It is clear that if a framework consisting of a convex polygon and it carries a
nowhere-zero stress, then every vertex must be incident with a diagonal (else, the
forces acting along the two edges incident with this node could not be in equilib-
rium). The following lemma generalizes this observation for stresses with a specific
signature (see Figure 14.2).

Lemma 14.3. Let (G,u) be a framework in the plane consisting of a convex polygon
and some of its diagonals, which carries a stress that is positive on the boundary
edges and negative on the diagonals. Then G is 3-connected.

Proof. Suppose that G can be separated as G = G1∪G2, where V (G1)∩
V (G2) = {a, b}. One boundary edge incident with a belongs to G1, the other
belongs to G2; indeed, if both belong to (say) G1, then the whole boundary belongs
to G1 (walking around we cannot switch from G1 to G2 and back), and hence the
only diagonal belonging to G2 is ab, but this is not a proper 2-separation.

Let ac be a boundary edge belonging to G1, and let F be the force with which
G1 acts on the point ua (Figure 14.3(a)). Since a is in equilibrium, G2 acts on ua
with a force of −F . The moment of F relative to the point ub must be zero, since
the other forces acting on G2 act at ub. So F is parallel to ub−ua. We may assume
that F points from ua in the direction of ub (else, we can interchange the roles of
G1 and G2).
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(a) (b) (c)

Figure 14.2. Structure (a) carries a nowhere-zero stress in the
plane, positive on the edges of the polygon, but negative on the
diagonals (see the proof of Theorem 14.4). Structures (b) and (c)
carry no such stress. In the case of (b), the rightmost edge could
pull its endpoints closer without changing the length of any other
edge. For both of (b) and (c), Lemma 14.3 implies this, since they
are not 3-connected.

Let e be a line through ua separating uc from the other vertices of P . Then
all the forces Sia(ui−ua), where i ∈ V (G1), point to one side of e (due to the
assumption about the signs of the stresses Si). This means that their sum, F ,
cannot point in the direction of ub, a contradiction. �

a

b

c
e

F

A

B

a

b

(a) (b)

Figure 14.3. (a) A convex polygon with positive stress on the
edges and negative stress on some diagonals cannot have a 2-
separation. (b) Such a stress must have corank 3.

Now we are able to prove the following important theorem on stresses on convex
polygons [Connelly 1982]:

Theorem 14.4. Let (G,u) be a framework in R2 whose nodes are the vertices of
a convex polygon P ; its edges are the edges of P and some diagonals of P . Suppose
that G has a stress S that is positive on the boundary edges and negative on the
diagonals. Then S is negative semidefinite and has corank 3.

Proof. The proof consists of three main steps.
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Claim 1. The corank of S is 3.

We have seen already that it is at least 3. Suppose that there is a vector x in
the nullspace of S that is linearly independent from the coordinate functions and
the vector 1. Consider the 3-dimensional vector labeling

i 7→ vi =

(
ui
xi

)
(i ∈ V ).

Our choice of x implies that the vectors vi are not contained in a plane (Figure
14.3(b)). Thus their convex hull is a 3-polytope Q. The stress S will be a stress on
the 3-dimensional framework (G,v).

Projecting Q to the plane of the first two coordinates, we get the polygon P .
Every vertex of P is the projection of a unique vertex of Q. The polytope Q must
have an edge e connecting vertices va and vb that projects onto a proper diagonal
of P (not necessarily onto an edge of G). Nodes a and b split the boundary of P
into two arcs A and A′.

All outside forces acting on A come from (a) diagonals connecting the interior
of A to the interior of A′, or (b) from edges of G incident with i or j. Every
force of type (a) tries to rotate A about the edge (ua,ub) in the same direction;
forces of type (b) have no moment relative to this axis. Since there is at least one
diagonal of type (a) by Lemma 14.3, the framework cannot be in equilibrium. This
contradiction proves Claim 1.

Claim 2. There is at least one graph G′ = (V,E′) and a stress S′ on (G′,u) such
that S′ is positive on the edges of P , negative on the diagonal edges, and negative
semidefinite.

Let Kn be the complete graph on [n], where i is labeled by the vector ui. For
any three consecutive vertices ui,ui+1,ui+2 (2 ≤ i ≤ n−2), consider a stress Si on
the complete 4-graph with vertices u1,ui,ui+1,ui+2, that is positive on the edges
of the quadrilateral and negative on the diagonals (as in Example 14.2). We can
consider Si as a stress on (Kn,u). The sum of these stresses Si gives a stress that is
positive on the edges of P , negative on diagonals connecting second neighbors along
the arc from 2 to n, and zero on the other diagonals—except for those diagonals
incident with node 1. We can scale these stresses before adding them up, and we
are going to scale them so that their sum is zero on all diagonals incident with 1
except (1, n−1). We start with S2; then we scale S3 so that adding S3 kills the
stress on (1, 3). Then we add an appropriately scaled version of S4 to kill the stress
on (1, 4) etc. This way we can kill all the stresses on diagonals from 1 except on
(1, n−1) (Figure 14.4).

But we have to prove that we scale with positive numbers! We prove this by
induction on i = 3, 4, . . . . Consider the stress S′i = S2 +S3 + . . . Si−1. This is
negative on the boundary edges of the convex polygon (u1,u2, . . . ,ui+1), and zero
on the diagonals incident with 1 except for (1, i). Since u1 is in equilibrium, S′i
must be negative on (1, i). So to kill the stress on (1, i), we must add a positive
multiple if Si. This proves Claim 2.

Claim 3. S is negative semidefinite.

We know that there is another graph G′ on V (P ) whose edges are the edges
of P and some set of diagonals of P , that has a stress S′ that is positive on the
boundary edges and negative on the diagonals, and that is negative semidefinite.
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+ =

1 1 1

Figure 14.4. Making the stress zero on all but one diagonals from
node 1.

The matrices St = tS+(1− t)S′ (0 ≤ t ≤ 1) are stresses on the graph G∪G′, of
the type in the theorem. By Claim 1, they all have corank 3.

Since the eigenvalues are continuous functions of the matrix, the sets

A = {t : St negative semidefinite}
B = {t : St has ≥ 4 nonnegative eigenvalues}

are closed and their union is [0, 1]. They are also disjoint, since a matrix in both
of them would have corank 4. So one of them is empty; since 0 ∈ A, it follows that
1 ∈ A, and so S = S1 is negative semidefinite. This completes the proof of the
theorem. �

14.1.3. Stresses on convex polytopes. Let us move up to the 3-
dimensional space. An important result about stresses is a classic indeed: it was
proved by Cauchy in 1822.

Theorem 14.5. The skeleton of a 3-polytope carries no nonzero stress.

Proof. Suppose that the edges of a convex polytope P carry a nonzero stress
S. Let G′ be the subgraph of its skeleton formed by those edges which have a
nonzero stress, together with the vertices they are incident with. As in Figure 14.5,
we draw an edge ij of G′ solid, if Sij > 0, and dashed if Sij < 0. Edges of P with
zero stress are dotted.

v

Figure 14.5. Why a polytope with an equilibrium stress cannot
have a “quiet” node.
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The graph G′ is planar, and in fact it comes embedded in the surface of P ,
which is homeomorphic to the sphere. By Lemma 2.3, G′ has a “quiet” node i,
such that the solid edges (and then also the dashed edges) incident with i are
consecutive in the given embedding of G′. This implies that we can find a plane
Σ through ui which separates (in their embedding on the surface of P ) the solid
and dashed edges incident with i. Let e be the normal unit vector of Σ pointing
in the halfspace which contains the solid edges. Then for every solid edge ij we
have eT(uj−ui) > 0, and for every dashed edge ij we have eT(uj−ui) < 0. This
means that we have Sije

T(uj−ui) > 0 for every edge ij of G′. Also by definition,
we have Sije

T(uj−ui) = 0 for the dotted edges. Since i is a node of G′ and hence
it is incident with at least one edge with nonzero stress, we have∑

j∈N(i)

Sije
T(uj−ui) > 0.

But ∑
j∈N(i)

Sije
T(uj−ui) = eT

( ∑
j∈N(i)

Sij(uj−ui)
)

= 0

by the definition of a stress, a contradiction. �

The most interesting consequence of Cauchy’s Theorem is that if we make a
convex polyhedron out of cardboard, then it will be rigid (see Section 15.2).

14.2. Braced stresses

Let G be a simple graph, and let u : V → Rd be a vector-labeling of G. We
say that a function S : E → R is a braced stress on (G,u), if there are appropriate
values Sii ∈ R such that for every node i,

(14.7) Siiui+
∑

j∈N(i)

Sijuj = 0

As before, we define Sij = 0 for ij ∈ E, to get a symmetric G-matrix S, so that we
have the equation

(14.8) US = 0

(where U is the matrix whose columns give the vector-labeling u). It follows that
if the labeling vectors span the space Rd linearly, then the corank of the matrix S
is at least d.

Clearly ”proper” stresses are special braced stresses: if S is a stress on (G,u),
then ∑

j∈N(i)

Sijuj =
( ∑
j∈N(i)

Sij

)
ui.

The name “braced stress” can be explained by the following physical interpre-
tation of (14.7): We add a new node 0 at position u0 = 0 to G, and connect it to
every old node, to get a graph G′ (Figure 14.6). We define a new (proper) stress
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S′ by

S′ij = Sij , (i, j ∈ V, i 6= j),

S′i0 = S′0i = Sii, (i ∈ V ),

S′ii = −
∑

k∈{i}∪N(i)

Sik, (i ∈ V ∪{0}).

Then S′ will be a stress on the edges of this representation of G′: the equilibrium
condition at the old nodes is satisfied by the definition of S, and this easily implies
that it is also satisfied at the new node.

Figure 14.6. Rubber band representations of the octahedron
graph, framed and braced.

In the case when all stresses (on the original edges) have the same sign, we
can imagine this framework as follows: the old edges are strings or rubber bands of
appropriate strength, the new edges are rods attached to the origin, and the whole
framework is in equilibrium.

Remark 14.6. We can study equation (14.8) from two different points of view:
either we are given the vector-labeling U , and want to understand which G-matrices
M satisfy it; this has lead us to “stresses”, the main topic of this chapter. Or we
can fix M and ask for properties of the vector-labelings that satisfy it; this will
lead us to “nullspace representations”, which will be important tools in Chapter
16. (It is perhaps needless to say that these two points of view cannot be strictly
separated.)

Remark 14.7. Sometimes we consider a version where instead of (14.1), we assume
that

(14.9)
∑

j∈N(i)

Sijuj = 0.

Such an assignment is called a homogeneous stress. Thus we have defined three
kinds of stress matrices: “ordinary”, braced, and homogeneous. Each of these
versions can be described by a G-matrix satisfying the stress equation US = 0.
Homogeneous stress matrices are those that, in addition, have 0’s in their diagonal.
“Ordinary” stress matrices have zero row and column sums. “Ordinary” stresses
remain stresses when the geometric representation is translated, but homogeneous
and braced stresses do not have this property.
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14.3. Discrete Nodal Theorems

The model for the main results in this section is the Nodal Theorem of Courant.
Informally, this theorem states that the support of an eigenfunction of Laplacian-
like operators on a bounded domain, belonging to the k-th smallest eigenvalue, has
at most k connected components. We’ll see that this result about partial differential
equations has very natural and useful analogues for graphs.

14.3.1. Eigenvectors of well-signed G-matrices. Let us fix a connected
graph G, let M be a well-signed G-matrix of corank d. We study the spectrum
of M , starting with an easy observation. The Perron–Frobenius Theorem easily
implies the following fact:

Lemma 14.8. The smallest eigenvalue of M has multiplicity 1, and all entries of
the corresponding eigenvector have the same sign.

Proof. For an appropriately large constant C > 0, the matrix CI−M is non-
negative and irreducible. Hence it follows from the Perron-Frobenius Theorem that
the largest eigenvalue of CI−M has multiplicity 1, and all entries of the corre-
sponding eigenvector have the same sign. This implies that the same holds for the
smallest eigenvalue of M . �

Turning to the second smallest eigenvalue, we may assume that it is 0 (this
can be achieved by adding an appropriate constant to the diagonal, which changes
neither the order and multiplicities of the eigenvalues nor the eigenvectors).

A key lemma concerning well-signed G-matrices, which can be con-
sidered as a discrete version of Courant’s Nodal Theorem, was proved
in [van der Holst 1995]. Subsequently, various new versions and gener-
alizations of this lemma were obtained; see [van der Holst et al. 1995b],
[van der Holst et al. 1999], [Lovász–Schrijver 1999], [Colin de Verdière 1998b],
[Davies–Gladwell–Leytold 2001], [Duval–Reiner 1999], [Lin et al. 2010].

In its simplest form, the Discrete Nodal Theorem says that if the second small-
est eigenvalue of a well-signed G-matrix has multiplicity 1, then the positive and
negative supports of the corresponding eigenvector induce connected subgraphs. This
does not remain true, unfortunately, if the eigenvalue has multiplicity larger than
1 (and this will be an important situation for us):

Example 14.9 (Claw). Consider the graph G = K1,3 (the 3-star or “claw”), and
the following well-signed G-matrix:

M =


2 −1 −1 −1
−1 0 0 0
−1 0 0 0
−1 0 0 0

 .

This matrix has eigenvalues (−1, 0, 0, 3), and its nullspace consists of all vectors
of the form (0, x, y, z)T, where x+y+z = 0. So for most vectors in the nullspace,
either the positive or negative support consists of two nonadjacent nodes, and so it
is disconnected. Note, however, that those vectors in the nullspace with minimal
support look like (0, 0, x,−x), for which both the positive and negative supports
are connected in a trivial way. �
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However, these exceptional eigenvectors have a very specific form, which we
describe in detail for the purposes of later applications. Some simpler conditions
that exclude these exceptions are stated as corollaries.

Theorem 14.10 (Discrete Nodal Theorem). Let G be a connected graph, let
M be a well-signed G-matrix with one negative eigenvalue, and let 0 6= x ∈ Ker(M).
Let Nx = {i ∈ V : xi = 0}. Then the sets supp+(x) and supp−(x) are nonempty,
and either

(i) both graphs G[supp+(x)] and G[supp−(x)] are connected, or

(ii) G[supp(x)] has connected components H1, . . . ,Hk (3 ≤ k ≤ cork(M)+1),
each of which is contained in either supp+(x) or supp−(x). Furthermore, if zi
denotes the restriction of x onto Hi, extended by 0’s so that it is a vector in RV ,
then supp(Mzi) ⊆ Nx and Mzi ‖Mzj for all 1 ≤ i ≤ j ≤ k.

For the graph structure it follows that N(Hi)\V (Hi) is the same subset of Nx,
independently of i.

Proof. By the Perron–Frobenius Theorem, M has a positive eigenvector y
belonging to the negative eigenvalue. From the orthogonality relation yTx = 0, it
follows that the sets supp+(x) and supp−(x) are nonempty. Suppose that at least
one of them, say supp+(x), induces a disconnected graph. Let H1, . . . ,Ha and
Ha+1, . . . ,Hk be the connected components of supp+(x) and supp−(x), respectively,
then a ≥ 2 and k ≥ 3. Clearly zi ≥ 0 for i ≤ a, zi ≤ 0 for i > a, z1, . . . , zk are
linearly independent, and x =

∑
i zi. Let Z = (z1, . . . , zk) ∈ RV×k.

The main step in the proof is to understand the symmetric k×k matrix A =
ZTMZ. (It will turn out that A = 0.) It is easy to figure out the signs of the entries
of A. Clearly Aij = zTiMzj = 0 for 1 ≤ i < j ≤ a and a+1 ≤ i < j ≤ k, since there
is no edge between V (Hi) and V (Hj) in this case. We have Aij = zTiMzj ≥ 0 for
1 ≤ i ≤ a < j ≤ k, since Muv ≤ 0 and xuxv < 0 for u ∈ V (Hi), v ∈ V (Hj) in this
case. Furthermore,

∑
j z

T
iMzj = zTiMx = 0, and hence Aii = zTiMzi ≤ 0 for each

1 ≤ i ≤ k.
To sum up, A has nonpositive diagonal, nonnegative entries off the diagonal,

and zero row-sums. Thus the matrix −A is diagonally dominant, and hence pos-
itive semidefinite, which implies that A is negative semidefinite. By the Inertia
Theorem, the number of nonpositive eigenvalues of A is not larger than the number
of nonpositive eigenvalues of M , and hence k ≤ d+1.

Let 1 ≤ i < j ≤ a, and consider the vector w = (zTj y)zi−(zTi y)zj . Clearly

w 6= 0, but wTy = 0. Hence w is a linear combination of eigenvectors belonging to
the nonnegative eigenvalues, and so wTMw ≥ 0. On the other hand, using that A
is negative semidefinite,

wTMw = Aii(z
T
j y)2−2Aij(z

T
i y)(zTj y)+Ajj(z

T
i y)2 ≤ 0.

This implies that wTMw = 0, and so w is a linear combination of eigenvectors
belonging to the zero eigenvalues; this means that Mw = 0. Hence Mzi ‖ Mzj ,
and so supp(Mzi) = supp(Mzj).

Let U denote this common support. Since there is no edge connecting H1 and
H2, the set U = supp(Mz1) is disjoint from H2, and similarly U ∩V (Hi) = ∅ for
1 ≤ i ≤ a. But this also implies that U ∩V (Hj) = ∅ for a+1 ≤ j ≤ k: else, there
would be an edge connecting Hj (j > a) and H1, showing that U = supp(Mzj)
contains a node of H1. �
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We note that if, in addition, M has the Strong Arnold Property, then k = 3
in (ii) of Theorem 14.10. Indeed, if k ≥ 4, then u = (zT2y)z1−(zT1y)z2 and w =
(zT3y)z4−(zT4y)z3 are vectors in the nullspace of M with disjoint supports, and no
edge connects their supports. This contradicts Lemma 10.26.

The following corollary states some conditions under which the awkward pos-
sibility (ii) can be excluded, facilitating an easier application of the lemma.

Corollary 14.11. Let G be a connected graph, let M be a well-signed G-matrix
with one negative eigenvalue, and let x ∈ Ker(M), x 6= 0.. Assume that one of the
following conditions hold:

(a) x has minimal support among all nonzero vectors in Ker(M);

(b) x has full support;

(c) G is a 3-connected planar graph.

Then G[supp+(x)] and G[supp−(x)] are nonempty connected subgraphs.

Proof. It is straightforward to see that case (ii) in Theorem 14.10 cannot occur
under conditions (a) or (b). Suppose that (c) holds and alternative (ii) occurs. Since
V0 = N

(
V (Hi)

)
\V (Hi) is a cutset, we have |V0| ≥ 3. Contracting each Hi to a

single node, we get a minor containing K3,3, which is impossible as G is planar. �

Some further versions of this lemma are stated in Exercises 14.10–14.11.
We can re-state the nodal lemma in a geometric form (see Figure 14.7). Let

M be a well-signed G-matrix with one negative eigenvalue, let u : V → Rd be a
nullspace representation belonging to M , and U , the corresponding matrix. The
nullspace of M consists of all vectors of the form UTs, where s ∈ Rd.

Figure 14.7. Two possibilities how the nullspace representation
of a connected graph can be partitioned by a hyperplane through
the origin.

Let H be a linear hyperplane in Rd. We denote by V0, V + and V − the set of
nodes represented by vectors on H, on one side of H, and on the other side of H,
respectively. In terms of the vector x = Us in the nullspace of M , where s is a
normal vector of H, we have V + = supp+(x) etc. So it follows that V + and V −

are nonempty, and “usually” induce connected subgraphs.
In the exceptional case when one of G[V +] and G[V −] is disconnected, no edge

connects V + and V −. As further geometric information, there is a subspace S ⊆ H
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of dimension d−2, and there are open half-hyperplanes T1, . . . , Tk (k ≥ 3) with
boundary S, so that

• all nodes in V0, and only those, are represented in S, and these vectors
generate S;

• the nodes represented in Ti induce a connected subgraph Hi;

• all neighbors of Hi outside Hi belong to V0;

• every node in V0 is connected either to every Hi, or to none of them.

Let us rotate the hyperplane H about the subspace S. In each position, both
halfspaces bounded by H will contain at least one of the half-hyperplanes Ti, and so
they can never contain all of them. In each position where one of these halfspaces
contains at least two of the half-hyperplanes Ti we get an exceptional case. This
gives the following geometric descriptions of the two cases covered by Corollary
14.11: the subspace H is linearly spanned by some of the vectors ui; H does not
contain any of the vectors ui.

As a further application of the Discrete Nodal Theorem, we prove a fact that
will be important in several chapters of this book.

Theorem 14.12. Let G be a 3-connected planar graph and let M be a well-signed
G-matrix with exactly one negative eigenvalue. Then cork(M) ≤ 3.

Proof. Suppose not. Let a1, a2 and a3 be three nodes of the same country
(say, the unbounded country), then there is a nonzero vector x = (xi : i ∈ V )
such that Mx = 0 and xa1 = xa2 = xa3 = 0. We may assume that x has minimal
support.

By 3-connectivity, there are three paths Pi connecting the support S of u to ai
(i = 1, 2, 3), such that they have no node in common except possibly their endpoints
bi in S. Let ci be a node on Pi next to bi, then clearly xbi 6= 0 but xci = 0. From
the equation Mx = 0 it follows that ci must have a neighbor di such that xdi 6= 0,
and xbi and xdi have opposite signs. We may assume without loss of generality
that xbi > 0 but xdi < 0 for i = 1, 2, 3 (Figure 14.8).

S+         

S- 
 

a1 

a2 
a3 

c3 

d3 
d2 

d1 

b2 

c2 

b3 

b1 

c1 

Figure 14.8. Paths connecting three nodes of the unbounded
country to the negative and positive supports

Create a new node in the interior of the country F and connect it to a1, a2

and a3. Using that the positive support S+ as well as the negative support S− of
x induce connected subgraphs by Corollary 14.11, we can contract them to single
nodes. We get a subdivision of K3,3 embedded in the plane, which is impossible. �
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14.4. Braced stresses on polytopes

14.4.1. Existence. In contrast to Cauchy’s Theorem 14.5, 3-dimensional
polytopes do have braced stresses.

Theorem 14.13. The skeleton of every convex 3-polytope containing the origin in
its interior has a braced stress that is positive on every edge of the polytope.

Of course, we could require the braced stress to be negative on all edges.

Proof. Let P be a convex polytope in R3 such that the origin is in the interior
of P , and let G be the skeleton of P . Let P ∗ be its polar, and let G∗ = (V ∗, E∗)
denote the skeleton of P ∗ (see Figure 14.9).

P P* 

i 

j 

q 

p 

Figure 14.9. An edge of a polytope and the corresponding edge
of its polar.

Let ui and uj be two adjacent vertices of P , and let wp and wq be the endpoints
of the corresponding edge pq ∈ E∗, where the p is on the right of the edge ij, oriented
from i to j, and viewed from outside. Then by the definition of polarity, we have

uT
iwp = uT

iwq = uT
jwp = uT

jwq = 1.

This implies that the vector wp−wq is orthogonal to both vectors ui and uj . Here
ui and uj are not parallel, since they are the endpoints of an edge and the origin
is not on this line. Hence wq−wp is parallel to the nonzero vector ui×uj , and we
can write

(14.10) wq−wp = Sij(ui×uj)

with some real numbers Sij . Clearly Sij = Sji for every edge ij, and our choice for
the orientation of the edges implies that Sij > 0.

We claim that the values Sij form a braced stress on (G,u). Let i ∈ V , and
consider the vector

u′i =
∑

j∈N(i)

Sijuj .

Then
ui×u′i =

∑
j∈N(i)

Sij(ui×uj) =
∑

(wq−wp),

where the last sum extends over all edges pq of the facet of P ∗ corresponding to i,
oriented counterclockwise. Hence this sum vanishes, and we get that ui×u′i = 0.
This means that ui and u′i are parallel, and there are real numbers Sii such that
u′i = −Siiui. This proves that the values Sij form a braced stress. �
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We call the special braced stress constructed above the canonical braced stress
of the polytope P , and denote the corresponding matrix by S = SP . We express
the canonical stress as

(14.11) Sij =
|wq−wp|
|ui×uj |

=
|wq−wp|

|ui| |uj | sin](ui,uj)
.

Hence we have a simple geometric interpretation: Sij is the length of the dual edge,
divided by twice the area of the triangle formed by the edge and the origin.

Taking the cross product of (14.10) with wp we get the equation
(14.12)

wq×wp = Sij
(
(ui×uj)×wp

)
= Sij

(
(uT
iwp)uj−(uT

jwp)ui
)

= Sij(uj−ui).

This shows that the canonical braced stresses on the edges of the polar polytope
are simply the reciprocals of the canonical braced stresses on the original.

The matrix SP depends on the choice of the origin. We can even choose the
origin outside P , as long as it is not on the plane of any facet. The only step in
the argument above that does not remain valid is that the stresses on the edges are
positive.

The existence, and these elementary properties, of the canonical braced stress
are nice facts in themselves, but we will need to spend some pages on the study of
its highly nontrivial properties, after presenting some general results about spectra
and eigenvectors we need.

14.4.2. Spectra. Returning to the canonical braced stresses, our main goal
is to determine the signs of their eigenvalues, and more generally, the signs of
eigenvalues of braced stresses on convex polytopes. To this end, we relate the
canonical braced stress matrix to volumes and mixed volumes.

It is not hard to prove (see Exercise 14.7) that the canonical stress matrix and
volume are related:

(14.13) vol(P ∗) =
1

6

∑
i,j

Sij .

This simple identity is not the last word on this issue. Let P be a convex 3-polytope
containing the origin in its interior, and let ui (i ∈ V = V (P )) be its vertices. For
y ∈ RV , y > 0, define

Qy = {x ∈ R3 : uT
ix ≤ yi ∀i ∈ V }.

Clearly Qy is a convex 3-polytope, and 0 is in its interior. In particular, Q1 = P ∗.
We compute the gradient and Hessian of the function f(y) = vol(Qy). (Note that
f is not everywhere an analytic function of y; it is not analytic at the values of y
where Qy has vertices of degree larger than 3. But the proof below will show that
it is twice continuously differentiable.)

Let F iy denote the facet of Qy corresponding to i ∈ V . It is easy to see that

(14.14)
∂

∂yi
f(y) =

area(F iy)

|ui|
.

Hence the outer normal of F iy of length area(F iy) is

area(F iy)u0
i =

∂

∂yi
f(y)ui.
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The sum of these outer normals is zero; hence we get the equation

(14.15)
∑
i

∂

∂yi
f(y)ui = 0.

The next important step is the following equation expressing the canonical
stress matrix S as the Hessian of the volume of Qy:

(14.16)
d2

dy2
f(1) = S.

To prove identity (14.16), let H denote the matrix on the left. Continuing from
(14.14), we want to find

(14.17) Hij =
∂2

∂yi ∂yj
f(1) = lim

t→0

area(F i
1+tej

)−area(F i
1
)

t|ui|
for j 6= i. We consider the case when t↘ 0 (the case of negative values of t is simi-
lar). If j is not adjacent to i, then F i

1+tej
= F i

1
, and so Hij = 0. Assume that ij is

an edge of P , and let pq be the corresponding edge in P ∗. The difference in the nu-
merator in (14.17) is the area of a strip along the edge of F i

1
connecting wp and wq.

Elementary computation shows that the width of this strip is t/(|uj | sin]
(
ui,uj)

)
.

It follows that

area(F i
1+tej

)−area(F i
1
) =

t |wp−wq|
|uj | sin](ui,uj)

+O(t2).

(The error term O(t2) comes from the ends of the strip.) Substituting in (14.17)
and using (14.11), we get

Hij =
|wp−wq|

|ui| |uj | sin](ui,uj)
= Sij .

So the off-diagonal entries of H and S are the same, and hence H−S is a
diagonal matrix. Differentiating with respect to yj , we get the equation

∑
j Hijuj =

0, or more compactly UH = 0. We know that US = 0, and hence U(H−S) = 0.
Since no column of U is 0, it follows that H−S = 0. This completes the proof of
(14.16).

Our next goal is to relate the canonical stress matrix to the mixed volumes of
these polytopes Qy (for the definition and properties of mixed volumes, we refer
to Appendix C.5 and for a presentation of greater depth, to [Schneider 1993], in
particular Sections 5.1 and 6.3). We call a vector y ∈ RV proper, if for every
w ∈ R3 the faces of Q1 and Qy maximizing the objective function wTx have the
same dimension. (This can be phrased as “Q1 and Qy are strongly isomorphic.”)
If Q1 is simple, then every vector y that is close enough to 1 ∈ RV is proper. For
two proper vectors y and z, the vector 1+sy+ tz is proper, and

Q1+sy+tz = Q1+sQy+ tQz.

(This takes some work to check; see Exercise 14.14.) From this, we can determine
the mixed volume V (Q1, Qy, Qz). Indeed, by the definition of the mixed volume,
the volume of Q1+sy+tz can be expressed as a polynomial in s and t, in which the
coefficient of st is 6V (Q1, Qy, Qz). On the other hand, (14.16) implies that this
coefficient is

∂2

∂s ∂t
vol(Q1+sy+tz) = yT

( d2

dx2
vol(Qx)

∣∣∣
x=1

)
z = yTSz.
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Hence

(14.18) V (Q1, Qy, Qz) =
1

6
yTSz.

After this preparation, we are able to prove one of the main results in this
section, describing the signature of the matrix SP of the canonical braced stress on
a 3-polytope P .

Proposition 14.14. If P is a 3-polytope containing the origin in its interior, then
its canonical stress matrix S = SP has exactly three zero eigenvalues and exactly
one positive eigenvalue.

Proof. From the stress equation US = 0 (where U is the matrix whose columns
are the vertices of P ), it follows that S has at least three zero eigenvalues. By
Lemma 14.8, the largest eigenvalue of S is positive with multiplicity 1. Thus it
cannot be the zero eigenvalue, which means that S has at least one positive eigen-
value.

The difficult part of the proof is to show that S has only one positive eigen-
value. We may assume that P is simplicial (every facet is a triangle), since every
nonsimplicial polytope can be approximated by simplicial ones, and SP depends
continuously on P . (It takes some work to make this argument precise; see Exercise
14.13). Then P ∗ = Q1 is simple.

We invoke the Alexandrov–Fenchel Inequality (C.7) for mixed volumes:

V (Q1, Q1, Qy)2 ≥ V (Q1, Q1, Q1)V (Q1, Qy, Qy).

By (14.18), this gives that

(yTS1)2 ≥ (yTSy)(1TS1)

for every proper vector y. This holds in particular for every vector sufficiently
close to 1. Choose y = 1+εz, where z ∈ RV is orthogonal to S1 and ε > 0 is
small enough, then yTS1 = 1

TS1 and yTSy = 1
TS1+ε2zTSz. Substituting and

simplifying, using that 1TS1 < 0 by (14.13), we get that zTSz ≤ 0. Since this holds
for all vectors in a subspace of dimension n−1, it follows that S has at most one
positive eigenvalue.

Once we know this, Theorem 14.12 implies that S has exactly three zero eigen-
values. �

The previous proposition is a “self-refining” result: by a relatively simple ar-
gument (basically, repeating the last step in the proof of Theorem 14.4) it extends
to every braced stress.

Theorem 14.15. If P is a convex polytope in R3 containing the origin in its
interior, then every braced stress matrix with positive stresses on its skeleton has
exactly one positive eigenvalue and exactly three zero eigenvalues.

Proof. It follows just as in the proof of Proposition 14.14 that every braced
stress matrix Q with positive values on the edges has at least one positive and at
least three zero eigenvalues. Furthermore, if it has exactly one positive eigenvalue,
then it has exactly three zero eigenvalues by Theorem 14.12.

Suppose that Q has more than one positive eigenvalues. The braced stress
matrix SP has exactly one. All the matrices Qt = tSP +(1− t)Q are braced stress
matrices for the same vector labeling and with positive values on the edges, and
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hence they have at least four nonnegative eigenvalues. Since the eigenvalues are
continuous functions of the matrix, there is a smallest number t > 0 for which Qt
has at least 5 nonnegative eigenvalues. Then Mt must have exactly one positive
and at least four zero eigenvalues, contradicting Theorem 14.12. �

Remark 14.16. Most of our discussion in the last section extends to higher di-
mensional polytopes. The canonical stress matrix of the skeleton of a polytope can
be defined in every dimension. For us, however, only the 3-dimensional case will be
relevant.

Exercise 14.1. Prove that a stress matrix of a framework with at least two
different vector labels is never well-signed.

Exercise 14.2. Suppose that a framework has a stress. (a) Prove that applying
an affine transformation to the positions of the nodes, the framework obtained has
a stress. (b) Prove that applying a projective transformation to the positions of
the nodes, so that no node is mapped onto an ideal point, the framework obtained
has a stress.

Exercise 14.3. Let P be a convex polyhedron in R3, and let G be a planar graph
embedded in the surface of P , with straight edges. Prove that every stress on G
is a sum of stresses, each of which is supported on edges of G on a single face of
P [Whiteley 1984].

Exercise 14.4. Let S = {u1, . . . ,un} ⊆ Rd. We say that S is in isotropic
position, if

∑
i ui = 0 and

∑
i uiu

T
i = I.

(a) Prove that every finite point set not in an affine hyperplane can be trans-
formed to isotropic position by an appropriate affine transformation.

(b) Let the nodes of Kn be labeled by a set {u1, . . . ,un} ⊆ Rd in isotropic
position. Define Sij = uT

iuj +1/n (i 6= j). Prove that (with appropriate diagonal
entries) S defines a stress matrix on (Kn,u), and it is negative semidefinite.

Exercise 14.5. Let (G,u) be a rubber-band-and-spring framework, and let S
be a G-matrix. Prove that S is a stress on (G,u) if and only if changing each
position ui by at most ε, the energy changes by O(ε2). Use this assertion to give
an alternate argument for the conclusion in the proof of Theorem 14.4.

Exercise 14.6. Let P be a simple 3-polytope (every vertex has degree 3) contain-
ing the origin in its interior. Prove that the braced stress on its edges is unique
up to scaling.

Exercise 14.7. Let P be a polytope and let S be the canonical stress on P . (a)
Prove that the volume of the convex hull of the face i of P ∗ and the origin is
1
6

∑
j Sij . (b) Prove identity (14.13).

Exercise 14.8. Let P be a convex polygon in the plane, containing the origin
in its interior. (a) Prove that its edges carry a braced stress that is negative on
the edges. (b) Find a formula for this stress. (c) Prove that the stress matrix has
exactly one negative eigenvalue.

Exercise 14.9. We have seen that the square with diagonals with the stress
shown in Figure 14.1(a) is stable with respect to the positions of the vertices. It
is however, very unstable with respect to the stress: if we consider the edges as
rubber bands and springs, and change any of their strengths arbitrarily little, it
will either collapse or fly off to infinity. If the diagonals are bars (or struts), then
changing the strength of any of the rubber bands (representing the edges of the
square) by a little amount, changes the equilibrium position only a little.
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Exercise 14.10. Let G be a connected graph, let M be a well-signed G-matrix
with exactly one negative eigenvalue, and let x ∈ RV be a vector satisfying Mx <
0. Then supp+(x) is nonempty and induces a connected subgraph of G.

Exercise 14.11. Let G be a connected graph, let M be a well-signed G-matrix
with exactly one negative eigenvalue, and let x ∈ RV be a vector satisfying Mx ≤
0. Then supp+(x) is nonempty, and either it induces a connected subgraph of G
or there is a subset S ⊂ V , such that G\S has at least two connected components
G1, . . . , Gh, and there exist nonzero, nonnegative vectors z1, . . . , zr, y ∈ RV such
that supp(xi) = Si, supp(y) ⊆ S, Mx1 = Mx2 = · · · = Mxr = −y, and x =∑
i αizi, where

∑
i αi ≥ 0 and at least two αi are positive.

Exercise 14.12. Let P be a convex polygon in the plane, such that the origin
is contained in its exterior, and no edge is collinear with the origin. (a) Prove
that its edges carry a braced stress. (b) On which edges is it negative? (c) Prove
that (switching the sign of all stress values if necessary) the number of negative
eigenvalues is equal to the number of edges of P visible from the origin.

Exercise 14.13. Let P t (t = 0, 1, 2, . . . ) be convex 3-polytopes with vertices
vt1, . . . ,v

t
n, containing the origin in their interiors. Suppose that vti → v0

i as
t→∞ for every 1 ≤ i ≤ n. Prove that SP t → SP0 entry-by-entry.

Exercise 14.14. Let P be a 3-polytope containing the origin in its interior, and
let y and z be proper vectors in the sense of Section 14.4.2. Prove that y+z is
proper, and Qy+z = Qy+Qz.

Exercise 14.15. If a braced stress on a 3-polytope is nonnegative on every edge
(but may be zero), then the corresponding stress matrix has at most one positive
eigenvalue.





CHAPTER 15

Rigidity and Motions of Frameworks

After the previous, somewhat special and technical chapter, we turn to a practi-
cally important as well as graphically inspiring topic, namely rigidity of frameworks.
We replace the edges of a graph by rigid bars (instead of rubber bands and springs
as before). This way we obtain a physical model related to rubber bands, but more
important from the point of view of applications. This topic has a vast literature,
dealing with problems in architecture, engineering, robotics, and (replacing the ref-
erence to rigid bars by distance measurements) in the theory of sensor networks.
We have to restrict ourselves to a few basic results of this rich theory; see e.g.
[Recski 1989] or [Graver–Servatius–Servatius 1993] for more.

In the introduction to the previous chapter we have seen a whole arsenal of
physical gadgets that we can imagine in place of the edges: rubber bands, ca-
bles, bars, struts and springs. The difference between these with respect to static
properties was little (the sign of the stress). We could study dynamic properties of
structures composed of any combinations of these, but we will restrict our attention
to bar-and-joint frameworks.

We will look at these frameworks with two (slightly) different goals in mind.
From one aspect, we specify the locations of the nodes in space (which determines
the lengths of the edges geometrically). We then ask whether the resulting frame-
work is rigid. This is the main use of these ideas in architecture: we specify the
geometry of the framework and the rigidifying beams, and then want to make sure
that the framework does not collapse; we want to compute the forces acting along
the beams etc. From the other aspect, we are given the nodes and edges, along
with the lengths of the edges, and then we are interested in all possible ways this
framework can move. This aspect was very important in the 19th century, in the
design of mechanisms (see Example 15.1); these days, it is extensively studied for
further applications, among others, in the design of robot arms.

Example 15.1 (Peaucellier–Lipkin linkage). Perhaps the first time when
frameworks and their motions received a lot of interest came after the discovery
of the steam engine and other mechanical devices in the 18th and 19th century.
One important goal was to guide a point back and forth on a straight line segment.
Figure 15.1 shows one of the first solutions of this problem, the Peaucellier–Lipkin
linkage. Note the sophistication needed for the solution of this simply sounding
problem. �

A graph G with a vector-labeling in Rd will be called a framework, where the
label is considered as the “position” of the node. A graph with an edge-length
assigned to each edge will be called a linkage. Every framework (G,u) defines a
linkage (G, `); we can say that to get a linkage from a framework we forget the
positions of the nodes and only remember the lengths of the edges. The linkage
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A

B

C

D

P Q

Figure 15.1. The Peaucellier–Lipkin linkage. The black joints
are nailed, the white joints are free to move. The lengths of the
bars satisfy AB = BC = CD = DA and QB = QD. Nodes A
and C are inverses relative to the fixed circle centered at Q with

radius
√
QB2−AB2 (prove!). As A moves along a circle through

the center of the inversion, its inverse C moves along a straight
line.

(G, `) is realizable in Rd if it is defined by a d-dimensional linkage, i.e., there is
a vector-labeling u : V → Rd so that `(ij) = |ui−uj | for every edge ij. The
framework (G,u) is called a realization of the linkage (G, `).

Most of the time we assume that the framework is not contained in a lower
dimensional affine subspace, in which case we call it full-dimensional. Two frame-
works (G,u) and (G,v) with the same underlying graph G in d-space are called
congruent, if there is a congruence (isometric transformation) of the whole space
that maps ui onto vi (i ∈ V ). Basically, we do not want to distinguish congruent
frameworks; but a warning is in order that congruence will be a nontrivial issue in
some considerations.

Sometimes we want to “factor out” congruences. This can be defined as iden-
tifying congruent realizations of the same linkage, but a more explicit description
of the resulting factor space will be useful. Let us assume that the framework is
full-dimensional, and consider an ordered set of nodes, say S = (0, 1, . . . , d), whose
positions are affinely independent. Shift u0 to the origin; rotate the space about
0 so that u1 is moved to the positive half of the x1-axis; then rotate the space
about the x1 axis so that u2 is moved to the upper halfplane of the (x1, x2)-plane
etc. We end up with a vector labeling that is congruent to the original, and for
0 ≤ i ≤ d the i-th coordinate of ui is positive, and its later coordinates are 0. We
call this procedure fitting S to the coordinate system. This way we may assume
that altogether d+(d−1)+ · · ·+1 =

(
d+1

2

)
coordinates of the node positions are

zero. (This number is the same as the dimension of the manifold of congruences of
the Euclidean d-space.)

15.1. Versions of rigidity

There are several versions of the notion of rigidity of a framework (G,u)
(u : V → Rd).
• Is there a “proper motion” or “flexing” in the sense that we can specify a

smooth orbit ui(t) (t ∈ [0, 1]) for each node i so that ui(0) = ui, and |ui(t)−uj(t)|
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is constant for every pair of adjacent nodes, but not for all pairs of nodes? If no
such motion exists, we say that the framework is locally rigid or simply rigid.
Structures which are not locally rigid will be called flexible; sometimes they are
also called mechanisms.

We have to make a technical remark here: We have defined a flexing as a
smooth motion of the nodes, but it would be natural to be more general and
allow continuous but not differentiable motions, or to be more restrictive and allow
only those motions that are analytic functions of time. As a very weak condition,
we could ask for the existence of a noncongruent realization of the same linkage
arbitrarily close to the original. It turns out that all these notions of flexibility are
equivalent (see e.g. [Connelly 1993]).

• Is there a different realization of the same linkage: another representation
v : V → Rd such that |vi−vj | = |ui−uj | for every pair of adjacent nodes, but
not for all pairs of nodes? (The representation v may or may not be obtained from
the representation u by a continuous motion preserving the lengths of the edges.)
If the framework has no different realization, it is called globally rigid. It is clear
that this implies local rigidity. Further (non)-implications between these notions
are illustrated in the examples below.

• Suppose that a framework is rigid in Rd; does it remain rigid, if we em-
bed it (isometrically) in a higher dimensional space? We say such a framework is
universally rigid. A single triangle in the plane has this property; two triangles
attached along an edge form a rigid framework in the plane but not in 3-space.
Universal rigidity is in various ways closely related to global rigidity; we refer to
[Gortler–Thurston 2014] and [Connelly–Gortler–Theran 2016a].

• It may happen that we can assign velocities to the joints so that they do
not seem to stretch or shrink any edge, but such velocities cannot be continued
to an actual motion (unless they correspond to a rigid motion). We call such an
assignment of velocities an “infinitesimal motion”, and if no such motion exists, we
say that the framework is infinitesimally rigid.

We can give an engineering interpretation of infinitesimal motions: Suppose
that we move each node i by a (small) distance of at most ε, so that this is not a
rigid motion of the framework. Trivially, the length of any edge ij changes by O(ε).
It can happen that for such a nonrigid motion the length of each edge changes by
O(ε2) only; in this case, we cannot discover “in first order” that the length changes
at all. From a practical point of view, this may be a problem, since in practice the
bars are never totally rigid, and they may not hold against an infinitesimal motion.

Example 15.2. Consider a complete graph Kn. Trivially every representation of it
is globally rigid, and also locally rigid. However, it may have infinitesimal motions
other than congruences: if all nodes are contained in an affine hyperplane, assign
to each node an arbitrary velocity vector orthogonal to this hyperplane. �

Example 15.3. Have a look at Figure 15.2, which shows 2-dimensional realizations
of the same graph, rigid in one sense but not in the other. �

Example 15.4 (Triangular Prism II). Let us return to the triangular prism
in Example 3.4, represented in the plane. From (15.11) we get that dim(Inf)−
dim(Str) = 2 ·6−9 = 3 = dim(Rig) (assuming that not all nodes are collinear in
the representation), and hence a representation of the triangular prism in the plane
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(a) (b) (c)

Figure 15.2. Structure (a) is infinitesimally rigid and locally rigid
in the plane, but has a different realization (b), and so it is not
globally rigid. Considering this as a motion in 3-space, we see
that this framework is not universally rigid. Structure (c) has no
other realization, so it is locally, globally and universally rigid, but
it is not infinitesimally rigid, since vertical motion of the middle
point is an infinitesimal motion. (Note that motion by ε results in
stretching the edges by O(ε2).

has a noncongruent infinitesimal motion if and only if it has a stress. This happens
if and only if the lines of the three edges connecting the two triangles pass through
one and the same point (which may be at infinity; Figure 15.3, left and right).

Not all of these representations allow flexing, but some do. In the first, fixing
the dark nodes, the white triangle can “circle” the dark triangle. This framework
has a stress (can you find it?). The second is infinitesimally rigid and stress-free,
but it is not globally rigid (reflect the white triangle in a symmetry axis of the black
triangle); the third has an infinitesimal motion (equivalently, with this number of
edges, it has a stress, as we will see), but it is globally rigid (and so it has no
flexing). �

Figure 15.3. Rigid and nonrigid representations of the triangular
prism in the plane.

15.2. Infinitesimal motions

We will continue with the exact definition and study of infinitesimal rigidity,
which was perhaps the most awkward to describe, but easiest to handle.

Suppose that the nodes of the graph move smoothly (in continuously differ-
entiable way) in d-space; let ui(t) denote the position of node i at time t, where
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ui = ui(0) is the starting position. The fact that the bars are rigid says that
for every edge ij ∈ E, the edge-lengths `ij = |ui−uj | are fixed. Squaring these
equations leads to polynomial equations

(15.1)
(
ui(t)−uj(t)

)T(
ui(t)−uj(t)

)
= `2ij .

Differentiating, we get

(15.2)
(
ui(t)−uj(t)

)T(
u̇i(t)− u̇j(t)

)
= 0.

In particular,

(15.3)
(
ui−uj

)T(
u̇i(0)− u̇j(0)

)
= 0.

This motivates the following definition. Given a vector-labeling u : V → Rd of G,
a map v : V → Rd is called an infinitesimal motion of the framework (G,u), if the
equation

(15.4) (ui−uj)
T(vi−vj) = 0

holds for every edge ij ∈ E. The vector vi can be thought of as the “velocity” of
node i.

Infinitesimal motions form a linear space Inf = InfG,u ⊆ Rd×V . There are some
trivial infinitesimal motions, called (infinitesimal) rigid motions or congruences,
which are velocities of smooth families of congruences of the whole space. In this
case, (15.4) holds for every pair of nodes. Every infinitesimal congruence is the sum
of two kinds of special solutions of equations (15.4) (see Exercise 15.3): we can have
vi = vj for all i and j (geometrically, this means translation of the framework),
and vi = Aui, where A ∈ Rd×d is a skew symmetric matrix (this corresponds to
applying the smooth family of orthogonal transformations).

Infinitesimal congruences of a framework form a subspace Rig = RigG,u ⊆ Inf.
By the remarks above, Rig consists of all systems of velocities of the form

(15.5) vi = Aui+v,

where A is a skew symmetric matrix and v ∈ Rd. If the node positions are not
contained in an affine hyperplane, then this representation is unique. This implies
that in this case dim(Rig) = d+

(
d
2

)
=
(
d+1

2

)
.

In the language of differential geometry, congruences of the d-space form a
manifold of dimension

(
d+1

2

)
, and infinitesimal congruences form the tangent space

of this manifold, which is a linear space of the same dimension.

15.2.1. Infinitesimal and finite motions. We say that the framework is
infinitesimally rigid, if Inf = Rig, i.e., every infinitesimal motion is an infinitesi-
mal congruence. The argument above, motivating the definition of infinitesimal
motions, suggests the following:

Lemma 15.5. If a framework is flexible, then it is not infinitesimally rigid.

This looks trivial, since it would seem that if u(t) (0 ≤ t ≤ 1) is a proper
flexing, then vi = u̇i(0) gives an infinitesimal motion by (15.3). However, there is
technical difficulty here: (15.3) may be a trivial equation if all the velocities u̇i(t)
are zero at t = 0. It could also happen that u̇(0) is an infinitesimal congruence,
even though the flexing is proper (see Example 15.6).
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Figure 15.4. Left: a proper flexing whose velocities at time 0
form an infinitesimal congruence. Right: A proper flexing where
velocities at positions at times converging to 0, when normalized,
can converge to an infinitesimal congruence, but also to a proper
infinitesimal motion, depending on when the framework is ob-
served.

Example 15.6. Consider a smooth proper flexing
(
G,u(t)

)
as above, but let us

modify it by slowing down and translation: we consider
(
G,v(t)

)
, where

vi(t) = ui(t
2)+ tv

with some fixed vector v. Then

v̇i(0) = v,

which is an infinitesimal congruence (Figure 15.4, left).
Perhaps we should construct an infinitesimal motion not as the velocities at

time 0, but as a limit of velocities at times converging to 0, appropriately scaled?
The example on the right of Figure 15.4, as a framework in 3-space, should be
another warning. We can think of this as a pendulum circling its vertical position
and slowing down, starting at time −1. The geometry and timing are arranged so
that the k-th arc has length ∼ 4−k, and it is traversed in time 2−k, so the velocity
tends to 0, which is attained at time 0. (If you wish, you can continue to positive
times just reversing the process.)

If we look at velocities when the pendulum is closest to us, then we see velocities
of a noncongruent infinitesimal motion. However, if we look at the velocities when
the pendulum is (say) in a leftmost position, then we see the velocities of a rigid
motion. How to choose the “right” moments in time? �

Proof of Lemma 15.5. Our first step is to modify the flexing
(
G,u(t)

)
in

order to eliminate rigid motions as much as possible. Fixing a time t, let ui = ui(t)
and ui = ui(0), and consider (G,u) and (G,u) as two different frameworks. We fix
(G,u), and rigidify (G,u), but let it float freely. Connect node ui to node ui by
a rubber band for each node i, and let the resulting structure find its equilibrium.
In other words, apply an isometric transformation to (G,u) so that the energy∑
i |ui−ui|2 is minimized.

The forces keeping (G,u) in equilibrium (as a rigid body) are the vectors vi =
vi(t) = ui−ui, acting at the points ui. By classical physics,

(15.6)
∑
i∈V

vi = 0,
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and

(15.7)
∑
i∈V

vT
iAui = 0

for every skew symmetric matrix A ∈ Rd×d. Also note that since (G,u) and (G,u)
are the same as linkages, we have |ui−uj |2 = |ui−uj |2 for every edge ij. This
translates into the equation

(15.8) 2(ui−uj)
T(vi−vj) = −|vi−vj |2.

Let ωt = maxi∈V |vi|. If (G,u) is not isometric to (G,u), then ωt > 0, and
the vectors (1/ωt)vi have length at most 1. Let us select a sequence of such times
converging to 0, then ωt → 0. By selecting a subsequence, we may assume that
(1/ωt)vi(t)→ wi for some vectors wi. Clearly maxi |wi| = 1 and so w 6= 0.

We claim that w is an infinitesimal motion of (G,u). Indeed, (15.8) implies
that

(ui−uj)
T
( 1

ωt
vi−

1

ωt
vj

)
= − 1

2ωt
|vi−vj |2 = O(ωt),

and so in the limit we have

(ui−uj)
T(wi−wj) = 0.

We have to argue that w is not an infinitesimal congruence of (G,u). Suppose
it is, then there is a vector v ∈ Rd and a skew symmetric matrix A ∈ Rd×d such
that wi = v+Aui. We may assume that

∑
i ui = 0, since we can choose the origin

at the center of gravity of the points ui. Scaling by ωt and going to the limit, we
see that the vectors wi satisfy the equilibrium conditions (15.6) and (15.7). The
first condition gives us that

0 =
∑
i∈V

wi = nv+
∑
i∈V

Aui = nv,

so v = 0 and wi = Aui. Applying the second condition with the same matrix A,
we get

0 =
∑
i∈V

wT
iAui =

∑
i∈V

uT
iA

TAui =
∑
i∈V
|Aui|2.

This implies that Aui = 0 for every i, and so wi = 0. But we know that w 6= 0, a
contradiction. �

The converse of this lemma is not true in general, as Figure 15.2 shows. How-
ever, the converse does hold for stress-free frameworks:

Lemma 15.7. If a stress-free framework is not infinitesimally rigid, then it is
flexible.

Proof. Let (G,u) be a stress-free framework in Rd, and let v be a non-rigid
infinitesimal motion. Since v is not a rigid infinitesimal motion, there is a pair (a, b)
of nonadjacent nodes for which (ua−ub)

T(va−vb) 6= 0. We may assume that

(15.9) (ua−ub)
T(va−vb) = 1.

Equations (15.4) give linearly independent equations for v, and (15.9) is linearly
independent from them, since the other equations have zero right hand side. In the
solution space of (15.4) and (15.9), we can fix some entries of v to zero to have a
unique solution. By Cramer’s Rule, the remaining entries of v can be expressed as
rational functions of the entries of u, and these rational functions will satisfy (15.4)
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and (15.9) in a neighborhood of u. Scaling up with the common denominator, we
get polynomials wi(u) in the entries of u such that

(xi−xj)
T
(
wi(x)−wj(x)

)
= 0

identically in x ∈ Rd×V for every edge ij ∈ E, and

(xa−xb)
T
(
wa(x)−wb(x)

)
6= 0

if x is in a neighborhood of u.
Consider the differential equation system

d

dt
xi(t) = wi

(
x(t)

)
, x(0) = u.

Since w(x) is a continuous function of x, this system has a solution in an interval
0 ≤ t ≤ T . This defines a nonrigid motion of the graph. Indeed, for every edge ij,

d

dt
|xi(t)−xj(t)|2 =

(
xi(t)−xj(t)

)T(
ẋi(t)− ẋj(t)

)
=
(
xi(t)−xj(t)

)T(
wi(x(t))−wj(x(t))

)
= 0,

so |xi(t)−xj(t)| remains constant. On the other hand, this is not a rigid motion,
since

d

dt
|xa(t)−xb(t)|2 |t=0= (ua−ub)

T
(
wi(u)−wj(u)

)
6= 0,

so |xa(t)−xb(t)| cannot remain constant. �

15.2.2. Infinitesimal motions and stresses. Which subsets of the equa-
tions in (15.4) are linearly independent? Let λij (ij ∈ E) be multipliers such that
combining the equations with them we get 0. Considering the coefficient of vi, this
means that ∑

j∈N(i)

λij(uj−ui) = 0

for every node i. In other words, λ is a stress!
Recalling the notion of transversality, and that equations (15.4) were obtained

by differentiating equations (15.1), we can assert that a solution of (15.1) is
transversal if and only if the framework (G,u) is stress-free. This means that
stress-free frameworks can be studied by similar methods as transversal orthogonal
representations. For example, the Implicit Function Theorem can be applied to
show that if a linkage (G, `) has a stress-free realization, then so does every linkage
(G, `′) for edge-lengths `′ sufficiently close to `.

There is a certain “dual” to this observation about linear dependencies between
the equations defining infinitesimal motions. What are the linear dependencies
between the equations (14.1) defining a stress (where the values Sij are considered
as unknowns)? Combining the d equations belonging to the same node i means
taking inner product with a vector wi. Combining all results in one equation, we
obtain ∑

i∈V

∑
j∈N(i)

Sij(uj−ui)
Twi = 0,

or ∑
ij∈E

Sij(uj−ui)
T(wj−wi) = 0.
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If this is a linear dependency between the stress equations, then the coefficient of
every Sij must be zero. Thus w is an infinitesimal motion!

Let us re-write the basic equations (15.4) in a form that is sometimes more
useful. We combine the velocity vectors vi into a single vector v ∈ Rnd, then
(15.4) provides a system of homogeneous linear equations for the entries of v. The
matrix R = RG,u ∈ Rm×nd of this system is defined for an edge ij, a node k and a
coordinate 1 ≤ ν ≤ d by

(15.10) Rij,kν =


uiν−ujν , if k = i,

ujν−uiν , if k = j,

0, otherwise.

We call R the rigidity matrix of the framework (G,u) (Figure 15.5).

1 2

345
1 2 1 0 1 0 0 0 0 0 0 0

23 0 0 1 1 1 1 0 0 0 0

1 3 2 0 0 0 1 0 0 0 0 0

34 0 0 0 0 1 0 1 0 0 0

45 0 0 0 0 0 0 1 0 0 0

1 5 0 1 0 0 0 0 0 0 0 1

25 0 0 1 1 0 0 0 0 1 1
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Figure 15.5. A framework in dimension 2 and its rigidity matrix.
The framework has 5 nodes and 7 = 2 ·5−3 edges. It has both a
nonzero stress and a nonrigid infinitesimal motion.

Infinitesimal motions (combined into single vectors v ∈ Rnd) form the right
null space of R, while stresses on (G,u) form the left null space of R. This implies
that

(15.11) rk(R) = dn−dim(Inf) = m−dim(Str).

From this we see that if a framework spanning Rd is stress-free, then m ≤
dn−

(
d+1

2

)
, and if it is infinitesimally rigid, then m ≥ dn−

(
d+1

2

)
. In the (most

interesting) case when m = dn−
(
d+1

2

)
, the framework is infinitesimally rigid if and

only if it is stress-free. Such frameworks are minimally infinitesimally rigid as well
as maximally stress-free (corresponding to the subsets of edges that are bases of
the row space of R(Kn,u)).

There is another useful meaning of the rigidity matrix. Fix a graph G, and
consider the squared-edge-length map f = fG : Rd×V → RE defined by

(15.12) f(u) =
(
|ui−uj |2 : ij ∈ E

)
.

It is easy to compute that the Jacobian Df(u) of f is just the rigidity matrix RG,u.

15.2.3. Rigidity of 3-polytopes. To conclude this section, let us illustrate
the connection between stresses and infinitesimal rigidity by an important example.
Let G be the skeleton of a convex 3-polytope P , with the representation given by the
positions of the vertices. Cauchy’s Theorem 14.5 tells us that the space of stresses
has dimension 0, so we get that the space of infinitesimal motions has dimension
dim(Inf) = 3n−m. We know that dim(Inf) ≥

(
4
2

)
= 6, and hence m ≤ 3n−6. Of

course, this simple inequality we know already (recall (2.2)). It also follows that if
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equality holds, i.e., when all facets of P are triangles, then the space of infinitesimal
motions is 6-dimensional; in other words,

Proposition 15.8. The framework consisting of the vertices and edges of a convex
3-polytope with triangular facets is infinitesimally rigid. �

If not all facets of the polytope P are triangles, then it follows by the same
computation that the skeleton is not infinitesimally rigid. However, if the facets are
“made out of cardboard”, which means that they are forced to preserve their shape,
then the polytope will be infinitesimally rigid. To prove this, one can put a pyramid
over each facet (flat enough to preserve convexity), and apply Proposition 15.8 to
this new polytope P ′ with triangular faces. Every nontrivial infinitesimal motion
of P preserving the shape of the facets would extend to a nontrivial infinitesimal
motion of P ′, but we know already that P ′ has no such motion.

Proposition 15.8 does not remain true if we only assume that the graph is iso-
morphic to the skeleton of a convex 3-polytope with triangular facets; see Exercise
15.6 for a classical example [Bricard 1897]. It even fails to hold when the framework
consists of the vertices and edges of a simple polytope (the surface of the polytope
is homeomorphic to the sphere), as shown by a more involved counterexample
[Connelly 1977].

15.3. Generic frameworks

In Chapter 3 we have met vector-labelings that are in general position; in
Chapter 10 another related condition, transversality was introduced. Here we need
a further nondegeneracy condition: we say that a vector-labeling is generic, if all
coordinates of the representing vectors are algebraically independent over Q.

This assumption is more restrictive than general position, and it is usually an
overkill, since we could always replace it by “the coordinates of the representing
vectors do not satisfy any algebraic relation that they do not have to, and which is
important to avoid in the proof”. The hypothesis of general position will be used in
the next section on global rigidity again. Transversality is equivalent to the basic
condition of stress-freeness, and so both of these related but weaker notions have a
role to play in rigidity theory.

In a generic framework, all entries of the vector labels are algebraically indepen-
dent, by definition. However, while isometric transformations of the whole space
do not change stress-freeness, and do not change the edge-lengths, they may create
algebraic dependencies between the coordinates. For example, if we fit a set of d+1
nodes to the coordinate system, then out of dn coordinates,

(
d+1

2

)
become zeros,

which means that we are left with dn−
(
d+1

2

)
algebraically independent coordinates.

We say that a graph is generically stress-free in Rd, or simply stress-free in Rd,
if every generic representation of it in Rd is stress-free; similarly, we say that G is
generically rigid in Rd, if every generic representation of it in Rd is infinitesimally
rigid. It is enough to check these properties for a single generic representation: if one
generic labeling is stress-free or infinitesimally rigid, then so is every other generic
labeling. More generally, the following fact was observed by Gluck [Gluck 1974]:

Proposition 15.9. If a graph G has a vector labeling in Rd that is infinitesimally
rigid [stress-free], then G is generically rigid [stress-free] in Rd.

Proof. Both infinitesimal rigidity and stress-freeness can be expressed in terms
of the nonvanishing of certain determinants composed of the coordinates of the
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representation. If such a determinant vanishes for one algebraically independent
choice of the coordinates, then it vanishes for every choice. �

The assumption that the coordinates are algebraically independent numbers
seems very far from any real-life situation; it is quite technical and unverifiable,
and for this reason it seems useless. However, another way of handling the generic-
ity assumption brings genericity quite close to applications: this is to choose inde-
pendent random values for the coordinates uniformly from an interval (or indeed,
from any distribution that is absolutely continuous with respect to the Lebesgue
measure, like Gaussian). We call the vector labeling obtained this way a random
vector labeling of G. The random labeling is generic with probability 1, and we can
re-state our results as probabilistic statements holding with probability 1. (Mathe-
matically, the definition in terms of algebraic independence yields slightly stronger
results.)

By this argument, we can state:

Proposition 15.10. If G is generically rigid [stress-free] in Rd, then a random
vector labeling of G is almost surely infinitesimally rigid [stress-free] in Rd.

15.3.1. Stress-free and rigid graphs in the plane. Whether a graph is
generically rigid or stress-free is a purely combinatorial property, and one would like
to obtain a purely combinatorial characterization of these properties. It is surprising
that this basic question is only solved in the planar case, which we present here.
We start with stress-freeness.

It is clear that if a framework (G,u) has more than 2n−3 edges, then it cannot
be stress-free (recall (15.11)). We can apply this observation to induced subgraphs:
if some subset of k ≥ 2 nodes spans more than 2k−3 edges, then the framework
cannot be stress-free in the plane. So a natural criterion for a graph G to have a
stress-free representation is the following:

(GL) Every set of k nodes (k ≥ 2) spans at most 2k−3 edges.

Note that this condition implies that the graph has no multiple edges. The
necessity of this criterion was recognized already in the 19-th century, and it was
stated as a “rule of thumb” for the existence of a stress-free realization in text-
books [Föppl 1880]. The sufficiency was proved by [Pollaczek-Geiringer 1927], and
rediscovered by [Laman 1970]. We call (GL) the Geiringer–Laman condition.

The Geiringer–Laman condition tells us why a graph is not stress-free. To
formulate a (general) reason why a graph is stress-free, we introduce the Henneberg
construction, [Henneberg 1911] which is an iterative procedure, starting with a
single node, and increasing the number of nodes of a graph G in one of two ways
(Figure 15.6):

(H1) Create a new node and connect it to at most two old nodes.

(H2) Subdivide an edge and connect the new node to any third node.

The following important theorem, combining the results of [Henneberg 1911],
[Pollaczek-Geiringer 1927] and [Laman 1970] describes stress-free graphs in the
plane.

Theorem 15.11. For a graph G, the following are equivalent:

(a) G is stress-free in the plane;

(b) G satisfies the Geiringer–Laman condition;
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Figure 15.6. The Henneberg construction

(c) G can be obtained by the Henneberg construction.

Conditions (b) and (c) show that the property of a graph of being (generically)
stress-free in the plane is in NP∩co-NP. The fact that it is in P follows by Corollary
15.17 below, using algorithms for the decomposition of a graph into connected
spanning subgraphs. (See also Section 19.3.2.)

Proof. (a)⇒(b): This we have argued above.

(b)⇒(c): We prove by induction on the number of edges that every graph
G satisfying the Geiringer–Laman condition can be built up by the Henneberg
construction. Since the average degree of G is 2m/n ≤ (4n−6)/n < 4, there is a
node i of degree at most 3. If i has degree at most 2, then we can delete i and
proceed by induction and (H1). So we may assume that i has degree 3. Let a, b, c
be its neighbors.

Call a set S ⊆ V spanning exactly 2|S|−3 edges a tight set. Clearly |S| ≥ 2.
The key observation is:

Claim. If two tight sets have more than one node in common, then their union is
also tight.

Indeed, suppose that S1 and S2 are tight, and let E1 = E(G[Si]). Then E1∩E2

is the set of edges spanned by S1∩S2, and so |E1∩E2| ≤ 2|S1∩S2|−3 (using the
assumption that |S1∩S2| ≥ 2). The set E1∪E2 is a subset of the set of edges
spanned by S1∪S2, and so the number of edges spanned by S1∪S2 is at least

|E1∪E2| = |E1|+ |E2|−|E1∩E2| ≥ (2|S1|−3)+(2|S2|−3)−(2|S1∩S2|−3)

= 2|S1∪S2|−3.

Since G satisfies (GL), we must have equality here, implying that S1∪S2 is tight.
We want to prove that we can delete i and create a new edge between two of its

neighbors to get a graph G′ satisfying (GL); then G arises from G′ by Henneberg
construction (H2). Let us try to add the edge ab to G\ i; if the resulting graph
G′ violates (GL), then there is a set S ⊆ V \{i} with |S| ≥ 2 spanning more than
2|S|−3 edges of G′. Since S spans at most 2|S|−3 edges of G, this implies that S
is tight, and a, b ∈ S. (If a and b are adjacent in G, then {a, b} is such a tight set.)
If there are several sets S with this property, then Claim 1 implies that their union
is also tight. We denote by Sab this union. Similarly we get the tight sets Sbc and
Sca.
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The set Sab cannot contain c, since then adding i to Sab, condition (GL) would
be violated. Similarly, b /∈ Sac and a /∈ Sbc. In particular, the sets Sab, Sbc and Sca
are distinct, and hence the Claim implies that any two of them have only one node
in common. Thus their union S = Sab∪Sbc∪Sca∪{i} spans at least

(2|Sab|−3)+(2|Sbc|−3)+(2|Sca|−3)+3 = 2|S|−3

edges, and so it is tight. This contradicts the maximality of Sab, and completes the
proof of (b)⇒(c).

(c)⇒(a): We use induction on the number of edges. Let G arise from G′ by
one step of the Henneberg construction, and let S be a nonzero stress on a generic
framework (G,u). We want to construct a nonzero stress on (G′,u) (which will be
a contradiction by induction, and so it will complete the proof).

First suppose that we get G by step (H1), and let i be the new node. It suffices
to argue that S is 0 on the new edges, and so it gives a stress on (G′,u). If i has
degree 0 or 1, then this is trivial. Suppose that i has two neighbors a and b. Then
by the assumption that the representation is generic, we know that the points ui,
ua and ub are not collinear, so from the stress condition

Sia(ui−ua)+Sib(ui−ub) = 0

it follows that Sia = Sib = 0.
Suppose that G arises by the Henneberg construction (H2), by subdividing the

edge ab ∈ E(G′) and connecting the new node i to c ∈ V (G′)\{a, b}. Let us modify
the representation u as follows:

u′j =

{
1
2 (ua+ub) if j = i,

uj otherwise.

This representation for G is not generic any more, but it is generic if we restrict it
to G′.

If the generic representation u of G admits a nonzero stress, then by Proposition
15.9 so does every other representation, in particular u′ admits a nonzero stress S′.
Consider the stress condition for i:

S′ia(u′i−u′a)+S′ib(u
′
i−u′b)+S′ic(u

′
i−u′c) = 0.

Here u′i−u′a = 1
2 (ub−ua) and u′i−u′b = 1

2 (ua−ub) are parallel but u′i−u′c is not
parallel to them. So it follows that S′ic = 0 and S′ia = S′ib. Defining S′ab = S′ia, we
get a nonzero stress on (G′,u), a contradiction. �

Using these results, we turn to characterizing rigid graphs in the plane. Equa-
tion (15.11) implies that minimally rigid graphs (i.e., rigid graphs that cease to be
rigid when any edge is deleted) are exactly the maximal graphs satisfying (GL),
and they all have 2n−3 edges. In other words,

Corollary 15.12. A graph with n nodes and 2n−3 edges is rigid in the plane if
and only if it satisfies the Geiringer–Laman condition.

Minimal stressed graphs (i.e., graphs that are not stress-free but all their proper
subgraphs are) are also worth considering.

Corollary 15.13. A graph G is minimal stressed in the plane if and only if it has
2n−2 edges, but every proper subset S ⊂ V spans at most 2|S|−3 edges.



272 15. RIGIDITY AND MOTIONS OF FRAMEWORKS

The Geiringer–Laman Theorem can be used to prove the following characteri-
zation of rigid graphs (not just the minimal ones) in the plane. Let us say that G
satisfies the partition condition, if for every decomposition G = G1∪· · ·∪Gk into
the union of graphs with at least one edge, we have

(15.13)
∑
i

(2|V (Gi)|−3) ≥ 2n−3.

Note that this condition implies that G has at least 2n−3 edges (considering the
partition into single edges).

Theorem 15.14. A graph G is rigid in the plane if and only if it satisfies the
partition condition.

Proof. To prove that the partition condition is necessary, consider any de-
composition G = G1∪· · ·∪Gk into the union of graphs with at least one edge.
Let E′ ⊂ E be a smallest rigid subset. We know that E′ is stress-free, and
hence E′∩E(Gi) is stress-free, which implies that |E′∩E(Gi)| ≤ 2V (Gi)−3
by Theorem 15.11 (here we use the easy implication (a)⇒(b)). It follows that
2n−3 = |E′| ≤

∑
i |E′∩E(Gi)| ≤

∑
i(2|V (Gi)|−3).

To prove the converse, suppose that G is not rigid, and fix any generic repre-
sentation u of it. Let H be a maximal spanning subgraph of G satisfying (GL).
Since H is not rigid, it has fewer than 2n−3 edges. Similarly as in the proof of
Theorem 15.11, we call a subset S ⊆ V tight, if it spans 2|S|−3 edges of H (by
(GL), S cannot span more edges of H than that). Let S1, . . . , Sk be the maximal
tight subsets of H. Since every adjacent pair of nodes is tight, the subgraphs H[Si]
cover H. Just like in the proof of Theorem 15.11, it follows that any two subsets
Si have at most one node in common; in particular, the induced subgraphs G[Si]
are edge-disjoint.

For every edge e ∈ E \E(H), the graph H+e does not satisfy (GL) any more,
and so it contains a subset S ⊆ V spanning more than 2|S|−3 edges of H+e. It
follows that S is tight, and e is spanned by S. So S ⊆ Si for some i, and e is
spanned by Si. This means that G[S1]∪ . . . G[Sk] = G; since

k∑
i=1

(2|Si|−3) =

k∑
i=1

|E(H[Si])| = |E(H)| < 2n−3,

this partition of G violates the partition condition. �

Corollary 15.15. Every minimal stressed graph is rigid in the plane.

We can derive more graph-theoretic conditions on generic stress-freeness and
rigidity in the plane by combining the Geiringer–Laman condition and the partition
condition with classical theorems in [Tutte 1961] and [Nash-Williams 1964]. We
state these theorems here without proof; a proof will be easy using more general
results in Section 19.3.2.

Theorem 15.16. Let G be a multigraph on n nodes. (a) The edges of G can be
covered by k subtrees of G if and only if every subset S ⊆ V spans at k(|S|−1) edges.
(b) G contains k edge-disjoint spanning trees of G if and only if for every partition
P of V , the number of edges connecting different classes is at least k(|P|−1). �

Using this theorem, we obtain the following corollary:
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Corollary 15.17. A graph G is generically stress-free in the plane if an only if
every graph obtained by doubling an edge of G can be covered by two forests. A graph
G is generically rigid in the plane if an only if every graph obtained by doubling an
edge of G contains two edge-disjoint spanning trees.

We give a simpler necessary condition for rigidity in the plane as an application
of Theorem 15.14 [Lovász–Yemini 1982].

Corollary 15.18. Every 6-connected graph is rigid in the plane.

Proof. Suppose that G is 6-connected but not rigid. Then by Theorem 15.14
there exist subgraphs Gi = (Vi, Ei) (i = 1, . . . , k) such that G = G1∪· · ·∪Gk and

(15.14)

k∑
i=1

(2|Vi|−3) < 2n−3.

We may assume that every Gi is complete, since adding edges inside a set Vi does
not change (15.14). The graph itself is trivially not complete. We may also assume
that every node belongs to at least two of the Vi: deleting a node contained in one
Vi only preserves (15.14) and it is easy to see that it preserves 6-connectivity.

We claim that

(15.15)
∑
Vi3v

(
2− 3

|Vi|

)
≥ 2

for each node v. Let (say) V1, . . . , Vr be those Vi containing v, |V1| ≤ |V2| ≤ . . .
The graph is 6-connected, hence v has degree at least 6, and so

(15.16)

r∑
i=1

(|Vi|−1) ≥ 6.

Each term on the left side is at least 1/2, so if r ≥ 4, we are done. If r = 3, then
|V3| ≥ 3, and so the left side of (15.15) is at least 1/2+1/2+1 = 2. If r = 2
and |V1| ≥ 3, then the left side of (15.15) is at least 1+1 = 2. Finally, if r = 2
and |V1| = 2, then |V2| ≥ 6 by (15.16), and so the left side of (15.15) is at least
1/2+3/2 = 2.

Now summing (15.15) over all nodes v, we get∑
v∈V

∑
Vi3v

(
2− 3

|Vi|

)
=

k∑
i=1

(
2− 3

|Vi|

) ∑
v∈Vi

1 =

k∑
i=1

(2|Vi|−3)

on the left side and 2n on the right hand side, which contradicts (15.14). �

It is not enough to assume that G is 5-connected. Indeed, consider any 5-
connected 5-regular graph H on k > 6 nodes, split each node into 5 nodes of degree
1, and attach a copy of K5 to these nodes, to get a graph G (Figure 15.7). Clearly
G is 5-connected. We claim it is not rigid in the plane. Indeed, from each copy
of K5 we can remove 3 edges so that it remains rigid, and so the remaining graph
G′ = (V,E′) is rigid if G is. But n = 5k, and

|E′| = 7k+ |E(H)| = 10k− 1

2
k < 10k−3 = 2n−3,

showing that G′ is not rigid in the plane.
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Figure 15.7. Two 5-connected graphs that are not rigid in the plane.

15.3.2. Generic rigidity in higher dimension. A 3-dimensional analogue
of the Geiringer–Laman Theorem, or of Theorem 15.14, is not known. It is not
even known whether there is a positive integer k such that every k-connected graph
is rigid in 3-space. One indication why an approach similar to the planar one fails
can be illustrated by the following example.

Example 15.19. Consider the graph G obtained by gluing together two copies of
K5 along an edge ab, and then removing this edge (Figure 15.8). This graph is
clearly not rigid in 3-space: in every generic representation u we can rotate one
copy of K5 along the line uaub while keeping the other fixed. On the other hand,
its number of edges is 18 = 3 ·8−

(
4
2

)
, which is “just right”, so this graph is stressed.

But all of its subgraphs H have at most 3|V (H)|−6 edges, and so the existence of
a stress on (G,u) does not follow by counting dimensions. This graph is a minimal
stressed graph, showing that Corollary 15.15 does not remain valid in 3-space. �

a 

b 

Figure 15.8. A nonrigid graph in 3-space.

Condition (GL) generalizes to any dimension, as a necessary condition for
stress-freeness:

(GL-d) Every set S ⊆ V with k = |S| ≥ d spans at most dk−
(
d+1

2

)
edges.

Example 15.19 shows that this condition is not sufficient for d = 3 (and it is
easy to generalize this counterexample to all d ≥ 3).

While a complete characterization of stress-free or rigid generic frameworks in
higher dimension is not available (it may not exist at all), there are a number of
interesting and highly nontrivial results, which we will discuss in the rest of this
section.
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Remark 15.20. Let us add a discussion of the complexity theoretic aspects of
these characterizations. Violation of the Geiringer–Laman condition (GL) gives
a simple certificate that a graph is not generically stress-free in the plane. Any
sequence of Henneberg’s construction building up the graph is a certificate that the
graph is generically stress-free. So generic stress-freeness is in NP∩co-NP. One
can use basic matroid algorithms to show that generic stress-freeness is in fact in
P. Similar arguments can be given for generic rigidity of a graph in the plane.

We noted that stress-freeness of a framework can be easily tested (in polynomial
time) using elementary linear algebra. This is correct if the coordinates of the points
are given as rational numbers. For a generic framework, “algebraically independent
transcendentals” cannot be specified in a way to facilitate computations with them,
and it is not known whether the problem of deciding whether a graph is generically
stress-free in dimension 3 (or in any larger dimension) is in P.

Generic stress-freeness of a graph is a property that is in NP for every dimen-
sion. One can use the Schwartz–Zippel Lemma 3.12, similarly is in Section 3.3.3
to show that a generically stress-free graph has a stress-free realization with ratio-
nal coordinates whose numerators and denominators have polynomially bounded
numbers of digits. This realization can serve as certificate, whose validity can be
easily checked. It is not known, however, how to certify that a generic realization
is not stress-free; more generally, it is not known whether generic stress-freeness of
a graph is in co-NP for dimensions 3 or larger.

15.3.3. Genericity and finite motions. For generic frameworks, there is
no difference between infinitesimal nonrigidity and flexibility [Asimow–Roth 1978]:

Theorem 15.21. A generic framework is infinitesimally rigid if and only if it is
locally rigid.

Proof. Lemma 15.5 implies the “only if” part. The proof of the “if” part is
quite similar to the proof of Lemma 15.7. Suppose that the generic framework
(G,u) is not infinitesimally rigid in Rd, we want to show that it has a proper
flexing. The key step is to show that there is a vector labeling v whose entries can
be expressed as polynomials of the node positions so that v(x) is an infinitesimal
motion for every vector labeling x in a neighborhood of u, and v(u) is not a rigid
infinitesimal motion.

For every minimal set C of linearly dependent columns of the rigidity matrix
Rf = RG,u, there is a nonzero infinitesimal motion vC whose support is C. Note
that vC is uniquely determined up to a scalar factor, and every infinitesimal motion
is a linear combination of the vector labelings vC belonging to minimal dependent
sets C of columns. Therefore there is a minimal dependent set C for which vC is
not a rigid motion. From Cramer’s Rule it follows that the entries of vC can be
chosen as polynomials wi(u) of the entries of u with integral coefficients.

The equation (ui−uj)
T
(
wi(u)−wj(u)

)
= 0 is an algebraic equation in the

entries of u, and so the assumption that these entries are algebraically independent
implies that it holds identically in u. In other words, if we define wj(x) for every
labeling x : V → Rd using the same polynomials as in vC , then and so w(x) is
an infinitesimal motion of (G,x) for every x. Trivially, v = w(u) is not a rigid
infinitesimal motion.

From here, we conclude just as in the proof of Lemma 15.7. �
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15.3.4. Genericity and edge lengths. The following theorem, adopted
from [Connelly 2005], connects edge-lengths and stress-freeness.

Theorem 15.22. (a) A generic framework is stress-free if and only if its edge-
lengths are algebraically independent. (b) Every framework with algebraically inde-
pendent edge-lengths is stress-free.

Proof. (a) Assume that the edge-lengths are algebraically dependent; then
there is a polynomial F (xe : e ∈ E) with rational coefficients that is not identically
zero, but

(15.17) F (..., |ui−uj |2, ...) = 0

(where |ui−uj |2 is substituted for the variable xij , ij ∈ E). Consider such a poly-
nomial F with minimum degree. Since the coordinates of the ui are algebraically
independent, (15.17) holds identically for any choice of representing vectors u. Dif-
ferentiating with respect to the coordinates of ui, we get the equation

(15.18)
∑

j∈N(i)

Fij(..., |us−ut|2, ...)(ui−uj) = 0

(here Fij is the derivative of F according to the variable xij). Since F is a
nonconstant polynomial, at least one derivative Fij is not identically 0. Then
Fij(..., |us−ut|2, ...) 6= 0, since otherwise we could replace F by Fij . But this
means that Sij = Fij(..., |us−ut|2, ...) defines a nonzero stress on (G,u).

Conversely, assume that the edge-length are algebraically independent. We
may also assume that the representation of the graph does not lie on any affine
hyperplane, since otherwise we can proceed by induction on the dimension. We may
also assume that we cannot add any further edge so as to preserve this property.
We can fit the framework to the coordinate system, and thereby reduce the number
of algebraically independent entries in u to nd−

(
d+1

2

)
; this implies that the number

of edges is at most nd−
(
d+1

2

)
.

We claim that the framework is infinitesimally rigid. Suppose not, then by
Theorem 15.21 it has a flexing. During this, the distance of at least one nonadjacent
pair of nodes (i, j) must change, and since it changes continuously, at some time i
and j will have a distance that is algebraically independent of the edge lengths. Let
us add this edge to create a graph G′, and let v : V → Rd be the node positions
at this time. Since we could not add the edge ij to G in its original position, the
distance |ui−uj | must be algebraically dependent on the edge-lengths of G. This
determines an algebraic relation between the entries of u, and since it is generic, this
algebraic relation must hold for all node positions, in particular when substituting
v for u, a contradiction.

Thus the framework is infinitesimally rigid. This implies that the number of
edges must be exactly dn−

(
d+1

2

)
, and they cannot carry a stress by (15.11). This

completes the proof of (a).

(b) This part of the proof uses deeper tools than those used before. Fix the
graph G, and consider the squared-edge-length map f : Rd×V defined by (15.12).
The framework (G,u) is stress-free if and only if the rank of Df(u) is m. We know
by (a) that this occurs when u is generic. So the maximum rank of Df(u), over
all vector labelings u : V → Rd, is equal to m. Furthermore, a vector w ∈ RE of
squared edge-lengths is realized by some framework (G,u) carrying a nonzero stress
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if and only if it is a critical value of the map f . By Sard’s Theorem [Sard 1942],
the set of such vectors w has measure 0 in RE .

On the other hand, consider the set of “bad” realizations (critical points of f)
K =

{
u : rk

(
Df(u)

)
< m

}
. It is clear that this is a real algebraic variety over the

rationals: the condition rk(Df(u)) < m is equivalent to saying that det(N) = 0
for all m×m subdeterminants N of R. Hence the set

{(
u, f(u)

)
: u ∈ K

}
is an

algebraic variety over the rationals as well. By the Tarski–Seidenberg theorem on
semialgebraic sets, the set f(K) is semialgebraic over the rationals, i.e., it can be
described as L1∪· · ·∪Ls, where each Li is the solution set of a finite system of
polynomial equations and strict polynomial inequalities with rational coefficients.

Now assume that the given linkage (G, `) has a realization (G,u) with a nonzero
stress. This means that there is a w ∈ f(K), where w ∈ RE is defined by we =
`(e)2. Since the entries of ` are algebraically independent, so are the entries of
w, and it follows that they cannot satisfy any nontrivial polynomial equation with
rational coefficients. So w ∈ Li for some Li that is defined by strict polynomial
inequalities. But this means that ` is an interior point of f(K), which implies that
f(K) has positive measure, a contradiction. �

This theorem implies a purely algebraic characterization of generic stress-
freeness of a graph G. Consider dn variables xiν (i = 1, . . . , n; ν = 1, . . . , d) and
the polynomials

pij =

d∑
ν=1

(xiν−xjν)2 (ij ∈ E).

Corollary 15.23. A graph G is generically stress-free in Rd if and only if the
polynomials pij (ij ∈ E) are algebraically independent. �

Combining parts (a) and (b) of Theorem 15.22, we see that if a generic frame-
work is stress-free, then every other realization of the same linkage is stress-free
as well. An important and surprising generalization of this fact was proved in
[Connelly 2005]: If we consider a generic framework (G,u) and another (not neces-
sarily generic) realization (G,v) of the same linkage, then not only are their stress
spaces simultaneously nonempty, and (as it also follows) not only have they the
same dimension, but these stress spaces are equal as linear subspaces of RE . (Fig-
ure 15.9 shows that this conclusion does not remain valid without the genericity
assumption.)

Lemma 15.24. Let (G,u) and (G,v) be two realizations of the same linkage in
Rd, and assume that one of them is generic. Then Str(G,u) = Str(G,v).

Proof. Let (G,u) be generic, and let (G′,u) be a maximal stress-free subgraph
of (G,u). Then dim

(
Str(G′+e,u)

)
= 1 for every e ∈ E \E(G′); let Se be a nonzero

stress on (G′+e,u). Trivially, Se is not zero on the edge e; this implies that the
stresses Se (e ∈ E \E(G′)) are linearly independent. It also follows that they
generate Str(G,u): Let S be any stress on (G,u), then there is a linear combination∑
e aeS

e that matches S on the edges in E \E(G′), and so the stress S−
∑
e aeS

e

is supported on E(G′). Since (G′,u) is stress-free, it follows that S =
∑
e aeS

e.
Our next goal is to show that every Se is a stress on (G′+e,v) as well. Theorem

15.22 implies that the edge lengths of (G′+e,u) are algebraically dependent. Using
this, the stress Se can be constructed on (G′+e,u) just like in the proof of Theorem
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(a) (b) (c) (d)

Figure 15.9. (a)–(b) Two realizations of the same linkage in the
plane, only one of which has a stress: (a) is stress-free; (b) has an
infinitesimal motion as shown, and therefore it carries a stress. (c)–
(d) Two realizations of the same linkage in the plane with different
stress spaces. The graph K4,3 has 7 nodes and 12 > 2 ·7−3 edges,
and so every realization in the plane has a stress. The values of
any stress on the three edges incident with the black node must
have the same sign in (d), but not in (c).

15.22(a), using (15.18). Note, however, that (15.18) is an identity, and so it holds
true when we replace the coordinates of u by the coordinates of v:∑

j: ij∈E(G′+e)

Fij(..., |vs−vt|2, ...)(vi−vj) = 0.

But v realizes the same linkage as u, and so |vi−vj | = |ui−uj | for every edge ij of
G. So this equation gives the same nonzero stress Se on (G′+e,v) as on (G′+e,u).
As mentioned above, the framework (G′,v) is stress-free, so this is a unique stress
on (G′+e,v). By the same argument as above, the stresses Se generate Str(G,v),
which proves the lemma. �

15.4. The realization space

What can we say about the space of all realizations of a linkage, at least in
the generic case? Sharpening results of [Hendrickson 1992], the following theorem
[Jackson–Keevash 2011] asserts that the realization space of a generic framework is
a smooth manifold. To see that this statement is far from obvious, let us have a
look at the simple example of a parallelogram in the plane with a triangle attached
(Figure 15.10). To factor out congruences, let us nail down the vertices of the
bottom triangle. (The space of all realizations could be obtained as the product
of this space with R2×S1Z2, taking into account the isometric transformations.)
In a typical position, the parallelogram can be deformed in two directions. But in
the special position when it is collinear, there are four possible directions we can
deform it. So the realization space is not a manifold, but the union of four arcs
connecting the two collinear realizations.

Theorem 15.25. The space of realizations of a linkage defined by a generic frame-
work (G,u) in Rd is a smooth manifold of dimension dim(InfG,u).

Proof. Let t = rk(RG,u). Since (G,u) is generic, we have rk(RG,v) ≤
rk(RG,u) = t for every vector labeling v. By Lemma 15.24 and (15.11), we have
rk(RG,v) = t for every vector labeling v realizing the linkage (G, `u). The matrix
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Figure 15.10. Motions of a parallelogram with a triangle at-
tached do not form a manifold. The triangle is fixed; this factors
out isometries.

RG,v is the Jacobian of the map f(v) = (|vi−vj |2 : ij ∈ E), and so it has maxi-
mum rank t for every v ∈ f−1(`u). By basic differential geometry, this implies that
f−1(`u) is a smooth manifold of dimension nd− t. �

Theorem 15.25 is not quite what we would like to see: we don’t want to distin-
guish between congruent frameworks. Define a reduced realization as an equivalence
class of congruent realizations. Is the space of reduced realizations (endowed with
a metric in the natural way) still a manifold? We must be careful, as shown by the
following example.

Example 15.26. Consider a path of length 2 with nodes a, b, c (in this order),
where the two edges have algebraically independent lengths α and β. Any 2-
dimensional realization of this linkage can be encoded by specifying the position of
b, and the two angles formed by the edges with the positive axis. So the realization
space is R2×S1×S1, a nice 4-dimensional manifold.

If we identify congruent realizations, then we can uniquely describe a reduced
realization u by the distance of ua and uc, which fill the interval [|α−β|, α+β].
So the reduced realization space is homeomorphic to a segment, which is not a
manifold. Notice that the trouble (violation of the manifold property) is caused by
those realizations that are collinear. �

Theorem 15.27. The space of reduced full-dimensional realizations of a linkage
defined by a generic framework (G,u) in Rd is a differentiable manifold of dimen-

sion dim(InfG,u)−
(
d+1

2

)
.

The linkage may or may not have realizations in a lower dimension, but if it
does, these are excluded from consideration.

Proof. The proof combines the proof method of Theorem 15.25 with standard
techniques in differential geometry, and we give a sketch only. Select an ordered
set S = (s0, . . . , sd) of d+1 nodes, and consider all vector labelings in which these
nodes are affine independent. We can fit S to the coordinate system; this selects a
particular labeling from each equivalence class of congruent labelings. The set of all
vector labelings with S fitted to the coordinate system is described by dn−

(
d+1

2

)
variables, d of which are restricted to the positive semiline.
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By the same argument as above, the realizations v of (G, `u) in which v(S) is
affinely independent is a t-dimensional manifold MS . For realizations in which both
of two (d+1)-sets of nodes S and S′ are labeled by affinely independent vectors,
congruent realizations in the manifolds MS and MS′ can be identified, and the
identification maps are smooth. So the manifolds MS form an atlas of charts,
endowing the reduced realization space with a differentiable structure. �

Since the space of all realizations is trivially compact, we get a stronger state-
ment if every realization is full-dimensional.

Corollary 15.28. If the linkage defined by a generic framework (G,u) in Rd has
no realization in Rd−1, then the space of all reduced realizations in Rd is a compact
differentiable manifold of dimension dim(InfG,u)−

(
d+1

2

)
.

15.5. Global rigidity

Let us recall that a framework in Rd is globally rigid, if every other realization
of the same linkage in Rd is congruent to it. In other words, the distances between
adjacent nodes determine the distances between nonadjacent nodes.

There are a large number of applied problems which can be modeled using the
concept of global rigidity rather than local or infinitesimal rigidity. As an example,
suppose we have a number of sensors scattered in the plane or in space. These
could be ships on the ocean, or animals with embedded chips, or perhaps, in the
future, diagnostic nano-devices in the body. We are able to measure the distance
between some pairs (say, by the delay of radio signals), and would like reconstruct
their geometric positions. This can be done if and only if the framework of the
devices as nodes and the measured distances as edges is globally rigid.

One expects that global rigidity is more difficult to handle than local rigidity,
since two different realizations of the same linkage may not be continuously movable
into each other, and so analytic tools like differentiation are not available here. This
is indeed true, but there is a surprising variety of nontrivial results on global rigidity,
of which we give a sampler.

Let us warm up with the 1-dimensional case. Trivially, a disconnected graph
is not rigid on the line in any sense, and it is not hard to see that every connected
graph is locally and infinitesimally rigid with any representation. Global rigidity
is more complicated. Our first observation is that if G has a cutnode a, and so we
can write G = G1∪G2 where V (G1)∩V (G2) = {a}, |V (Gi)| > 1, then from any
representation (G,u) we can create another representation (G,u′) by reflecting the
nodes of G1 in ua. This shows that no representation can be globally rigid unless
either all nodes of G1 or all nodes of G2 are represented by the same point.

Assume that G is 2-connected. Even if the nodes are represented by different
points, global rigidity does not follow.

Example 15.29. Consider a quadrilateral on nodes V (C4) = {a, b, c, d} (in this
cyclic order), and its 1-dimensional representation ua = 0, ub = 1, uc = 3, ud = 2
(Figure 15.11). Since C4 is connected, this representation is locally and infinites-
imally rigid. Mapping the nodes to va = 2, vb = 3, vc = 1, vd = 0, we get an-
other realization of the same linkage, which is not congruent to the first one, since
|ua−uc| = 3 but |va−vc| = 1. Thus (G,u) is not globally rigid on the line. It is
easy to construct frameworks on the linea that are arbitrarily highly connected but
not globally rigid (Exercise 15.13). �
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a b d c bacd

Figure 15.11. Even a 2-connected framework may not be globally
rigid on the line. The pictures are vertically distorted to make the
structure visible.

However, if G is 2-connected and the labeling u : V → R is generic, then the
framework will be globally rigid on the line. The proof of this fact is left to the
reader as Exercise 15.12.

One might expect that if a linkage is not globally rigid, i.e., it has two incon-
gruent realizations, then one can obtain a second realization by slightly deforming
the first one; in other words, the framework is flexible. This is, however, not the
case, as 1-dimensional representations of any graph with a cutnode show. (It is
easy to generalize this example to higher dimensions.)

Which are the globally rigid representations of a graph? In the case of infinites-
imal rigidity, generic representations (vector labelings) are the “best”, in the sense
that if any representation is infinitesimally rigid, then every generic representation
is rigid as well. Nothing like this holds for global rigidity: for example, labeling each
node of a connected graph with the same vector gives a globally (even universally)
rigid representation, but of course the graph need not be globally rigid (or even
locally rigid) in a generic representation. We have seen examples of globally rigid
but not infinitesimally rigid graphs in Figures 15.2 and 15.3; Figure 15.12 shows
that the 3-cube graph is not globally rigid in generic position in the plane, but it
has a nontrivial realization that is globally rigid.

(a) (b) (c) (d)

Figure 15.12. Structure (a) is not globally rigid in the plane
(flip one triangle), but adding an edge (b) we get a globally rigid
framework. (c) shows a generic representation of the cube graph,
which is not infinitesimally rigid (just count degrees of freedom),
and hence it is flexible and so not globally rigid. Representation
(d) of the cube is globally rigid; see Exercise 15.16.

So to make the question “Does G have a globally rigid representation?” mean-
ingful, we have to impose some sort of nondegeneracy condition. Genericity is
perhaps the most natural, but general position will be another interesting case.

15.5.1. Global rigidity up to an affine transformation. Before starting
with the analysis of global rigidity, let us discuss a weaker version of it. We say
that a framework (G,u) in Rd is globally rigid up to an affine transformation, if
for every vector labeling v : V → Rd realizing the same linkage, there is an affine
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transformation A of the space such that vi = Aui. Note that the definition of
global rigidity only differs in that it requires A to be an isometry.

Example 15.30. Figure 15.13 shows a rather trivial example in the plane. Note,
however, that a noncongruent affine transformation in the plane preserves the length
of segments in at most two directions. So all examples in the plane are similar to
this one. �

Figure 15.13. A planar framework whose edge lengths are pre-
served by a noncongruent affine transformation. The edges are
curved in order to show the structure.

One feels that rigidity up to affine transformations is quite close to global
rigidity, but it is not so easy to handle the connection. We start with a rather
simple characterization [Connelly 1982]. Let us say that in a framework (G,u) in
Rd the edge directions lie on a conic at infinity, if there is a symmetric nonzero
matrix Q ∈ Rd×d such that (ui−uj)

TQ(ui−uj) = 0 for every edge ij ∈ E. We
say that this conic is defined by Q.

Lemma 15.31. A framework (G,u) has a noncongruent affine image that preserves
the edge lengths if and only if the edge directions lie on a conic at infinity.

Another way of interpreting this condition is that there is a noncongruent infini-
tesimal motion where the velocities Qui depend linearly on the positions ui.

Proof. Suppose that (G,v) is an affine image of (G,u), realizing the same
linkage, but not congruent to (G,u). In other words, there is an affine transforma-
tion A of Rd such that vi = Aui for all nodes i, but A is not a congruence. We
may assume (by translation) that A is a homogeneous linear transformation. Since
A preserves the lengths of edges, we have |A(ui−uj)| = |ui−uj | for every edge
ij, which can be written as (ui−uj)

T(ATA−I)(ui−uj) = 0. Since A is not an
orthogonal matrix, Q = ATA−I 6= 0 defines the conic at infinity.

The converse follows by a similar argument. �

The matrix Q, defining the conic at infinity, has some further useful properties.
Let S be any stress on (G,u). For every node i, we have∑

j

Sij(ui−uj)
TQ(ui−uj) = 0,

since every term is zero. Expanding, we have(∑
j

Sij

)
uT
iQui−2uT

iQ
(∑

j

Sijuj

)
+
∑
j

Siju
T
jQuj .
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The first two terms are zero as S is a stress, so the last term must be zero as well:

(15.19)
∑
j∈V

Siju
T
jQuj = 0.

Using a similar expansion, we get that

(15.20)
∑
j

Sij(uj−uk)TQ(uj−ul) = 0

for any three nodes i, k and l. Also note that if u is full-dimensional, then (ui−
uj)

TQ(ui−uj) 6= 0 for at least one nonadjacent pair i, j ∈ V (this is left to the
reader as an exercise).

The following lemma gives some simpler conditions under which affine images
that preserve the lengths of edges are automatically congruent images. The first
condition was formulated in [Connelly 2005], the second in [Alfakih–Ye 2013]. As
a motivation for condition (b) below, let us recall (14.4): if (G,u) spans Rd, then
every stress on it has corank at least d+1.

Lemma 15.32. Let (G,u) be a framework in Rd, and suppose that one of the
following conditions hold:

(a) (G,u) is generic and all nodes have degree at least d.

(b) (G,u) is in general position and carries a stress of corank d+1.

Then the edge directions do not lie on a conic at infinity.

Proof. Suppose that the edge directions do lie on a conic at infinity, defined
by Q. Since the conditions are invariant under translation, we may assume that
ua = 0 for an appropriately chosen node a.

(a) We have a system of homogeneous linear equations for the entries of Q,
and hence the existence of such a matrix Q is equivalent to the vanishing of certain
determinants composed of quadratic polynomials of the vectors ui. If these deter-
minants vanish for the generic vector labeling u, then they vanish for every vector
labeling in Rd. So for every other vector labeling v, there is a symmetric nonzero
matrix M ∈ Rd×d such that (vi−vj)

TM(vi−vj) = 0 for every edge ij ∈ E.

Let vi =
(

1
u′i

)
be obtained by replacing the first entry of ui by 1 for i > 1, and

let v1 = 0. Consider the matrix M as above, and let M ′ be obtained from M by
deleting its first row and column. For every edge ij with i, j > 1, we have

(u′i−u′j)
TM ′(u′i−u′j) = (vi−vj)

TM(vi−vj) = 0.

Since the graph G\1 has degrees at least d−1, and u′ is a generic vector la-
beling of it in dimension d−1, it follows by induction that M ′ = 0. This
means that we can write M = beT

1 +eT
1b with some nonzero vector b, and so

vT
iMvi = 2(bTvi)(e

T
1vi) = 2(bTvi). For i ∈ N(1), we have

vT
iMvi = (vi−v1)TM(vi−v1) = 0,

and hence bTvi = 0. Since any d of the vectors vi (i ∈ N(1)) are linearly indepen-
dent, this is a contradiction.

(b) Let S be a stress matrix with corank d+1. First, note that S cannot have
an all-zero row; indeed, deleting such a row (say, row i) and the corresponding
column, we would get a stress matrix on (G\ i,u) of corank d, while the vectors uj
(j 6= i) would still span the affine d-space; this would contradict (14.4).
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It follows that for every node i, the equation
∑
j Sij(uj−ui) = 0 provides

a linear dependence between the vectors uj−ui (j ∈ N(i)), and hence (by the
assumption that the representation is in affinely general position) there must be
at least d+1 terms with nonzero coefficients. Hence the degree of each node is at
least d+1. In particular, the vectors uj−ui (j ∈ N(i)) must span Rd.

Now suppose that the edge directions lie on a conic at infinity defined by the
symmetric nonzero matrix Q. Define q ∈ RV by qi = uT

iQui, then we have Sq = 0
by (15.19). By assumption that S has corank d+1, the vector 1 and the columns
of UT generate the kernel of S, which means that there is a vector b ∈ Rd and a
real number α such that qi = uT

iQui = bTui+α for every i ∈ V .
Substituting these expressions, we get for every i and j

(ui+uj)
TQ(ui−uj) = bT(ui−uj).

Adding the equation (ui−uj)
TQ(ui−uj) = 0 (valid for ij ∈ E), we get

2uT
iQ(ui−uj) = bT(ui−uj).

Since the vectors uj−ui (i fixed, j ∈ N(i)) span the space, it follows that 2Qui = b
for every i ∈ V . But then the representation lies in a proper affine subspace, a
contradiction. �

For more on frameworks whose edge directions lie on a conic at infinity,
including connections with the Strong Arnold Property and with the comple-
tion problem of semidefinite matrices, see [Connelly–Gortler–Theran 2016b] and
[Laurent–Varvitsiotis 2014].

The following lemma provides a way to prove that only affine (but not neces-
sarily congruent) images preserve the lengths of edges.

Lemma 15.33. Let u : V → Rd and v : V → Rd be two vector labelings of the
same graph G, and suppose that (G,u) and (G,v) carry the same stress S with
corank d+1. Also suppose that (G,u) spans Rd. Then v is an affine image of u.

Proof. Consider a third labeling wi =
(
ui

vi

)
∈ R2d. Clearly S remains a stress

on this framework too, so by (14.4), the effective dimension of (G,w) is at most d,
and so there is a d-dimensional affine subspace L ⊆ R2d containing all of the vectors
wi. The projection π1 of L to the first d coordinates must be bijective. Let π2 be
the projection of L to the last d coordinates. It follows that π−1

1 π2 is an affine map
from (G,u) onto (G,v). �

Theorem 15.34. Assume that a framework (G,u) spanning Rd carries a stress S
whose matrix is negative semidefinite and has corank d+1. Then (G,u) is globally
rigid up to an affine transformation.

Of course, assuming that S is positive semidefinite would lead to the same
conclusion: just replace S by −S.

Proof. Let (G,v) be another realization of the framework (G,u) in Rd. Our
goal is to show that S is a stress on (G,v) as well; then Lemma 15.33 will complete
the proof. Since S is a stress, the energy satisfies E(u) = 0 by (14.5), and since
all edge-lengths are preserved, we have E(v) = E(u) = 0. Since S is negative
semidefinite, the labeling v minimizes the energy, and so S must be a stress on the
framework (G,v) as well. By Lemma 15.33, this implies that v is an affine image
of u. �
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15.5.2. Global rigidity in general position. The following condition for
a graph to have globally rigid vector labelings in general position was proved in
[Alfakih 2017]:

Theorem 15.35. A graph has a globally rigid representation in Rd in affinely
general position if and only if it is either complete or (d+1)-connected.

Proof. The case of complete graphs is trivial, so suppose that the graph G is
not complete. First, suppose that G has a cutset T with |T | ≤ d. Consider any
general position vector labeling u of V , and let H be any hyperplane containing
the vectors representing T but no other vector label (by the general position of the
labeling, we can choose such a hyperplane H). Reflecting one of the components of
G\T in H, we get another representation in which the edge lengths are the same
as before, but which is not congruent. So (G,u) is not globally rigid.

To prove the converse, let G be a (d+1)-connected graph. By Theorem 10.9,
it has an orthogonal representation in general position in Rn−d−1. Considering the
Gram matrix of these vectors, we get a positive semidefinite G-matrix S of rank
n−d−1 such that every (n−d−1)×(n−d−1) submatrix of S is nonsingular.

Next, we construct a vector v ∈ Ker(S) with nonzero entries. It suffices to
show that for every i ∈ V there is a vector w ∈ Ker(S) with wi 6= 0; a “generic”
linear combination of such vectors is a vector in Ker(S) with all coordinates differ-
ent from 0. If no such vector w exits, then elementary linear algebra shows that
Sa = ei for some vector a ∈ RV . S is positive semidefinite, hence it can be written
as S = XTX for some X ∈ R(n−d−1)×V , where any n−d−1 columns of X are lin-
early independent. Let Y be any (n−d−1)×(n−d−1) submatrix not containing
column i, then ei = XTXa implies that 0 = Y TXa. Since Y is nonsingular, this
implies that Xa = 0, whence Sa = XTXa = 0, a contradiction.

Scaling the rows and columns of S if necessary, we may assume that v = 1, so
S1 = 0. We can extend 1 by d further column vectors in Rn to a basis of Ker(S),
and combine these to a single matrix W such that SW = 0. The columns of WT

have the form wi =
(

1
ui

)
(i ∈ V, ui ∈ Rd), and so SW = 0 means that S is a stress

matrix on the vector labeling u of G. So (G,u) carries a positive semidefinite stress
of rank n−d−1, and hence it is globally rigid up to an affine transformation.

If (G,u) is not globally rigid, then its edge directions lie on a conic at infinity,
defined by a matrix Q ∈ Rd×d. By (15.20),∑

j

Sij(uj−uk)TQ(uj−uk) = 0

for every i and k. Choose k so that (uj−uk)TQ(uj−uk) 6= 0 for at least one j,

then the columns of S corresponding j ∈ N(k) are linearly dependent. Since the
number of these entries is at most n−d−1, this contradicts the choice of S. Thus
(G,u) is globally rigid.

What remains is to argue that any d+1 of the vectors ui are affine independent,
or equivalently, any d+1 of the vectors wi are linearly independent. Suppose not,
then there is a nonzero linear combination b = Wa of the columns of W that has
d+1 zeroes; but then Sb = SWa = 0, which shows that S has n−d−1 linearly
dependent columns, a contradiction. �

15.5.3. Generic global rigidity. We say that a graph is generically globally
rigid, if it is globally rigid for every generic vector labeling. It turns out that it
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would suffice to require this for a single generic vector labeling; this is a nontrivial
fact [Gortler–Healy–Thurston 2010], whose proof we do not reproduce here. Figure
15.14 illustrates some of the difficulties.

(a) (b) (c)

Figure 15.14. Three generic frameworks in the plane with the
same graph; (a) and (b) realize the same linkage. Three more
frameworks are obtained by flipping the black node over the line
connecting its neighbors, so neither one of these is globally rigid.
(c) cannot be realized so that the two triangles do not overlap. So
(a) has four noncongruent realizations, (c) has only two.

In the case of generic frameworks, one can give a full characterization of
global rigidity in terms of the existence of appropriate stresses. The “if” part
of the following theorem was proved in [Connelly 2005], the “only if” part in
[Gortler–Healy–Thurston 2010]. The proof of the “only if” part, which extends
the methods of the proof of Hendrickson’s Theorem below, will not be reproduced
here.

Theorem 15.36. A generic framework (G,u) in Rd with at least d+2 nodes is
globally rigid if and only if it carries a stress S whose matrix has corank d+1.

Proof. (Sufficiency.) Again, we consider another realization (G,v) of the
framework (G,u) in Rd. By Lemma 15.24, S is a stress on the framework (G,v) as
well, and so by Lemma 15.33, (G,v) is an affine image of (G,u). Lemma 15.32(b)
completes the proof. �

While this theorem gives an interesting and nontrivial condition for generic
global rigidity, this condition is not easy to verify. It is related to two simpler
algorithmic problems that are notorious for their unknown complexity: as we have
seen, no polynomial time algorithm is known to decide whether a generic frame-
work carries a stress, and no polynomial time algorithm is known to determine the
maximum rank in a linear space of matrices (in this case, in the space of stresses).
However, the methods developed for these two problems do yield a randomized
polynomial time algorithm to determine whether a graph is globally rigid in Rd
(see Exercise 15.15).

From these considerations, it follows that more combinatorial necessary and/or
sufficient conditions for generic global rigidity are valuable. There is a nontriv-
ial necessary condition for global rigidity [Hendrickson 1992], which reveals that
generic global rigidity is related to generic (local) rigidity in interesting ways.
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Theorem 15.37. If a graph G on at least d+2 nodes is generically globally rigid
in Rd, then it is (d+1)-connected and deleting any edge it remains generically rigid
in Rd.

Proof. The first condition follows from (the easy part of) Theorem 15.35.
To prove the second, suppose that G′ = G\e is not rigid for some edge e =

ab ∈ E. This means that for some (or any) generic labeling u in Rd, the framework
(G′,u) is not infinitesimally rigid. Since (G,u) is infinitesimally rigid, it follows

that rk(RG,u) = dn−
(
d+1

2

)
and rk(RG′,u) = dn−

(
d+1

2

)
−1.

Every realization of the linkage (G′, `u) spans Rd. Indeed, let (G′′,u) be a
maximal stress-free subgraph of (G′,u). Then, using that n > d+1,

|E(G′′)| ≥ rk(RG′′,u) = rk(RG′,u) = dn−
(
d+1

2

)
−1 > (d−1)n−

(
d

2

)
,

and hence every (d−1)-dimensional realization of (G′′, `u) would have to carry a
stress, contradicting Lemma 15.24.

By Corollary 15.28, the space of reduced realizations of the linkage (G′, `u) is
a compact manifold of dimension 1, i.e., it consists of one or more closed Jordan
curves. Let J be the curve through the congruence class of u.

The function f(x) = |xa−xb|2 is invariant under congruences, and hence it
can be viewed as a (smooth) function on J . The vector labeling u cannot be a
stationary point of f : this would give an algebraic equation between the coordinates
of u, which would be identically true, and hence f would be a constant, and moving
along J we would get a flexing of the whole graph G (not only of G′). Hence u
is neither the maximizing nor the minimizing argument of f , and hence there is
another realization v along J such that f(u) = f(v). This means that (G,v)
is a noncongruent realization of the linkage (G, `u), and so (G,u) is not globally
rigid. �

The converse of Theorem 15.37 is not valid [Connelly 2005]: K5,5 is not globally
rigid in R3, but it meets the necessary conditions in Hendrickson’s Theorem. On
the other hand, these conditions are sufficient in the plane [Jackson–Jordán 2005].
In fact, Jackson and Jordán prove the following result, quite analogous to Theorem
15.11 (for the proof, the reader is referred to the original paper.)

Theorem 15.38. For a graph G on at least 4 nodes, the following are equivalent:

(a) G is globally rigid in the plane;

(b) G is 3-connected and deleting any edge, it remains rigid in the plane;

(c) G can be obtained from K4 by a succession of the second Henneberg con-
structions (H2) and edge additions. �

Exercise 15.1. Prove that a framework (G,u) is flexible on the line if and only
if G is disconnected.

Exercise 15.2. Prove that in the plane i 7→ e1, i 7→ e2 and i 7→ Rui (where
R denotes rotation by 90◦) are infinitesimal congruences, which generate Rig. In
3-space, i 7→ e1, i 7→ e2, i 7→ e3, i 7→ e1×ui, i 7→ e2×ui and i 7→ e3×ui generate
Rig. For which frameworks are these generators linearly independent?
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Exercise 15.3. (a) Show that (15.5) defines an infinitesimal motion. (b) Let U(t)
(t ∈ [0, 1]) be a smooth family of congruences in Rd. Prove that (d/dt)(0)u =
w+Au, where w ∈ Rd and A is a skew symmetric matrix. Conversely, every
affine transformation u 7→ w+Au, where w ∈ Rd and A is a skew symmetric
matrix, arises from a smooth family of congruences.

Exercise 15.4. Let u be a representation of G in Rd. Prove that a vector τ ∈ RE
is in the orthogonal complement of Str(G, u) if and only if there are vectors vi ∈ Rd
such that τij = (vi−vj)

T(ui−uj) for every edge ij.

Exercise 15.5. Let (G,u) be a rigid framework that has at least one cable or
strut. Prove that it has a nonzero stress.

Exercise 15.6. Let G be the octahedron graph, where V = {1, 2, 3, 4, 5, 6} and

E = {12, 34, 56}. Consider the following vector labeling in R3: let u1,u2,u3,u4

be points of the unit circle (in this cyclic order) of the plane z = 0 so that
](u2,u3) = ](u4,u1). Let u5 and u6 be arbitrary points on the z-axis. Prove
that (G,u) is flexible.

Exercise 15.7. Let u,v1,v2 . . . , be noncongruent realizations of the same linkage
(G, `), and suppose that vni → ui for all nodes. Prove that (G,u) has a nontrivial
flexing.

Exercise 15.8. Let (G,u) be a framework and v, an infinitesimal motion. Prove
that the frameworks (G,u+v) and (G,u−v) define the same linkage (have the
same edge lengths).

Exercise 15.9. Let (G,u) be a generic framework with a stress S. Prove that
there is a nonzero polynomial F in m variables xij (ij ∈ E) such that Sij =
Fij(. . . , |us−ut|2, . . . ).
Exercise 15.10. Is the configuration space of the Peaucellier–Lipkin linkage (Ex-
ample 15.1) a closed manifold?

Exercise 15.11. Prove that if linkage with algebraically independent edge lengths
has a realization, then it has a generic realization.

Exercise 15.12. . Prove that a graph G is generically globally rigid on the line
if and only if it is 2-connected.

Exercise 15.13. For every k ≥ 1, construct a k-connected framework on the line
that is not globally rigid.

Exercise 15.14. Prove that if a framework (G,u) is globally rigid up to an affine
transformation, but not globally rigid, then there is a nonzero matrix Y ∈ RV×V
such that Yij = 0 for ij ∈ E∪4, and Y S = 0 for every stress on (G,u).

Exercise 15.15. Prove that generic global rigidity of a graph in Rd can be decided
in randomized polynomial time.

Exercise 15.16. Prove that the framework in Figure 15.12(d) is globally rigid in
the plane.



CHAPTER 16

The Colin de Verdière Number

Let G be a connected simple graph. We know that (by the Perron–Frobenius
Theorem) the largest eigenvalue of the adjacency matrix has multiplicity 1. What
can we say about the multiplicity of the second largest?

The eigenvalues of most graphs are all different, so the multiplicity of any of
them gives any information about the graph in rare cases only. Therefore, it makes
sense to try to maximize the multiplicity of the second largest eigenvalue by weight-
ing the edges by positive numbers. The diagonal entries of the adjacency matrix do
not carry any information, so we allow putting there arbitrary real numbers. The
off-diagonal matrix entries that correspond to nonadjacent pairs of nodes remain 0.

There is a technical restriction, transversality (Strong Arnold Property as de-
fined in Section 10.5), to exclude choices of edgeweights and diagonal entries that
are too degenerate.

Since we do not put any restriction on the diagonal entries, we may add a
constant to the diagonal entries to shift the spectrum so that the second largest
eigenvalue becomes 0, without changing its multiplicity. The multiplicity in ques-
tion is then the corank of the matrix (the dimension of its nullspace).

Finally, we multiply the matrix by−1, to follow convention. Recall that we have
met such matrices in Chapter 14: canonical braced stress matrices of 3-polytopes
have all these properties (cf. Proposition 14.14).

This multiplicity, as a graph parameter, was introduced and first stud-
ied in [Colin de Verdière 1986] and [Colin de Verdière 1991]; for a survey, see
[van der Holst et al. 1999]. Its most interesting feature is that it is related to
topological properties of the graph: for example, its value is at most 3 if and only
if the graph is planar. For this book, its connection to geometric representations
makes it particularly interesting. For example, we are going to show that for 3-
connected planar graphs, the optimizing matrices in the definition above correspond
to Steinitz representations (representations as skeletons of convex 3-polytopes).

16.1. Basics

We continue with the formal definition. Recall that the a G-matrix A is
transversal, or has the Strong Arnold Property, if AX 6= 0 for every nonzero G-
matrix X with zero diagonal.

A well-signed G-matrix with exactly one negative eigenvalue and with the
Strong Arnold Property will be called a Colin de Verdière matrix of the graph
G. The Colin de Verdière number µ(G) of the graph G is defined as the maximum
corank of any Colin de Verdière matrix of G.

We can formulate this problem as a minimum dimension problem for orthogonal
representations—not in Euclidean space, but in Minkowski space. To define this

289
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space, we equip the linear space Rn with an indefinite inner product

〈x,y〉 = x1y1 + · · ·+xn−1yn−1−xnyn.

In other words, with the matrix

∆ = ∆n =

(
In−1 0

0 −1

)
,

we have 〈x,y〉 = xT∆y. Using this formalism, every symmetric matrix A ∈ R with
one negative eigenvalue can be written as a “Gram matrix”: Aij = 〈ui,uj〉 with
appropriate vectors ui ∈ Rd, where d is the rank. This explains the analogies in
our treatments here and in Section 10.5; but the indefiniteness of this inner product
causes difficulties to be taken into account.

Example 16.1. It is clear that µ(K1) = 0. We have µ(G) > 0 for every graph with
at least two nodes. Indeed, we can put “generic” numbers in the diagonal of −AG
to make all the eigenvalues different, and then we can subtract the second small-
est eigenvalue from all diagonal entries to get one negative and one 0 eigenvalue.
Transversality, as noted in Section 10.5.2, is automatic for matrices with corank 1.

This discussion implies the useful fact that if G has at least two nodes, then it
is sufficient to require that M has at most one negative eigenvalue. Indeed, if M is
positive semidefinite, then 0 is its smallest eigenvalue, and so the Perron–Frobenius
Theorem implies that it has multiplicity 1. So the only case when dropping the
condition that M has a negative eigenvalue would allow larger corank is when
µ(G) = 0, i.e., when G = K1. �

Example 16.2. For a complete graph Kn with n > 1 nodes, it is easy to guess
−J as a Colin de Verdière matrix. It is trivial that −J is a well-signed G-matrix
with one negative eigenvalue. Transversality is trivial again. The corank of −J
is n−1, and one cannot beat this, since at least one eigenvalue must be negative.
Thus µ(Kn) = n−1. �

Example 16.3. Next, let us consider the graph Kn consisting of n ≥ 2 isolated
nodes. All entries of a Colin de Verdière matrix M , except for the entries in the
diagonal, must be 0. We must have exactly one negative entry in the diagonal.
Trying to minimize the rank, we would like to put 0’s in the rest of the diagonal,
getting corank n−1. But this is where the Strong Arnold Property enters: we can
put at most one 0 in the diagonal! In fact, assuming that (say) M1,1 = M2,2 = 0,
the matrix X with

Xi,j =

{
1, if {i, j} = {1, 2},
0, otherwise

violates the Strong Arnold Property. (We could have appealed to Lemma 10.26.)
So we must put n−2 positive numbers in the diagonal, and we are left with a single
0. It is easy to check that this matrix will satisfy (M3), and hence µ(Kn) = 1. �

Example 16.4. Consider the path Pn on n ≥ 2 nodes, labeled 1, 2, . . . , n in their
order on the path. Consider any Colin de Verdière matrix M for Pn, and delete
its first column and last row. The remaining matrix has negative numbers in the
diagonal and 0’s above the diagonal, and hence it is nonsingular. Thus the corank
of M is at most 1. We have seen that a corank of 1 can always be achieved. Thus
µ(Pn) = 1. �
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Example 16.5. Consider a complete bipartite graph Kp,q, where p ≥ q ≥ 2. In
analogy with Kn, one can try to guess a Colin de Verdière matrix with low rank.
The natural guess is

M =

(
0 −J
−JT 0

)
,

where J is the p×q all-1 matrix. This clearly belongs to M1
Kp,q

and has rank 2,

which seems to imply p+q−2 for µ(Kp,q). But it turns out that this matrix does
not have the Strong Arnold Property unless p, q ≤ 3. In fact, consider a matrix

X =

(
Y 0
0 Z

)
,

where Y is a p×p symmetric matrix with 0’s in its diagonal and Z is a q×q
symmetric matrix with 0’s in its diagonal. The conditionMX = 0 is then equivalent
to requiring that Y and Z have 0 row-sums. It is easy to see that this implies that
Y = Z = 0 if p, q ≤ 3, but not if p ≥ 4.

This establishes that µ(Kp,q) ≥ p+q−2 if p, q ≤ 3, and equality holds here
(Exercise 16.2); but if p ≥ 4, then our guess for the matrix M realizing µ(Kp,q) does
not work. We will see that in this case µ will be smaller (equal to min{p, q}+1, in
fact). �

Remark 16.6. There is a quite surprising fact in this last Example, which also
underscores some of the difficulties associated with the study of µ. The graph K4,4

(say) has a node-transitive and edge-transitive automorphism group, and so one
would expect that at least some optimizing matrix in the definition of µ will share
these symmetries: it will have the same diagonal entries and the same nonzero off-
diagonal entries. We have seen that an analogous statement is valid for orthogonal
representations in the definition of the theta-function (Theorem 11.5). But here
this is not the case: it is easy to see that this would force us to consider the matrix
we discarded above. So the optimizing matrix must break the symmetry!

16.1.1. Properties. Let us summarize some basic properties of the Colin de
Verdière number. We start with developing the combinatorial condition in Lemma
10.26 further for Colin de Verdière matrices.

Lemma 16.7. Let M be a Colin de Verdière matrix of a graph G, let S ⊆ V , and
let MS be the submatrix of M formed by the rows and columns in S. If MS is
positive semidefinite, then cork(MS) ≤ 3.

Proof. Since MS is a well-signed positive semidefinite G[S]-matrix, cork(MS)
is equal to the number of connected components of G[S] for which the corresponding
diagonal block of MS is singular. Let G1, . . . , Gr be these components of G[S],
and let M1, . . . ,Mr be the corresponding diagonal blocks of MS . By the Perron–
Frobenius Theorem, Ker(Mi) is 1-dimensional and contains a vector xi > 0. Let
z > 0 be an eigenvector belonging to the negative eigenvalue of M . We extend xi
with 0’s to a vector in RV . Then zTxi > 0, and we may scale xi so that zTxi = 1.
The difference xi−xj satisfies zT(xi−xj) = 0, and hence it belongs to the subspace
generated by the eigenvectors of M with nonnegative eigenvalues. Since trivially
(xi−xj)TM(xi−xj) = 0, this implies that M(xi−xj) = 0.

Now if r ≥ 4, then x1−x2 and x3−x4 are two vectors in Ker(M) with disjoint
supports that are not connected by any edge, contradicting Lemma 10.26. �
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It is easy to see that if G is a graph with at least one edge and with connected
components H1, . . . ,Hk, then

(16.1) µ(G) = max{µ(H1), . . . , µ(Hk)}
(Exercise 16.3). It follows, in particular, that if G has at least one edge, and we
add a new, isolated node, then µ(G) does not change. The behavior of µ under
the opposite way of adding a new node is also easy to describe but a bit harder to
prove.

Lemma 16.8. Let G be a graph with at least one edge, and let us add a new node
v connected to all of the other nodes to get a graph G′. Then µ(G′) = µ(G)+1.

Proof. Let M be an optimal Colin de Verdière matrix of G, and let x be a
positive eigenvector belonging to the negative eigenvalue. We may assume that
Mx = −x. Consider the matrix

M ′ =

(
M −x
−xT xTx

)
(where v corresponds to the last row). Clearly M ′ is a well-signed G′-matrix. It is
easy to check that it has the Strong Arnold Property: We have to check matrices

of the form X ′ =

(
X 0
0 0

)
, where X is a nonzero G-matrix with zero diagonal. For

a matrix of this form M ′X ′ = 0 implies that MX = 0, which implies that X = 0,
since M has the Strong Arnold Property. It is easy to see that rk(M ′) = rk(M),
which shows that

µ(G′) ≥ cork(M ′) = cork(M)+1 = µ(G)+1.

To prove that equality holds here is a bit more cumbersome. We may assume
that µ(G′) ≥ 3, else the assertion is obvious. Let M ′ be an optimal Colin de
Verdière matrix of G′, then it is of the form

M ′ =

(
M u
−uT t

)
with some vector u < 0 and real number t. It is clear that M is a well-signed
G-matrix. By interlacing eigenvalues, M has at most one negative eigenvalue. It is
easy to see that cork(M) ≥ cork(M ′)−1. Assuming that M ′ has the Strong Arnold
Property, the definition of µ and the remark in Example 16.1 imply that

µ(G) ≥ cork(M) ≥ cork(M ′)−1 = µ(G′)−1.

So it suffices to prove that M has the Strong Arnold Property. Let X be a nonzero

G-matrix with zero diagonal, and suppose that MX = 0. Then X ′ =

(
X 0
0 0

)
is

a nonzero G′-matrix with zero diagonal. Computing the product

M ′X ′ =

(
MX 0
−uTX 0

)
=

(
0 0

−uTX 0

)
,

we see that to get a contradiction it suffices to show that uTX = 0. This will follow
if we show that u is in the column space of M , since then u = Mv with some vector
v, and so uTX = vTMX = 0.

Suppose that this is not the case, then adding the column u to M increases its
rank, and adding the row (uT, t) increases it even further, so rk(M ′) ≥ rk(M)+2,
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and so cork(M) ≥ cork(M ′)+1. By Interlacing Eigenvalues, this can only happen
if M is positive semidefinite. So cork(M) is the number of those components of G
for which the corresponding submatrix of M is singular (i.e., not positive definite).
By Lemma 16.7, there are at most 3 such components, so cork(M ′) ≤ 2, which
contradicts the assumption that µ(G′) ≥ 3. �

Probably the most important property of µ is minor-monotonicity. The proof
follows the same line of thought as for the algebraic width (see the proof of Theorem
10.33), and is not reproduced here.

Theorem 16.9. If graph H is a minor of graph G, then µ(H) ≤ µ(G). �

Example 16.10. Let K+
p,q denote the graph obtained from the complete bipartite

graph Kp,q by adding all edges in the color class of size p. We are interested in
the case q ≥ 3. We can also think of K+

p,q as taking q cliques G1, . . . , Gk with p+1
nodes each, selecting a p-subset of nodes in each, and glue these together. For p = 1
the graph is just a star, which (as we have seen) has µ(K+

1,q) = 2. For p > 1, the
graph G is obtained from a star by repeatedly adding a new node and connecting
it to all previous nodes, so by lemma 16.8, µ(K+

p,q) = p+1. �

Example 16.11. We can settle the important example of the complete bipartite
graph Kp,q, where p ≤ q. We have seen that µ(K1,1) = 1 and µ(Kp,q) = p+q−2
if 2 ≤ q ≤ 3. Suppose that q ≥ 4. Since Kp,q ⊂ K+

p,q, it follows that µ(Kp,q) ≤
µ(K+

p,q) = p+1. On the other hand, contracting p−4 disjoint edges of Kp,q we
get a graph H which can also be obtained from K3,3 by adding p−3 nodes and
connecting them to all other points. By Lemma 16.8, µ(H) = µ(K3,3)+p−3 =
4+(p−3) = p+1, and so by minor-monotonicity, µ(Kp,q) ≥ p+1. �

Next, we study what happens to the Colin the Verdière number if the graph is
decomposed along a cutset that is a clique. In other words, the graph is obtained
by gluing together k ≥ 2 graphs G1, . . . , Gk along cliques of the same size. Can
µ(G) be larger than the maximum of the µ(Gi)? This can happen, as shown by
Example 16.10. But in a sense this is the worst case.

Let us fix a simple graph G, let S ⊆ V induce a clique, and let H1, ...Hk be the
connected components of G\S. Let Vi = V (Hi), and let Gi be the subgraph of G
induced by S∪Vi. For a G-matrix M , let Mi be the restriction of M to the rows
and columns of Hi. Gluing two or more graphs together along a complete subgraph
of each is often called a clique-sum. So the graph G is the clique sum of the graphs
Hi (along the specified cliques Hi[S]). The following lemma describes the behavior
of the Colin de Verdière number under clique-sums.

Lemma 16.12. With the notation above,

max{µ(G1), . . . , µ(Gk)} ≤ µ(G) ≤ 1+max{µ(G1), . . . , µ(Gk)}

If the upper bound is attained, then |S| = µ(G)−2, and we can contract two or
three of the components and delete the rest to obtain the graph K+

µ(G)−2,3.

Proof. Since every Gi is an induced subgraph of G, it follows by Lemma 16.9
that µ(G) ≥ max{µ(G1), . . . , µ(Gk)}.

To prove the upper bound, we may assume that N(Vi) = S for all i, since
otherwise we could replace S by N(Vi), which leads to a tighter inequality (the
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discussion of the case of attaining the upper bound takes some work, which is left
to the reader). The matrix M has the following form:

M =


M0 N1 . . . Nk
NT

1 M1 0
...

. . .

NT
k 0 Mk

 ,

where the first block corresponds to S and the other blocks, to V1, . . . , Vk.
We start similarly as in the proof of Lemma 16.7. Let z and xi be eigenvectors

belonging to the smallest eigenvalues of M and Mi, respectively, where we extend
xi with 0’s to a vector in RV . By the Perron–Frobenius Theorem, we have z > 0
and xi ≥ 0 (in fact, xi|Vi > 0). This implies that zTxi > 0, and we may scale xi so
that zTxi = 1.

The difference xi−xj satisfies zT(xi−xj) = 0, and hence it belongs to the
subspace spanned by the eigenvectors of M with nonnegative eigenvalue. This
implies that

(16.2) (xi−xj)TM(xi−xj) ≥ 0 (1 ≤ i, j ≤ k).

The matrix M1⊕· · ·⊕Mk is a symmetric submatrix of M , and hence (by In-
terlacing Eigenvalues) it has at most one negative eigenvalue. So the matrices Mi

are positive semidefinite with at most one exception.

Case 1. One of the matrices Mi (say, M1) has a negative eigenvalue. We claim
that the other Mi are positive definite. Suppose not, and let (say) M2 have a zero
eigenvalue. Then x2|V2 ∈ Ker(M2), and hence supp(Mx2) ⊆ S. Using this, we get
that

(x1−x2)TM(x1−x2) = xT1Mx1 < 0,

which contradicts (16.2).
So M2, . . . ,Mk are positive definite, and, in particular, nonsingular. We can use

row operations and simultaneous column operations to annulate the submatrices
Ni and NT

i , to get the matrix

M̂ =


M ′0 N1 0 . . . 0
NT

1 M1 0 . . . 0
0 0 M2 . . . 0

. . .

0 0 0 . . . Mk


with M ′0 = M0−

∑
i≥2NiM

−1
i NT

i . Consider the matrix

M ′ =

(
M ′0 N1

NT
1 M1

)
By the Inertia Theorem, the eigenvalues of M have the same signs as the eigen-

values of the matrix M̂ , which are clearly the eigenvalues of M ′ together with the
eigenvalues of M2, . . . ,Mk. Thus M ′ has one negative eigenvalue and cork(M) zero
eigenvalues.

We claim that all off-diagonal entries of M ′ are nonpositive. Indeed, this holds
for M0 and M1, and the matrices Ni and NT

i are nonpositive, so it suffices to argue
only that the off-diagonal entries of the submatrix M ′0 = M0−

∑
i≥2NiM

−1
i NT

i are
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nonpositive; they are in fact negative. The matrix M−1
i is nonnegative by Lemma

4.14 for i ≥ 2. Hence all entries of NiM
−1
i NT

i are nonnegative, and subtracting
from M0, the off-diagonal entries remain negative.

It follows that M ′ is a well-signed G1-matrix. We claim that it has the Strong
Arnold property. Indeed, let X be a nonzero G1-matrix with zero diagonal, and
suppose that M ′X = 0. Since S induces a clique, we can write

X =

(
0 Y
Y T Z

)
.

For any set of V1×Vj matrices Uj (j = 2, . . . , k), the matrix

W =


0 Y 0 . . . 0
Y T Z U2 . . . Uk
0 UT

2 0 . . . 0
...

0 UT
k 0 . . . 0


is a nonzero G-matrix with zero diagonal. We want to choose the matrices Ui so
that MW = 0; a little playing with these matrices shows that Ui = −Y TNiM

−1
i is

a right choice. This contradicts the Strong Arnold Property of M .
Thus we see that M ′ has the Strong Arnold Property, and so it is a valid Colin

de Verdière matrix for G1. Hence

µ(G) = cork(M) = cork(M ′) ≤ µ(G1) ≤ max{µ(G1), . . . , µ(Gk)}.

This completes Case 1. Note that the upper bound in the lemma is never attained
in this case.

Case 2. All matrices Mi are positive semidefinite. Since contracting V1 we get
a complete (|S|+1)-graph as a minor of G1, we have µ(G1) ≥ |S|. So we are done
unless |S| < µ(G); let us assume that this is the case.

Let D = {x ∈ Ker(M) : x|S = 0}. We have dim(Ker(M)) = µ(G) > |S|, which

implies that D 6= 0. Since D ⊆
⊕k

i=1 Ker(Mi), at least one of the matrices Mi must
be singular. Let (say) M1, . . . ,Mr be singular, then their least eigenvalues are 0,
and the corresponding eigenvectors xi have multiplicity 1. Since zTx1 = 1 6= 0, we
have x1 /∈ D, and so

dim(D) <

k∑
i=1

dim(Ker(Mi)) = r.

Not all vectors on S are restrictions of vectors in Ker(M); for example, 1S is
not. Indeed, if 1S = x|S for some x ∈ Ker(M), then

0 = xT1Mx = xT1N1x|S+xT1M1x|V1
= xT1N11S < 0,

since all entries of xT1N1 are negative. This contradiction implies that dim(D) >
µ(G)−|S| ≥ 1 and so r ≥ 1+dim(D) ≥ 3.

Since r ≤ 3 follows by Lemma 16.7, we must have equality in the estimates
above. In particular, |S| = µ(G)−1, which means that G1 can be contracted to
Kµ(G), and so µ(G1) ≥ µ(G)−1.

Furthermore, G\S must have at least three components. Contracting three of
these and deleting the others, we get the graph K+

µ(G)−1,3. �
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Corollary 16.13. If µ(G) > 2, then µ(G) is invariant under subdivision.

Proof. Minor-monotonicity implies that if we subdivide an edge, then µ(G)
cannot decrease. Lemma 16.12 implies that if we glue a triangle onto an edge
of G, then µ(G) does not increase (as long as it is larger than 2). Deleting the
common edge of the triangle does not increase µ (again by minor-monotonicity),
which means that subdividing the edge does not increase µ(G). �

We quote without proof the following result [Bacher–Colin de Verdière 1995];
the proof goes along similar lines as the previous one, with more complications. A
∆−Y transformation of a graph G means creating a new node, selecting a triangle
T in G, connecting the new node to the nodes of T , and deleting the edges of T .
The reverse operation is called Y −∆: this means that we delete a node of degree
3, and connect each pair of its neighbors (this may create parallel edges).

Theorem 16.14. If µ(G) > 3, then µ(G) is invariant under ∆−Y transforma-
tions. �

16.1.2. Small and large values. Graphs with µ ≤ 4 have very interest-
ing topological characterizations. Statements (a)–(c) of the following theorem
were proved in [Colin de Verdière 1990]; an elementary proof of (c) is given in
[van der Holst 1995]; (d) was proved in [Lovász–Schrijver 1998].

Theorem 16.15. Let G be a connected graph.

(a) µ(G) ≤ 1 if and only if G is a path;

(b) µ(G) ≤ 2 if and only if G is outerplanar;

(c) µ(G) ≤ 3 if and only if G is planar;

(d) µ(G) ≤ 4 if and only if G is linklessly embeddable in 3-space.

Graphs with large Colin de Verdière number, n−4 and up, have been studied
in [Kotlov–Lovász–Vempala 1997]. The results are in a sense analogous to those for
small numbers, but they are stated for the complementary graph (this is natural,
since these graphs are very dense), one has to exclude twin nodes (this is a minor
technical complication), and they are less complete (this is unfortunate). We only
state two cases.

Theorem 16.16. Let G be a simple graph without twins.

(a) If G is outerplanar, then µ(G) ≥ n−4; if G is not outerplanar, then µ(G) ≤
n−4;

(b) If G is planar, then µ(G) ≥ n−5; if G is not planar, then µ(G) ≤ n−5.

So for graphs with µ(G) = n−5, their complement may or may not be planar; we
do know that their complement is not outerplanar.

The proof of these theorems will take up most of this chapter. Our main tools
will be two vector-labelings discussed in the next two sections.

16.2. Small values and nullspace representation

16.2.1. Nullspace representations. Every G-matrix M defines a vector-
labeling of the graph G in cork(M) dimensions as follows. We take a basis v1, . . . ,vd
of the null space of M , write them down as row vectors, to get a matrix U . Each
node i of the graph corresponds to a column ui of the matrix obtained, which is a
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vector in Rd, and so we get the nullspace representation of the graph. Saying this
in a fancier way, each coordinate function is a linear functional on the nullspace,
and so the nullspace representation is a representation in the dual space of the
nullspace.

The nullspace representation satisfies the equation UM = 0; in other words,
M defines a braced stress on (G,u). The nullspace representation is uniquely
determined up to a linear transformation of Rd. Furthermore, if D is a diagonal
matrix with nonzero diagonal, then (D−1ui : i ∈ V ) is a nullspace representation
derived from the scaled version DMD of M (which in many cases can replace M).
If all the vectors ui are nonzero, then a natural choice for D is Dii = |ui|: this scales
the vectors ui to unit vectors, i.e., we get a mapping of V into the unit sphere. We
will see that other choices of this scaling may give even nicer representations.

16.2.2. Colin de Verdière number and planarity. We start with proving
assertions (a)–(c) of Theorem 16.15. Part (d) will need more preparation.

Proof. (a) We have seen (Example 16.4) that every path Pn has µ(Pn) = 1.
Hence, so does every subgraph of a path with at least one edge (i.e., a graph whose
connected components are paths). On the other hand, if a graphG is not a subgraph
of a path, then either it has a node of degree at least 3, or it contains a cycle. This
implies that either K3 or K3,1 is a minor of G. Since µ(K3) = µ(K1,3) = 2
(Examples 16.2 and 16.11), this implies that µ(G) ≥ 2 by minor-monotonicity.

(b) Suppose that G is outerplanar. To show that µ(G) ≤ 2, we may assume
that G is maximal outerplanar, i.e., a triangulation of a polygon. In this case, G
can be obtained from a triangle by repeatedly taking clique-sums with a triangle.
By Lemma 16.12, this implies that µ(G) = 2.

If G is not outerplanar, then it contains either K4 or K3,2 as a minor. These
graphs have µ(K4) = µ(K3,2) = 3, and hence µ(G) ≥ 3 by minor-monotonicity.

(c) Suppose that G is planar. Since M is a well-signed G-matrix with ex-
actly one negative eigenvalue, Theorem 14.12 implies that cork(M) ≤ 3, and hence
µ(G) ≤ 3.

The converse follows by the same type of argument as in the previous cases:
If G is not planar, then it contains either K5 or K3,3 as a minor. Since µ(K5) =
µ(K3,3) = 4, this implies that µ(G) ≥ 4. �

16.2.3. From Colin de Verdière matrices to Steinitz representations.
The theorem proved above implies that every planar graph has Colin de Verdière
number 3. Our main tool was the Discrete Nodal Theorem 14.10 (through its
corollaries). We show that we get much more out of this.

Consider a 3-connected planar graph G, a Colin de Verdière matrix M of G,
and the nullspace representation u in R3 obtained from M . Recall that this satisfies

(16.3)
∑
j

Mijuj = 0 (i ∈ V ).

This is a vector labeling of G in R3. We have seen another important vec-
tor labeling of such graphs, namely their Steinitz representation by a con-
vex polytope. It turns out that these two vector labelings are closely related
[Lovász–Schrijver 1999, Lovász 2001]: The vectors ui can be scaled to give a
Steinitz representation, and conversely, every Steinitz representation yields a Colin
de Verdière matrix in a natural way. We discuss these constructions in this and in
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the next section. (See Exercises 16.4 and 16.5 for scaling results in other, simpler
cases.)

The main step in the construction is the nullspace representation obtained from
the Colin de Verdière matrix, as defined in Section 14.2. As a special case of this
construction, any Colin de Verdière matrix yields a representation of a graph G in
µ(G)-space. In this case we have Mij < 0 for every edge ij, and so writing the
definition as ∑

j∈N(i)

(−Mij)uj = Miiui for all i ∈ V,

we see that each vector ui is in the cone spanned by its neighbors, or in the negative
of this cone (depending on the sign of Mii). It follows that if a hyperplane contains
ui, then either it contains all neighbors i, or i has neighbors on both sides of the
hyperplane.

For the rest of this section, let G be a 3-connected planar graph, let M be a
Colin de Verdière matrix of G with corank 3, and let (ui : i ∈ V ) be the nullspace
representation derived from M . Since G is 3-connected, its embedding in the sphere
is essentially unique, and so we can talk about the countries of G.

We say that the Colin de Verdière matrix M of G is polyhedral if the vectors
ui are the vertices of a convex polytope P , and the map i 7→ ui is an isomorphism
between G and the skeleton of P . Note that the vectors ui are determined by M
up to a linear transformation of R3, and the skeleton graph of this polytope does
not depend on this linear transformation.

Recall that Corollary 14.11 implies that for every plane H through the origin,
the induced subgraphs G[V +

H ] and G[V −H ] are connected. Another property of the
representation u we need is the following.

Lemma 16.17. If a, b, c are distinct nodes of the same country, then ua, ub and
uc are linearly independent.

In particular, no node is represented by the 0 vector, and any two adjacent
nodes are represented by nonparallel vectors.

Proof. Suppose not. Then there exists a plane H through the origin that
contains ua,ub and uc. Corollary 14.11 implies that the sets of nodes V +

H and

V −H induce nonempty connected subgraphs of G. We know that |VH | ≥ 3; clearly
either V ′H = VH or V ′H is a cutset, and hence |V ′H | ≥ 3. Thus G has three pairwise
node-disjoint paths, connecting a, b and c to distinct points in V ′H . We may assume
that the internal nodes of these paths are not contained in V ′H , and so they stay
in VH . Contracting every edge on these paths as well as the edges induced by V +

H

and V −H , we obtain a planar graph in which a, b and c are still on one country, and
they have two common neighbors, which is clearly impossible. �

This lemma implies that each ui is nonzero, and hence we may scale them
to unit vectors (through the appropriate scaling of the matrix M). We call such
a nullspace representation normalized. The previous lemma also implies that ui
and uj are nonparallel if i and j are adjacent, and so for adjacent nodes i and j
there exists a unique shortest geodesic on S2 connecting ui and uj . This gives an
extension of the mapping i → ui to a mapping ψ : G → S2. We will show that
this is in fact an embedding.

The main result in this section is the following [Lovász–Schrijver 1998,
Lovász 2001]:
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Theorem 16.18. Every Colin de Verdière matrix of a 3-connected planar graph G
can be scaled to be polyhedral.

Proof. The proof will consist of two parts: first we show that the nullspace
representation with unit vectors gives an embedding of the graph in the sphere;
then we show how to rescale these vectors to get a Steinitz representation.

Claim 1. Let F1 and F2 be two countries of G sharing an edge ab. Let H be the
plane through 0, ua and ub. Then all the other nodes of F1 are in V +

H , and all the

other nodes of F2 are in V −H (or the other way around).

Suppose not, then there is a node c of F1 and a node d of F2 such that c, d ∈ V +
H

(say). (Note that by Lemma 16.17, no node of F1 or F2 belongs to VH .) By
Corollary 14.11, there is a path P connecting c and d with V (P ) ⊆ V +

H . Both a and

b have neighbors in V +
H , and as we have seen, this implies that they have neighbors

a′ and b′ in V −H as well. By Corollary 14.11 again, there is a path connecting a′

and b′ contained in V −H . This gives us a path Q connecting a and b, with at least

one internal node, contained in V −H (up to its endpoints).
What is important from this is that P and Q are disjoint. But trying to draw

this in the planar embedding of G, we see that this is impossible (see Figure 16.1).

a b

c d

a
b

d

cP

�✁
✂✄

P

Figure 16.1. Why two countries do not fold.

Claim 1 implies the following.

Claim 2. If 1, . . . , k are the nodes of a country, in this cyclic order, then u1, . . . ,uk
are the extremal rays of the convex cone they generate in R3, in this cyclic order.

Next we turn to the cyclic order around nodes.

Claim 3. Let a ∈ V , and let (say) 1, . . . , k be the nodes adjacent to a, in this
cyclic order in the planar embedding. Let H denote a plane through 0 and ua, and
suppose that u1 ∈ V +

H and uk ∈ V −H . Then there is an h, 1 ≤ h ≤ k−1 such that

u1, . . . ,uh−1 ∈ V +
H and uh+1, . . . ,uk ∈ V −H .

If the Claim fails to hold, then there are two indices 1 < i < j < k such that
ui ∈ V −H and uj ∈ V +

H . By Corollary 14.11, there is a path P connecting 1 and j in

V +
H , and a path P ′ connecting i and k in V −H . In particular, P and P ′ are disjoint.

But this is clearly impossible in the planar drawing.

Claim 4. With the notation of Claim 3, the geodesics on S2 connecting ua to
u1, . . . ,uk issue from ua in this cyclic order.
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Indeed, let us consider the halfplanes Ti bounded by the line ` through 0 and
ua, and containing ui (i = 1, . . . , k). Claim 1 implies that Ti+1 is obtained from
Ti by rotation about ` in the same direction. Furthermore, it cannot happen that
these halfspaces Ti rotate about ` more than once for i = 1, . . . , k, 1: in such a case
any plane through ` not containing any ui would violate Claim 3.

Claim 5. The normalized nullspace mapping is an embedding of G in the sphere.
Furthermore, each country f of the embedding is the intersection of a convex poly-
hedral cone Cf with the sphere.

To prove this, note that Claims 2 and 4 imply that we can extend the map
ψ : G → S2 to a mapping ψ : S2 → S2 such that ψ is a local homeomorphism
(i.e., every point x ∈ S2 has a neighborhood that is mapped homeomorphically to
a neighborhood of ψ(x).) This implies (in the case of the 2-sphere) that ψ is a
homeomorphism (see Exercise 16.6).

As a second part of the proof of Theorem 16.18, we construct appropriate
scaling of a nullspace representation. The construction will start with the polar
polytope. Let G∗ = (V ∗, E∗) denote the dual graph of G.

Claim 6. We can assign a vector wf to each f ∈ V ∗ so that whenever ij ∈ E and
fg is corresponding edge of G∗, then

(16.4) wf −wg = Mij(ui×uj).

Let vfg = Mij(ui×uj). It suffices to show that the vectors vfg sum to 0 over
the edges of any cycle in G∗; then we can invoke the potential argument. Since G∗

is a planar map, it suffices to verify this for the cycles bounding the countries of
G∗. Expressing this in terms of the edges of G, it suffices to show that∑

j∈N(i)

Mij(ui×uj) = 0.

But this follows from the basic equation
∑
jMijuj = 0 upon multiplying by ui,

taking into account that ui×ui = 0 and Mij = 0 for j /∈ N(i)∪{i}. This proves
Claim 6.

An immediate property of the vectors wf is that if f and g are two adjacent
nodes of G∗ such that the corresponding countries of G share the node i ∈ V , then
uT
iwf = uT

iwg. This follows immediately from (16.4), upon scalar multiplication
by ui. Hence the inner product uT

iwf is the same number αi for every country f
incident with ui. In other words, these vectors wf all lie on the plane uT

i x = αi.
Let P ∗ be the convex hull of the vectors wf .

Claim 7. Let f ∈ V ∗, and let u ∈ R3, u 6= 0. The vector wf maximizes uTx over
P ∗ if and only if u ∈ Cf .

First suppose that wf maximizes uTx over P ∗. Let i1, . . . , is be the nodes of
the country of G corresponding to f (in this counterclockwise order). By Claim 2,
the vectors uit are precisely the extreme rays of the cone Cf .

Let fgt be the edge of G∗ corresponding to itit+1. Then uT(wf −wgt) ≥ 0 for
t = 1, . . . , s, and hence by (16.4),

uTMitit+1
(uit+1

×uit) ≥ 0,
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or

uT(uit×uit+1
) ≥ 0.

This means that u is on the same side of the plane through uit and uit+1
as Cf .

Since this holds for every i, it follows that u ∈ Cf .
Conversely, let u ∈ Cf . Arbitrarily close to u we may find a vector u′ in the

interior of Cf . Let wg be a vertex of P ∗ maximizing (u′)Tx over x ∈ P ∗. Then by
the first part of our Claim, u ∈ Cg. Since the cones Ch, h ∈ V ∗ are nonoverlapping,
it follows that f = g. Thus (u′)Tx is optimized over x ∈ P ∗ by wf . Since u′ may
be arbitrarily close to u, it follows that uTx too is optimized by wf . This proves
Claim 7.

This claim immediately implies that every vector wf (f ∈ V ∗) is a vertex of
P ∗.

Claim 8. The vertices wf and wg form an edge of P ∗ if and only if fg ∈ E∗.

Let fg ∈ E∗, and let ij be the edge of G corresponding to fg ∈ E∗. Let u
be a vector in the relative interior of the cone Ci∩Cj . Then by Claim 7, uTx is
maximized by both wf and wg. No other vertex wh of P ∗ maximizes uTx, since
then we would have u ∈ Ch by Claim 7, but this would contradict the assumption
that u is in the relative interior of Cf ∩Cg. Thus wf and wg span an edge of P ∗.

Conversely, assume that wf and wg span an edge of P ∗. Then there is a nonzero
vector u such that uTx is maximized by wf and wg, but by no other vertex of P ∗.
By Claim 7, u belongs to Cf ∩Cg, but to no other cone Ch, and thus the cones
Cf and Cg must share a facet, proving that fg ∈ E∗. This completes the proof of
Claim 8. As an immediate corollary, we get the following.

Claim 9. Every vector wf is a vertex of P ∗, and the map f 7→ wf is an isomor-
phism between G∗ and the skeleton of P ∗.

To complete the proof, let us note that the vectors wf are not uniquely de-
termined by (16.4): we can add the same (but otherwise arbitrary) vector to each
of them. Thus we may assume that the origin is in the interior of P ∗. Then the
polar P of P ∗ is well-defined, and its skeleton is isomorphic to G. Furthermore,
the vertices of P are orthogonal to the corresponding facets of P ∗, i.e., they are
positive multiples of the vectors ui. Thus the vertex of P representing node i is
u′i = αiui, where αi = uT

iwf > 0 for any country f incident with i. �

The scaling of M constructed in this proof is almost canonical. There were
only two free steps: the choice of the basis in the nullspace of M , and the trans-
lation of P ∗ so that the origin be in its interior. The first corresponds to a linear
transformation of P . It is not difficult to show that if this linear transformation is
A, then the scaling constants are multiplied by |det(A)|.

The second transformation is a bit more complicated. Translation of P ∗ cor-
responds to a projective transformation of P . Suppose that instead of P ∗, we take
the polyhedron P ∗+w, then the new scaling constant becomes α′i = uT

i (wf +w) =
αi+uT

iw. Note that here (uT
iw : i ∈ V ) is just an arbitrary vector in the nullspace

of M . Thus we get that in the above construction, the scaling constants αi are
uniquely determined by M up to multiplication by the same positive number and
addition of a vector in the nullspace of M .



302 16. THE COLIN DE VERDIÈRE NUMBER

If you want a canonical choice, you can make it orthogonal to Ker(M). This
can be expressed explicitly by solving for w the equation∑

i

(αi+uT
iw)ui = 0,

which gives
w = −(UUT)−1Uα.

Of course, there might be many other scalings that yield polyhedra. For ex-
ample, if P is simple (every facet is a triangle), then any scaling “close” to the one
constructed above would also yield a Steinitz representation.

16.2.4. From Steinitz representations to Colin de Verdière matrices.
Let P be any polytope in R3, containing the origin in its interior. Let G be the
skeleton of P . Let P ∗ be its polar, and G∗ = (V ∗, E∗), the skeleton of P ∗.

Let ui and uj be two adjacent vertices of P , and let wf and wg be the endpoints
of the corresponding edge of P ∗. Then by the definition of polar, we have

uT
iwf = uT

iwg = uT
jwf = uT

jwg = 1.

This implies that the vector wf −wg is orthogonal to both vectors ui and uj , and
hence it is parallel to the vector ui×uj . Thus we can write

wf −wg = Mij(ui×uj),

where the labeling of wf and wg is chosen so that Mij < 0; this means that ui, uj
and wg form a right-handed basis.

Let i ∈ V , and consider the vector

u′i =
∑

j∈N(i)

Mijuj .

Then
ui×u′i =

∑
j∈N(i)

Mij(ui×uj) =
∑

(wf −wg) = 0,

because the last sum extends over all edges fg of the facet of P ∗ corresponding to
i, oriented counterclockwise, and hence it vanishes. Thus ui and u′i are parallel,
and we can write

(16.5) u′i = −Miiui

with some real Mii. We complete the definition of a matrix M = M(P ) by setting
Mij = 0 whenever i and j are distinct nonadjacent nodes of G.

Theorem 16.19. The matrix M(P ) is a Colin de Verdière matrix for the graph
G.

Proof. It is obvious by construction that M has the right pattern of 0’s and
negative elements. (16.5) can be written as∑

j

Mijuj = 0,

which means that each coordinate of the ui defines a vector in the null space of M .
Thus M has corank at least 3.

For an appropriately large constant C > 0, the matrix CI−M is nonnegative
and irreducible. Hence it follows from the Perron–Frobenius Theorem that the
smallest eigenvalue of M has multiplicity 1. In particular, it cannot be 0 (which we
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know has multiplicity at least 3), and so it is negative. Thus M has at least one
negative eigenvalue.

The most difficult part of the proof is to show that M has only one negative
eigenvalue. Observe that if we start with any true Colin de Verdière matrix M of
the graph G, and we construct the polytope P from its null space representation as
in Section 16.2.3, and then we construct a matrix M(P ) from P , then we get back
(up to positive scaling) the matrix M . Thus there is at least one polytope P with
the given skeleton for which M(P ) has exactly one negative eigenvalue.

Steinitz proved that any two 3-dimensional polytopes with isomorphic skeletons
can be transformed into each other continuously through polytopes with the same
skeleton (see [Richter-Gebert 1996]). Each vertex moves continuously, and hence
so does their center of gravity. So we can translate each intermediate polytope so
that the center of gravity of the vertices stays 0. Then the polar of each intermedi-
ate polytope is well-defined, and also transforms continuously. Furthermore, each
vertex and each edge remains at a positive distance from the origin, and therefore
the entries of M(P ) change continuously. It follows that the eigenvalues of M(P )
change continuously.

Assume that M(P0) has more than 1 negative eigenvalue. Let us transform P0

into a polytope P1 for which M(P1) has exactly one negative eigenvalue. There is
a last polytope Pt with at least 5 nonpositive eigenvalues. By construction, each
M(P ) has at least 3 eigenvalues that are 0, and we know that it has at least one
that is negative. Hence it follows that M(Pt) has exactly four 0 eigenvalues and
one negative. But this contradicts Proposition 14.12.

Next we show transversality. Let X be a nonzero G-matrix with zero diagonal,
and assume that MX = 0. Every column of X is in the nullspace of M . We know
that this nullspace is 3-dimensional, and hence it is spanned by the coordinate
vectors of the ui. This means that there are vectors hi ∈ R3 (i ∈ V ) such that
Xij = uT

ihj . We know that Xij = 0 if j = i or j ∈ N(i), and so hi must be
orthogonal to ui and all its neighbors. Since ui and its neighbors obviously span
R3, it follows that X = 0, a contradiction.

Finally, it is trivial by definition that M is polyhedral. �

16.2.5. Further geometric properties. Let M be a polyhedral Colin de
Verdière matrix of G, and let P be the corresponding convex 3-polytope. Let P ∗

be the polar polytope with 1-skeleton G∗ = (V ∗, E∗). The key relations between
these objects are:

(16.6)
∑
j

Mijuj = 0 for every i ∈ V ,

and

(16.7) wf −wg = Mij(ui×uj) for every ij ∈ E and corresponding fg ∈ E∗.

There are some consequences of these relations that are worth mentioning.
First, taking the vectorial product of (16.7) with wg, we get (wf −wg)×wg =

wf ×wg on the left hand side and

Mij

(
(ui×uj)×wg

)
= Mij

(
(uT
iwg)uj−(uT

jwg)ui) = Mij(uj−ui).

on the right. Thus

wf ×wg = Mij(uj−ui).(16.8)
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The vector hi = (1/|ui|2)ui is orthogonal to the facet i of P ∗ and points to a
point on the plane of this facet. Taking the scalar product of both sides of (16.8)
with hi, we get

hT
i (wf ×wg) = Mij(h

T
iuj−1).

The left hand side is 6 times the volume of the tetrahedron spanned by hi,wf and
wg. Summing this over all neighbors j of i (equivalently, over all edges fg of the
facet i of P ∗), we get 6 times the volume Vi of the cone spanned by the facet i of
P ∗ and the origin. On the right hand side, notice that the expression is trivially 0
if j is not a neighbor of i (including the case j = i), and hence we get by (16.6)

∑
j

Mij(h
T
iuj−1) = hT

i

∑
j

Mijuj

−∑
j

Mij = −
∑
j

Mij .

Thus we get

(16.9)
∑
j

Mij = −6Vi.

Note that by (16.6),

∑
i

Viui = −1

6

∑
i

∑
j

Mij

ui = −1

6

∑
j

∑
i

Mijui = 0.

This is a well known fact, since 3Viui is just the area vector of the facet i of P ∗.
Equation (16.8) gives the following relation between the Colin de Verdière ma-

trices of a 3-connected planar graph and its dual. Let M be a polyhedral Colin de
Verdière matrix for a planar graph G. Let P be a polytope defined by M . Let Vf
denote the volume of the cone spanned by the origin and the facet f . If ij ∈ E inci-
dent with facets f and g, then let M∗fg = 1/Mij . Let M∗ff = −Vf −

∑
g∈N(f)M

∗
fg;

finally, let M∗fg = 0 if f and g are distinct nonadjacent facets. These numbers form

a symmetric matrix M∗ ∈ RV ∗×V ∗ .

Corollary 16.20. The matrix M∗ is a polyhedral Colin de Verdière matrix of the
dual graph G∗. �

16.3. Linkless embeddings

In this section we return to part (d) of Theorem 16.15. The condition is more
involved than the others, and needs an explanation, which we provide before turning
to the proof.

16.3.1. Preliminaries: topology. Every (finite) graph can be embedded in
3-space, but there are ways to distinguish “simpler” embeddings. First, we have
to define when two disjoint Jordan curves J1 and J2 in R3 are “linked”. There are
several nonequivalent ways to define this. Perhaps the most direct (and let this
serve as our definition) is that two curves are linked if there is no topological 2-
sphere in R3 separating them (so that one curve is in the interior of the sphere, while
the other is in its exterior). This is equivalent to saying that we can continuously
shrink either one of the curves to a single point without ever intersecting the other.

An alternative definition uses the notion of linking number. We consider an
embedding of the 2-disc D in R3 with boundary J1, which intersects J2 a finite
number of times, and always transversally. Walking along J2, we count the number
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of times D is intersected from one side to the other, and subtract the number of
times it is intersected in the other direction. If this linking number is 0, we say
that the two curves are homologically unlinked. Reasonably elementary topological
arguments show that the details of this definition are correct: such a 2-disc D exists,
the linking number as defined is independent of the choice of D, and whether or not
two curves are homologically linked does not depend on which of them we choose
as J1.

In a third version, we count all intersection points of J2 with the disk, and
we only care about the parity of this number. If this parity is even, we say that
the two curves are unlinked modulo 2. If two curves are unlinked, then they are
homologically unlinked, which in turn implies that they are unlinked modulo 2.
(Neither one of these implications can be reversed.)

An embedding of a graph G in R3 is called linkless if any two disjoint cycles in
G are unlinked. A graph G is linklessly embeddable if it has a linkless embedding
in R3 (Figure 16.2).

Figure 16.2. Left: A graph embedded in 3-space with two cycles
linked. Right: An apex graph (a planar graph with an additional
node). This embedding is linkless (even flat).

There is an even stronger definition of linkless embeddings: An embedding of
G in R3 is called flat, if for each cycle C in G there is a disk D bounded by C (a
‘panel’) whose interior is disjoint from G.

Clearly, each flat embedding is linkless in any of the senses above, but the
converse does not hold in general. (A trivial example: embed a single cycle in
3-space so that the image is a proper knot.) However, if G has an embedding
that is linkless in the weakest sense (the linking number of any two disjoint cy-
cles is even), then it has a flat embedding (linkless in the strongest sense) as well.
So the class of linklessly embeddable graphs is very robust with respect to varia-
tions in the definition. This fact follows from [Robertson–Seymour–Thomas 1993,
Robertson–Seymour–Thomas 1993], as a byproduct of Theorem 16.21 below.

Suppose that we have a graph G linklessly embedded in 3-space (in any par-
ticular sense). It is trivial that if we delete an edge from G, then the embedding
remains linkless. It takes a bit more effort to verify that if we contract an edge e,
then the resulting graph G/e is linklessly embeddable: informally, we can contin-
uously deform the embedding to make the edge e shorter and shorter, until in the
limit we get an embedding of G/e. Two linked cycles in G/e would yield two linked
cycles in G. So linkless embeddability is a minor-closed property.

For either one of the versions of linkless embedding, if a graph is linklessly
embedded, and we perform a ∆−Y or Y −∆ transformation, then there is a way
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to define an embedding of the new edges so that the resulting graph is linkless as
well. This is quite easy to see for Y −∆, and a bit more difficult for ∆−Y (see
Exercise 16.8).

A basic result in the graph minor theory of Robertson, Seymour and Thomas
says that every minor-closed graph property can be characterized by a finite
number of forbidden minors. To find this list explicitly is, in general, very dif-
ficult, and it is very remarkable that, verifying a conjecture of Sachs, a deep
forbidden minor characterization of linklessly embeddable graphs was proved in
[Robertson–Seymour–Thomas 1993].

Theorem 16.21. A graph G is flatly embeddable in 3-space if and only of it does
not contain any of the graphs in Figure 16.3 as a minor. �

Figure 16.3. Excluded minors for linklessly embeddable graphs
(the Petersen Family).

We note that the graphs in the Petersen family (Figure 16.3) cannot be link-
lessly embedded even in the weakest sense: every embedding of them contains two
disjoint cycles with an odd linking number. Exercise 16.9 gives a hint how to prove
this in the case of K6; the other graphs in the Petersen family arise from K6 by
∆−Y and Y −∆ transformations, which preserve this property.

The rest of this section is devoted to the proof of part (d) of Theorem 16.15,
giving a different characterization of linklessly embeddable graphs.

16.3.2. Preliminaries: simultaneous paneling. We do not claim that in a
flat embedding, the panels belonging to different cycles are disjoint from each other.
For example, let us take the graph K2,2,2, embedded in 3-space as the skeleton of the
regular octahedron. This embedding is flat (the skeleton of any convex 3-polytope
is), but one cannot panel the facets and the three 4-cycles without creating some
intersection between the interiors of the panels. If each member of a family of
cycles can be paneled so that the interiors of the panels are disjoint, we say that
this family can be simultaneously paneled. Reasonably large families of cycles can
be paneled simultaneously, as the following result of [Böhme 1990] shows:

Lemma 16.22 (Paneling Lemma). Let C be a family of cycles in a flatly embed-
ded graph G. Assume that the intersection of any two cycles in C is either a path
or empty. Then the cycles in C can be simultaneously paneled. �

We need the following special case of the paneling lemma. Let T be a spanning
tree of a flatly embedded graph G. For each edge e ∈ E \E(T ), let Ce be its
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fundamental cycle (the unique cycle in T +e). The cycles Ce satisfy the conditions
of the Paneling Lemma, and so they can be simultaneously paneled. We call this
paneling a fundamental paneling with respect to T .

Let Y be the union of the panels in a fundamental paneling. It is easy to see
that Y , as a topological space, is contractible. This implies, in particular, that
every cycle of G can be contracted to a single point inside Y , and also that the
complement of Y is connected.

As an application of the Paneling Lemma, we prove a fact about extending
linkless embeddings.

Lemma 16.23. Let G be a flatly embedded graph, and let S ⊆ V induce a connected
subgraph. Define G1 = G[S∪N(S)] and G2 = G\S, and let i, j ∈ V (G2). Then the
embedding can be extended to an embedding of G+ ij in which no cycle in G2 + ij
is linked with any cycle in G1.

Proof. Consider a spanning tree of G[S], and extend it to a spanning tree T of
G1 so that all nodes in N(S) are leaves of T . Consider a fundamental paneling of
G1 with respect to T (as described after the Paneling Lemma 16.22), and let Y be
the union of these panels. As remarked, the complement of Y is arcwise connected,
and hence we can connect i and j by a Jordan arc J whose interior is disjoint from
Y . We may perturb J a little to make its interior disjoint from the rest of G as
well.

We claim that using J to embed the edge ij, we get an embedding of G+ ij
that satisfies the conditions of the lemma. Indeed, let C1 be a cycle in G1 and
C2, a cycle in G2 + ij disjoint from C1. We want to prove that C1 and C2 are not
linked. We may assume that ij ∈ E(C2) (else, the assertion is trivial since G is
flatly embedded).

If an edge e ∈ E(G1) is disjoint from C2, then the whole cycle Ce is disjoint
from C2, since all the nodes of Ce other than the endpoints of e are contained in
S. Hence the panel of the cycle Ce is disjoint from C2 as well. Since C1 can be
contracted inside the union of these panels, it cannot be linked with C2. �

16.3.3. Preliminaries: polytopes. We need a couple of results about poly-
topes. First, a technical lemma. Let us say that a segment xy crosses a hyperplane
H, if x and y belong to different sides of H. In other words, the segment intersects
H in a single point that is an interior point of it.

Lemma 16.24. Let F be a finite family of linear hyperplanes in Rd. Then there
is a centrally symmetric simplicial d-polytope P such that no edge of P crosses any
hyperplane in F .

Proof. If P is a convex polytope containing the origin in its interior, and x
is a point on its boundary, then pulling x is the operation of replacing P with the
convex hull P ′ of P and (1+ε)x. Here we assume that ε > 0 is small enough so
that for every facet not containing x, the point x′ = (1+ε)x is on the same side
of the facet as P . If P is simplicial, then pulling preserves this property. The new
point x′ is a vertex; every other vertex remains a vertex of P ′, except if x was a
vertex of P . Every edge of P remains an edge, except if x was an interior point of
an edge e of P ; in this case, e ceases to be an edge. New edges connect x′ to all
vertices on faces containing x (Figure 16.4).

If P is centrally symmetric (with respect to the origin), then we can pull both
x and −x by the same ε to keep central symmetry.
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Figure 16.4. Left: an octahedron and a plane through its center
intersecting two edges. Right: Pulling the intersection points of
the edges and the plane to create new vertices, but eliminate the
intersections. The illustration is in 3 dimensions, in the proof we
need 5.

Starting with any simplicial centrally symmetric polytope in Rd (say, with the
cross-polytope), we pick a hyperplane H ∈ F , and pull all intersection points of H
with the interiors of edges, maintaining central symmetry. Let us call this “cleaning
H”. We clean all hyperplanes in F one-by-one, to get a polytope P ′.

We claim that P ′ satisfies the requirements of the lemma: cleaning a hyperplane
H gets rid of all crossings between edges and H without creating new crossings with
hyperplanes already cleaned. Indeed, when pulling an interior point x of an edge
e, all the new edges are incident with x′, and so they do not cross H. Let H ′ ∈ F
be a hyperplane already cleaned. If H ′ contains x, then it contains x′, and so no
new edge crosses it. If H ′ does not contain x, then every face containing x is fully
contained in the closed halfspace bounded by H ′ containing x (since H ′ is already
cleaned). Since x′ is contained in this closed halfspace as well, no new edge will
cross H ′. �

Next, we relate polytopes and the topological considerations in the previous
section. We have seen that the skeleton of any 3-polytope, as a graph embedded in 3-
space, is linkless (even flat). Among skeletons of 4-polytopes we find both linklessly
embeddable ones (say, K5), and nonembeddable ones (every complete n-graph,
n ≥ 5, is the skeleton of a 4-polytope). The following results [Lovász–Schrijver 1998]
imply that the skeleton of a 5-polytope is never linklessly embeddable.

To state the result, we need a definition from convex geometry. Let P be a
d-polytope. We say that two faces F1 and F2 of P are antipodal, if there are two
parallel supporting hyperplanes H1 and H2 such that F1 ⊆ H1 and F2 ⊆ H2 (Figure
16.5). It is easy to see that every d-polytope has antipodal faces F1 and F2 with
dim(F1)+dim(F2) = d−1: for example, we can take a facet and a vertex farthest
from its hyperplane.

We call two faces A1 and A2 parallel if their affine hulls are disjoint but these
affine hulls contain parallel lines. Formally, aff(A1)∩aff(A2) = ∅ but lin(A1−A1)∩
lin(A2−A2) 6= 0. Two antipodal faces with dim(F1)+dim(F2) ≥ d are always
parallel.

It will be convenient to work with polytopes with no parallel faces. This can
be achieved by taking a hyperplane H that it disjoint from P , does not contain any
nonempty intersection aff(A1)∩aff(A2), and is not parallel to any nonnull linear
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Figure 16.5. Antipodal faces of a polytope

subspace lin(A1−A1)∩ lin(A2−A2). Moving H to infinity by a projective trans-
formation maps P onto a polytope with the same lattice of faces but with no parallel
faces.

One advantage of having no parallel faces is that for two antipodal faces F1 and
F2, there are two parallel supporting hyperplanes H1 and H2 such that Fi = Hi∩P
(Exercise 16.11). A further simple property we need is the following.

Lemma 16.25. Let P be a d-polytope having no parallel faces, and let A1 and A2

be antipodal facets with dim(A1)+dim(A2) = d−2. Then the number of pairs of
antipodal facets {F1, F2} with A1 ⊆ F1, A2 ⊆ F2 and dim(F1)+dim(F2) = d−1 is
2.

Proof. Let H1 and H2 be two parallel supporting hyperplanes such that A1 =
H1∩P and A2 = H2∩P . Let Li = lin(Ai−Ai), and let H be the hyperplane
obtained by translating H1 to the origin. Then L1∩L2 = 0 (since A1 and A2 are
not parallel) and L1 +L2 ⊆ H. Since dim(L1 +L2) = d−2 = dim(H)−1, we can
rotateH about L1 +L2 in two directions. This corresponds to simultaneous rotation
of H1 and H2 keeping them parallel and preserving Ai ⊆ Hi. In both directions,
we can rotate until one of the Hi hits a face Fi of P with dim(Fi) > dim(Ai).

Now the hypothesis that P has no parallel faces has some useful consequences.
It cannot happen that both H1 and H2 hit higher-dimensional faces F1 and F2

simultaneously, since these would be antipodal faces with dim(F1)+dim(F2) ≥ d,
and therefore parallel. By a similar argument, we must have dim(Fi) = dim(Ai)+1,
and so {Fi, A3−i} is an antipodal pair with dim(Fi)+dim(A3−i) = d−1 . So
rotation in either direction yields such a pair, two of them altogether. It is easy to
see that no further such pair exists. �

A continuous map φ : ∂P → Rm will be called generic, if the images of the
interiors of a k-face and an l-face do not intersect if k+ l < m, these images have a
finite number of intersection points if k+ l = m, and at these points they intersect
transversally.

Let F̌ denote the relative interior of the face F . For a vertex point x, we define
x̌ = x.

Lemma 16.26. Let P ⊆ Rd be a convex polytope having no parallel faces and
let φ : ∂P → Rd−1 be a generic continuous map. Then

∑
|φ(F̌1)∩φ(F̌2)| is

odd, where the summation extends over all antipodal pairs {F1, F2} of faces with
dim(F1)+dim(F2) = n−1.

In particular, there exists a pair of antipodal faces F1 and F2 with dim(F1)+
dim(F2) = d−1 such that |φ(F̌1)∩φ(F̌2)| is odd. This extends a result of
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[Bajmóczy–Bárány 1979], which asserts the existence of such a pair of faces with
φt(F̌1)∩φt(F̌2) 6= ∅.

Proof. There is at least one map for which this is true: the map φ0 defined
by projecting ∂P onto a facet F of P from a point outside P but very close to an
interior point of F (this map was used to construct the Schlegel diagram). By the
assumption that P has no parallel faces it follows that there is a unique vertex v
antipodal to F . Then

∑
|φ0(F̌1)∩φ0(F̌2)| = 1, since the only nonzero term in the

sum is obtained when {F1, F2} = {F,v}.
Now we deform φ0 through a family of maps φt : ∂P → Rd−1 (0 ≤ t ≤ 1)

so that φ1 is an arbitrary generic continuous map. We need that each φt has the
following properties. Let Ai be a ki-dimensional face of P (i = 1, 2).

(i) If k1 +k2 < d−2, then φt(Ǎ1) and φt(Ǎ2) do not intersect.

(ii) If k1 +k2 = d−2, then φt(Ǎ1) and φt(Ǎ2) intersect for a finite number of
values of t only, and then |φt(Ǎ1)∩φt(Ǎ2)| = 1, and this happens only for one pair
of faces at the same time.

(iii) If k1 +k2 = d−1, then φt(Ǎ1) and φt(Ǎ2) have a finite number of inter-
section points, and at these points they intersect transversally.

To see that such a deformation exists takes some (routine) arguments in topol-
ogy, which are omitted.

The number |φt(F̌1)∩φt(F̌2)|, where dim(F1)+dim(F2) = d−1, does not
change unless φt(F̌1) intersects φt(Ǎ2), where A2 is a facet of F2, or the other
way around. So t must be one of the special values from (ii), and in fact the inter-
secting pair A1 and A2 must be antipodal. Fixing this A1 and A2, the target sum∑
|φt(F̌1)∩φt(F̌2)| changes by 1 for every pair {F1, F2} of antipodal faces with

dim(F1)+dim(F2) = d−1 such that A1 ⊆ F1 and A2 ⊆ F2. By Lemma 16.25,
there are two such pairs, so the sum changes by an even number. �

Now we are able to state and prove our main topological tool, establishing the
connection between linear algebra (convex polytopes) and linking cycles. The fact
may be interesting in itself as a Borsuk-type theorem about linking. The theorem
extends to polytopes in any odd dimension with essentially the same proof (see
[Lovász–Schrijver 1998] for the details).

Theorem 16.27. Let P be a convex polytope in R5 and let φ be an embedding of
its 1-skeleton into R3. Then there exist antipodal 2-faces F1 and F2 of P such that
φ(∂F1) and φ(∂F2) have an odd linking number.

Proof. Let us extend φ to a continuous mapping φ′ : ∂P → R4 (this is clearly
possible) and define

ψ(x) =

(
φ′(x)

f(x)

)
,

where f(x) = 0 if x ∈ P1 and f(x) > 0 otherwise (for example, f(x) can be the
distance of x from P1). We can perturb f a little to make ψ generic.

By Lemma 16.26, P has a pair of antipodal faces F1 and F2 such that dim(F1)+
dim(F2) = 4 and |ψ(F̌1)∩ψ(F̌2)| is odd. Note that the intersection points of ψ(F̌1)
and ψ(F̌2) cannot be between ψ(P1) and ψ(∂P \P1), since the former is contained
in the hyperplane x4 = 0, while the latter is contained in the halfspace x4 > 0. So
we must have dim(F1) = dim(F2) = 2.
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We claim that ψ(∂F1) and ψ(∂F2) have an odd linking number. Let ψ1 : F1 →
R3 be an extension of ψ|∂F1 , such that ψ1(F1) intersects G transversally a finite
number of times. Let ψ2 : F2 → R4 be an extension of ψ|∂F2 , such that the fourth
coordinate of every point of ψ2(F̌2 is negative. Then ψ|∂F1

∪ψ1 and ψ|∂F2
∪ψ2

can be thought of as two maps of the 2-sphere into R4. The common points of
the images are the intersection points of ψ(F̌1) and ψ(F̌2), and the intersection
points of ψ1(F1) and ψ(∂F2). The number of these intersections must be even.
Since |ψ(F̌1)∩ψ(F̌2)| is odd, so is |ψ1(F1)∩ψ(∂F2)|, which proves that φ(∂F1) and
φ(∂F2) have an odd linking number. �

16.3.4. Completing the proof: Nullspace representation. We want to
prove that a graph G is linklessly embeddable if and only if µ(G) ≤ 4. The fact
that this condition is sufficient was noted by Robertson, Seymour and Thomas.
Indeed, if a graph is not linklessly embeddable, then by Theorem 16.21 it contains
one of the graphs in the Petersen family (Figure 16.3) as a minor. All these graphs
have µ(G) = 5. This can be verified directly, or it can be justified by the following
argument: µ(K6) = 5 by Example 16.2, and hence Theorem 16.14 implies that
µ(G) = 5 for every graph that arises from K6 by ∆−Y and Y −∆ transformations.
It is not too tedious to check that these are exactly the graphs in the Petersen
family.

So a graph G that is not linklessly embeddable has a minor with µ = 5; by
minor monotonicity, this implies that µ(G) ≥ 5.

To prove the converse, let G be a linklessly embeddable graph, and fix a flat
embedding of G in R3. Suppose (by way of contradiction) that µ(G) ≥ 5. Let
u : V → R5 be the nullspace representation obtained from a Colin de Verdière
matrix M of G. By Lemma 16.24, there exists a centrally symmetric polytope
P ⊆ R5 that no edge of P crosses any of the hyperplanes u⊥i , (ui+uj)

⊥, or
(ui−uj)

⊥. In other words, for every proper face F of P , any of these hyperplanes
either contains F or is disjoint from its interior.

We are going to work with three geometrically represented graphs. First, there
is the linkless embedding of G in R3; second, there is the nullspace representation of
M in R5 (it may be useful to also keep in mind the arrangement of the hyperplanes
u⊥i ); and third, we will consider the polytope P and its 1-skeleton P1, also in R5.
Our goal is to map P1 into R3 continuously. Roughly speaking, we want to map P1

into the graph G (as embedded in R3). Theorem 16.27 will provide a pair of linked
cycles in G.

For every vector x ∈ R5, let V0(x) = {i ∈ V : xTui = 0}, V+(x) = {i ∈
V : xTui > 0} and V−(x) = {i ∈ V : xTui < 0}. For every vertex v of P , let φ(v)
be any node in V+(v) (which is nonempty by the Discrete Nodal Theorem 14.10).

To extend the map φ to the edges of P , we need a simple observation.

Claim 1. Let F be a face of P , let z be an interior point of F , and let i ∈ V be
any node of G. If zTui = 0, then vTui = 0 for every vertex v ∈ V (F ); if zTui > 0,
then vTui ≥ 0 for every vertex v ∈ V (F ), and vTui > 0 for at least one vertex
v ∈ V (F ).

This follows from the fact that the hyperplane u⊥i does not separate any two
vertices of F .

Since vTuφ(v) > 0 by the definition of φ(v), it follows that zTuφ(v) > 0 for
every vertex v ∈ V (F ). In other words, φ(v) ∈ V+(z).
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Now we describe how to extend the map φ to the edges of P . Let vw be an
edge of P , let i = φ(v) and j = φ(w), and let z be an internal point of the edge vw.
Then i, j ∈ V+(z) by Claim 1. In the (easy) case when i and j belong to the same
connected component of G[V+(z)], we can find a path of G in V+(z) connecting i
and j, and map the edge vw onto this path (Figure 16.6).

u(G) � ✁5

ui

G ✂ ✄3

☎(v)

P� ✁5

ui
✆v

w

✝

✞(w)

Figure 16.6. Illustration of constructing the map φ. Top middle:
nullspace representation u in R5. Left: the polytope P ⊆ R5 with
a hyperplane u⊥i . Right: G embedded in R3.

The more difficult case is when i and j belong to different components of
G[V+(z)]. Such an edge of P is called broken. This in particular implies that
G[V+(z)] is disconnected, so the exceptional case (ii) applies in the Discrete Nodal
Theorem 14.10 (it is useful to look at the geometric description at the end of that
section). Thus G[V0(z)] has three connected components H1, H2 and H3, where z
is positive on H1 and H2, and negative on H3. We may assume that i ∈ V (H1) and
j ∈ V (H2). By Lemma 16.23, we can extend the embedding of G to an embedding
of G+ ij so that no cycle in G

[
V (H3)∪N

(
V (H3)

)]
is linked with any cycle in

(G+ ij)\V (H3). We map the edge vw of P onto the edge ij of G+ ij.
We carry out this construction for every broken edge of P1; we can make sure

that the new edges added are disjoint (except for their endpoints). Thus we have

extended G to a graph Ĝ embedded in R3 (this embedding will not be linkless in
general). This gives a continuous mapping φ : P1 → R3. We can perturb this
mapping a very little to get a continuous injective mapping ψ.

Claim 2. Let vw be a broken edge of P . Then the 3-dimensional subspace {v,w}⊥
is generated by the vectors ui contained in it.

Indeed, by the Nodal Lemma, there is a 3-dimensional subspace S ⊆ z⊥ (where
z is an internal point of the edge vw), and this is generated by the vectors ui
contained in it. Since every hyperplane u⊥i containing z also contains v by Claim
1, it follows that v ∈ S⊥. Similarly w ∈ S⊥, and hence S = {v,w}⊥.

Claim 3. For every face F of P , the faces F and −F together have at most one
broken edge.

Suppose that vw and v′w′ are different broken edges of a face F . By Claim 2,
{v,w}⊥ is generated by three vectors ui1 , ui2 and ui3 , and similarly, {v′,w′}⊥ is
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generated by three vectors uj1 , uj2 and uj3 . Since {v,w}⊥ 6= {v′,w′}⊥, we may

assume that vTuj1 6= 0 and v′
T
ui1 6= 0. But then the edge vv′ of F crosses one of

the hyperplanes (ui1 +uj1)⊥ or (ui1−uj1)⊥, a contradiction.
A similar argument applies when v′w′ is an edge of −F different from the an-

tipode of vw. The antipode of a broken edge is not broken, since φ(−vb), φ(−wb) ∈
V+(−z) = V−(z), and V(z) induces a connected subgraph by (ii) of the Discrete
Nodal Theorem 14.10 again. This proves the claim.

The map φ : P1 → R3 is not necessarily injective, but we can modify it by
arbitrarily little to get an injective continuous map ψ : P1 → R3. By Theorem
16.27, P has two antipodal 2-dimensional faces F and −F such that the cycles
ψ(C) and ψ(−C) have an odd linking number, where C = ∂(F ).

Claim 4. The subgraphs φ(C) and φ(−C) of Ĝ are node-disjoint.

Indeed, let z be any interior point of F , then zTuφ(v) > 0 for every vertex
v ∈ V (F ) by Claim 1, i.e., φ(v) ∈ V+(z). It follows by a similar argument that if f
is an unbroken edge of F , then V

(
φ(f)

)
⊆ V+(z). Since C has at most one unbroken

edge by Claim 3, whose image is a single edge of Ĝ, we have V
(
φ(C)

)
⊆ V+(z).

Similarly V
(
φ(−C)

)
⊆ V−(z), hence V

(
φ(C)

)
∩V
(
φ(−C)

)
= ∅ as claimed.

Now it is easy to complete the proof. Since the closed curves φ(C) and φ(−C)
are disjoint, and they are very close to the closed curves ψ(C) and ψ(−C) with an
odd linking number, it follows that they have an odd linking number. This implies
that they contain cycles A ⊆ φ(C) and B ⊆ φ(−C) with an odd linking number.

If neither F nor −F has a broken edge, then A and B are two linked cycles in
G, which contradicts the assumption that G is flatly embedded.

By Claim 3, this leaves us with the alternative that F (say) contains a single
broken edge vw, and −F contains none. Let i = φ(v) and j = φ(w), and let z be
an interior point of the edge vw. Then V (A) ⊆ V

(
φ(C)

)
⊆ V+(z), and similarly

V (B) ⊆ V−(z). Since we are in the exceptional case (ii) of the Nodal Theorem,
S = V−(z) induces a connected subgraph containing B, and A is a subgraph of
G[V \S]+ ij. By the construction of φ(vw), these two cycles cannot be linked, a
contradiction again.

16.4. Engaged representations

The Colin de Verdière number can be characterized in terms of
a geometric representation that is similar to orthogonal representations
[Kotlov–Lovász–Vempala 1997]. This will lead to the proof of Theorem 16.16.

A vector-labeling u : V → Rd of a graph G will be called 1-engaged, if

uT
iuj

{
= 1 if ij ∈ E,
< 1 if ij ∈ E.

(16.10)

We impose no condition for i = j; if we have, in addition, that |ui| > 0 for every
node i, then we call the 1-engaged representation strong.

It is useful to compare 1-engaged representations with orthogonal represen-
tations. We can think of orthogonal representations as an attempt to write the
adjacency matrix as a Gram matrix, sticking to the 0’s in nonadjacent positions
(but allowing arbitrary entries in the diagonal and in adjacent positions). The
above definition can be thought of as trying to write the adjacency matrix as a
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Gram matrix, where the 1’s in adjacent positions are required, the diagonal is ar-
bitrary, and the 0’s in nonadjacent positions are relaxed to be anything less than
1.

Example 16.28 (Planar triangulations). Recall from Section 5.5.3 that every
planar triangulation with no separating 3- and 4-cycles has a representation by
orthogonal proper caps on the sphere. Each cap has a unique pole (the point in
space from which the part of the sphere you see is exactly the given cap). An
important observation is that two circles are orthogonal if and only if the corre-
sponding poles have inner product 1 (Figure 16.7). This translates a representation
with orthogonal circles into a strong 1-engaged representation. �

ui
Ci

Cj
uj

Figure 16.7. Poles of circles. If the two circles are orthogonal,
then the pole of each circle is contained in the plane of the other,
and the poles have inner product 1.

Example 16.29 (Edge-transitive polytopes). Let P be a polytope in Rd whose
congruence group is transitive on its edges. We may assume that 0 is its center of
gravity. Then there is a real number c such that uTv = c for the endpoints of every
edge. We will assume that c > 0 (this excludes only very simple cases, see Exercise
10.16). Then we may also assume that c = 1.

We have to verify that uTv < 1 for any two nonadjacent vertices. Suppose
not, then 1 ≤ uTv < |u| |v|, and so we may assume that |u| > 1. Let w be the
vertex of P maximizing the linear function uTx. If w 6= u, then there is a path on
the skeleton of P from u to w along which the linear functional uTx is monotone
increasing. Let z be the first vertex on this path after u, then uTz > uTu > 1,
contradicting the fact that uz is an edge of P .

So we know that uTw < uTu for every vertex w. There is a path on the skeleton
of P from v to u along which the linear functional uTx is monotone increasing. Let
y be the last vertex on this path before u, then uTy > uTv ≥ 1, a contradiction
again since uy is an edge.

So we know that uTv = 1 for the endpoints of every edge, and uTv < 1 for two
nonadjacent vertices. Thus the vertices of the polytope provide a strong 1-engaged
representation of its skeleton. �

The next lemma implies that if the 1-engaged representation is strong, then the
representing vectors are the vertices of a convex polytope, and the edges are edges
of this polytope (perhaps not every edge). We only state this lemma for twin-free
graphs; see [Kotlov–Lovász–Vempala 1997] for a version covering the general case.
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Lemma 16.30. Let G be a twin-free graph without isolated nodes. Let u : V → Rd
be a 1-engaged representation of G. Let P be the convex hull of the vectors ui (i ∈ V )
and the origin 0, and let P ′ be the union of all faces of P not containing 0. For
i ∈ V , define Qi = {x ∈ P : uT

ix = 1}.
(a) The vectors ui are nonzero and different from each other.

(b) If |ui| > 1, then ui is a vertex of P .

(c) If ij ∈ E, then either ui or uj is a vertex of P . If both of them are vertices
of P , then the segment connecting ui and uj is an edge of P .

(d) If ui is not a vertex of P , then Qi is a face of P , whose vertices are exactly
the vectors representing the neighbors of i.

(e) Qj 6= Qi for j 6= i.

Proof. (a) The assumption that G has no isolated node implies that for every
node i there is a node j with uT

iuj = 1, and hence ui 6= 0. Since (16.10) determines
the neighbors of a node i once the vector ui is given, the assumption that G is
twin-free implies that no two nodes are represented by the same vector.

(b) This follows from the observation that the plane defined by uT
ix = 1 sepa-

rates ui from every other uj and also from 0.

(c) We have uT
iuj = 1, which implies that one of ui and uj is longer than 1, and

hence it is a vertex of P by (b). Let, say, |ui| > 1. If both ui and uj are vertices
of P , but [ui,uj ] is not an edge of P , then some point αui+(1−α)uj (0 < α < 1)
can be written as a convex combination of other vertices:

αui+(1−α)uj =
∑
k 6=i,j

λkuk,

where λk ≥ 0 and
∑
k λk = 1. Multiplying by ui, we get

αuT
i ui+(1−α)uT

i uj =
∑
k 6=i,j

λku
T
i uk ≤

∑
k 6=i,j

λk ≤ 1.

On the other hand,

αuT
i ui+(1−α)uT

i uj = α(|ui|2−1)+1 > 1,

a contradiction. This proves (c).

(d) By (a), we have |ui| ≤ 1, and so uT
iuj ≤ 1 for every vertex of P . Hence the

hyperplane {x : uT
ix = 1} supports P , and it touches P at a face Qi. Condition

(16.10) implies that among the nodes of G different from i, all neighbors of i,
and only those, are contained in Qi. It follows by (b) that every neighbor of i is
represented by a vertex of P , and hence, by a vertex of Qi. The vector ui may
or may not belong to Qi, but it is not a vertex of it (since it is different from its
neighbors). �

(e) If Qi = Qj then i and j are twins.

Corollary 16.31. If a twin-free graph G has a 1-engaged representation in Rd, then
it is isomorphic with a subgraph of the skeleton of a d-polytope. If the 1-engaged
representation is strong, then the convex hull of the representing vectors can serve
as this polytope.
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Proof. Let ε > 0 be a sufficiently small number. For every node i with |ui| ≤ 1,
let u′i be a point outside P , at a distance ε from Qi, and at distance ε2 from P . For
nodes i with |ui| ≤ 1, let u′i = ui. Then every vector u′i is a vertex of the polytope
Q = conv(u′(V )), and every edge of G corresponds to an edge of Q. �

The assertion of the theorem is not really interesting for d > 3, since every
graph can be embedded into the 1-skeleton of a 4-polytope. However, the explicit
construction of this embedding may be useful.

16.4.1. Transversality of 1-engaged representations. We need the con-
dition of transversality for 1-engaged representations. Applying the general defini-
tion, a 1-engaged representation is transversal, if the hypersurfaces in Rdn defined
by the equations in (16.10) (corresponding to the edges of G) intersect transversally
at u. This leads to a very similar condition as for orthogonal representations: the
representation u is transversal if and only if (G,u) carries no homogeneous stress,
i.e., there is no nonzero G-matrix X with zero diagonal such that

∑
j Xijuj = 0

for every node i. (In the case of orthogonal representations, the equations in the
definition correspond to the edges, so there we excluded homogeneous stress on the
complement of G.)

As before, it is useful to find some reformulations of transversality. Suppose
that (G,u) carries a homogeneous stressX. Multiplying the equation

∑
j Xijuj = 0

by ui, we get ∑
j

Xiju
T
jui =

∑
j

Xij = 0,

and this in turn gives that
∑
j Xij(uj−ui) = 0. So a homogeneous stress on a

1-engaged representation is automatically a stress.
The converse of this statement is almost, but not quite, true. If we have a

stress X on (G,u), then multiplying the equation
∑
j Xij(uj−ui) = 0 by ui, we

get ∑
j

Xij(uj−ui)
Tui =

(∑
j

Xij

)
(|ui|2−1) = 0.

This means that
∑
j Xij = 0 holds whenever |ui| 6= 1, and in this case it follows

that
∑
j Xijuj = 0 also holds.

These considerations show that every strong 1-engaged representation of a twin-
free graph in dimension 3 is transversal: Lemma 16.30 implies that as a framework
the graph is a subgraph of the skeleton of a 3-polytope, by Cauchy’s Theorem 14.5,
this representation has no stress, and this implies that it has no homogeneous stress.

16.4.2. The Colin de Verdière number and 1-engaged representa-
tions. We denote by γ(G) the smallest dimension in which G has a transversal
1-engaged representation. This quantity is closely related to the Colin de Verdière
number.

Theorem 16.32. For every graph G with at least 3 nodes, we have γ(G) = n−1−
µ(G).

While this theorem establishes a useful connection between a graph and its
complement, it is not really deep (and not a real duality): the quantity µ(G) is
defined as a maximum, γ(G) is defined as a minimum. So the statement of the
lemma has the form minimum = minimum.
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Proof. First, let k = µ(G), and let M be a Colin de Verdière matrix of G.
Then M is a well-signed G-matrix with exactly one negative eigenvalue. Let λ1 <
0 = λ2 = · · · = λk+1 < λk+2 ≤ . . . be the eigenvalues of M . By scaling, we may
assume that λ1 = −1. Let v1 be the eigenvector of unit length belonging to λ1.
Since M is well-signed, we may assume that all entries of v1 are positive. We form
the diagonal matrix D = diag(v1).

We start with getting rid of the negative eigenvalue, and consider the matrix

M ′ = D−1
(
M+v1v

T
1

)
D−1 = D−1MD−1 +J.

This matrix is symmetric and positive semidefinite, and so we can write it as a
Gram matrix M ′ = Gram(u), where u : V → Rn−r. From the fact that M is a
well-signed G-matrix, it follows that

(16.11) uT
iuj = M ′ij

{
= 1 for ij ∈ E,
< 1 for ij ∈ E.

(The somewhat artificial scaling above has been introduced to guarantee this.) The
diagonal entries of M ′ are positive, but they can be larger than, equal to, or smaller
than 1.

Thus we get a vector-labeling u in Rn−k−1 satisfying (16.11). We claim that
(G,u) carries no homogeneous stress. Suppose that X is such a homogeneous stress.
We have seen that this implies that

∑
j Xij = 0. In other words, JX = 0. Let

Y = D−1XD−1, then

MY = D(M ′−J)DD−1XD−1 = DM ′XD−1 = 0.

Since Y 6= 0 and has the same 0 entries as X, this contradicts the assumption that
M is transversal.

The converse construction is straightforward. Let i 7→ ui ∈ Rd be a 1-engaged
representation that carries no homogeneous G-stress, let A = Gram(u), and let
M = AAT−J . It is clear that M is a well-signed G-matrix with at most one
negative eigenvalue, and has corank at least n−d−1.

The only nontrivial part of the proof is to show that M has the Strong Arnold
Property. Suppose that MX = 0 for a nonzero G-matrix X with zero diagonal.
Then AATX = JX, and hence rk(ATX) = rk(XTAATX) = rk(XTJX) ≤ rk(J) =
1. (We have used the fact that rk(B) = rk(BTB) for every real matrix B.) If
rk(ATX) = 0, then ATX = 0, and so X is a homogeneous stress on (G,u), which
contradicts the hypothesis. So we must have rk(ATX) = 1, and we can write
ATX = uvT, where u ∈ Rd and v ∈ RV are nonzero vectors. Hence AuvT =
AATX = JX = 1(X1)T, which implies that (rescaling u and v if necessary) Au = 1

and v = X1. Hence v = XAu = vuTu, and so |u| = 1. It follows that

(A−1Tu)(A−1Tu)T = AAT−J = M,

and so M is positive semidefinite. But then its smallest eigenvalue is 0, which has
multiplicity at least n−d−1 > 1, contradicting the Perron–Frobenius Theorem.

�

16.4.3. 1-engaged representations in low dimension. The following the-
orem is a reformulation of Theorem 16.16.

Theorem 16.33. Let G be a simple twin-free graph.

(a) If G is outerplanar, then γ(G) ≤ 3; if G is not outerplanar, then γ(G) ≥ 3;
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(b) If G is planar, then γ(G) ≤ 4; if G is not planar, then γ(G) ≥ 4.

Proof. We describe the proof of part (b); the proof of part (a) uses similar,
but much simpler arguments, and is not given here. Corollary 16.31 implies the
second assertion, so what we need to prove is that G is planar, then γ(G) ≤ 4.

We may assume thatG is 3-connected, since adding edges toG can only increase
γ(G) by minor-monotonicity. Let v : V → R3 be the cage representation in
Theorem 5.10 of a planar graph G. For ij ∈ E, the segment connecting vi and
vj touches the unit sphere at a point w. Then vi−w and vj−w are parallel
vectors, orthogonal to w, and pointing in opposite directions. Their length is
easily computed by Pythagoras’ Theorem: |vi−w| =

√
|vi|2−1 and |vj−w| =√

|vj |2−1. This gives

vT
i vj = 1+(vi−w)T(vj−w) = 1−

√
|vi|2−1

√
|vj |2−1.

Introducing the vectors

ui =

(
vi√
|vi|2−1

)
∈ R4,

we get that uT
iuj = 1. It follows similarly that if the segment connecting the two

vectors intersects the sphere, then uT
iuj < 1.

Thus we get a 1-engaged representation in R4. This representation is transver-
sal: any stress on (G,u) would be a stress on (G,v) as well, which is impossible by
Cauchy’s Theorem 14.5. �

Remark 16.34. Perhaps the most interesting special case is that of a planar but
not outerplanar graph G. Theorem 16.33 implies that γ(G) = 3 or γ(G) = 4.
In [Kotlov–Lovász–Vempala 1997] it is proved that a triangulation of the sphere
(maximal planar map) with at least 8 nodes has γ(G) = 3 if and only if no 3- or 4-
cycle separates it into two parts with at least two nodes. (The case of non-maximal
planar graphs is open.)

16.5. Related representations

A related representation was studied in [Kang et al. 2011], where the following
conditions were imposed:

uT
iuj

{
≥ 1 if ij ∈ E,
< 1 if ij ∈ E.

(16.12)

The results are similar to some of those described above: Every outerplanar graph
has a representation in R3 satisfying (16.12), and every planar graph has such a
representation in R4. There are outerplanar graphs that do not have such a repre-
sentation in R2, and there are planar graphs that do not have such a representation
in R3. Estimates on the minimal dimension in terms of other graph parameters
were given in [Reiterman–Rödl–Šinajová 1989, Reiterman–Rödl–Šinajová 1992,
Brightwell–Scheinerman 1993].

We have repeatedly come across representations in which the subgraph induced
by the nodes placed in certain halfspaces are connected. A halfspace in the following
discussion is the (open) set {x ∈ Rd : aTx > b}, where a ∈ Rd is a nonzero vector.
If b = 0, we call the halfspace linear. If we want to emphasize that this is not
assumed, we call it affine. We say that a representation v : V → Rd of a graph
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G has the connectivity property with respect to a family of subspaces, if for every
halfspace in the family, the set v−1(H) induces a connected subgraph of G. We
allow here that this subgraph is empty; if we insist that it is nonempty, we say that
the representation has the nonempty connectivity property.

Example 16.35. The skeleton of a convex polytope in Rd has the connectivity
property with respect to all halfspaces (cf. Appendix C.1). �

Example 16.36. The rubber band representation of a 3-connected planar graph,
with the nodes of a country nailed to the vertices of a convex polygon, has the
connectivity property with respect to all halfplanes (Claim 1 in the proof of Theorem
3.2). �

Example 16.37. The nullspace representation defined by a well-signed G-matrix
M with exactly one negative eigenvalue, has the nonempty connectivity property
with respect to all linear halfspaces whose boundary hyperplane is spanned by
representing vectors (Theorem 14.10), and also with respect to all linear halfspaces
whose boundary contains no representing vectors.

If the graph is 3-connected planar, then the nullspace representation defined
by a well-signed G-matrix has the nonempty connectivity property with respect to
all linear halfspaces (Corollary 14.11). �

A general study of this property was initiated by Van der Holst, Laurent and
Schrijver [van der Holst et al. 1995a]. In one version, the authors consider full-
dimensional representations in Rd with the connectivity property with respect to all
halfspaces. It is not hard to see that not having such a representation is a property
closed under minors. They give the following (nice and easy) characterization:

Theorem 16.38. A graph has a full-dimensional representation in Rd with the
connectivity property with respect to all halfspaces if and only if it is connected and
has a Kd+1 minor. �

We note that this result does not supply a “good characterization” for
graphs not having a Kd+1 minor (both equivalent properties put this class
into co-NP). We know from the Robertson–Seymour theory of graph minors
[Robertson–Seymour 2003] (see [Lovász 2006] for a survey) that not having a Kd+1

minor is a property in P, and explicit certificates (structure theorems) for this are
known for d ≤ 5. To describe an explicit certificate for this property for general d
is an outstanding open problem.

To sketch the other version, let us consider full-dimensional representations in
Rd with the nonempty connectivity property with respect to all linear halfspaces.
No full characterization of graphs admitting such a representation is known, but
the following is proved in [van der Holst et al. 1995a]:

Theorem 16.39. A graph has a full-dimensional representation in R3 with the
nonempty connectivity property for all linear halfspaces if and only if it can be
obtained from planar graphs by taking clique-sums and subgraphs. �

Exercise 16.1. Let f(G) denote the maximum multiplicity of the largest eigen-
value of any matrix obtained from the adjacency matrix of a graph G, where 1’s
are replaced by arbitrary positive numbers and the diagonal entries are changed
arbitrarily. Prove that f(G) is the number of connected components of the graph
G.
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Exercise 16.2. The complete graph Kn is the only graph on n ≥ 3 nodes with
µ = n−1.

Exercise 16.3. If G has at least one edge, then µ(G) = maxH µ(H), where H
ranges over all connected components of G.

Exercise 16.4. Let M be a Colin de Verdière matrix of a path Pn, let π be an
eigenvector of M belonging to the negative eigenvalue, and let w : V (Pn)→ R be
a nullspace representation of M . Then the mapping i 7→ wi/πi gives an embedding
of G in the line [Lovász–Schrijver 1999].

Exercise 16.5. Let M be a Colin de Verdière matrix of a 2-connected outerplanar
graph G, and let w : V → R2 be a nullspace representation of M . Then the
mapping i 7→ vi = w0

i , together with the segments connecting vi and vj for
ij ∈ E, gives an embedding of G in the plane as a convex polygon with noncrossing
diagonals.

Exercise 16.6. Let ψ : S2 → S2 be a local homeomorphism. (a) Prove that
there is an integer k ≥ 1 such that |ψ−1(x)| = k for each x ∈ S2. (b) Let G be
any 3-connected planar graph embedded in S2, then ψ−1(G) is a graph embedded
in S2, with kn nodes, km edges, and k|F (G)| faces. (c) Use Euler’s Formula to
prove that k = 1 and ψ is bijective.

Exercise 16.7. Let ij be a cut-edge of the graph G. Let A be a G-matrix with
Aij 6= 0, and let u be the nullspace representation belonging to A. Then ui and
uj are parallel.

Exercise 16.8. Prove that if a graph is embedded in R3 in such a way that every
pair of disjoint cycles have an even linking number, and we perform a ∆−Y or
Y −∆ transformation, then the new edges can be embedded so that the resulting
embedded graph has the same property.

Exercise 16.9. Prove that for every embedding of K6 in R3, the sum of linking
numbers of disjoint pairs of triangles (10 pairs) is odd.

Exercise 16.10. All triangles in a flatly embedded simple graph can be simulta-
neously paneled.

Exercise 16.11. Let P be a d-polytope with no parallel faces, and let F1 and
F2 be antipodal faces. Prove that there are two parallel supporting hyperplanes
H1 and H2 such that Fi = Hi∩P . Show by an example that this does not hold
if parallel faces are allowed.

Exercise 16.12. Prove that if G is the disjoint union of graphs G1 and G2, then
γ(G) ≤ min{γ(G1)+ |V (G2)|, γ(G2)+ |V (G1)|}.

Exercise 16.13. A graph is planar if and only if its 1-subdivision has a 1-engaged
representation in R3.

Exercise 16.14. Every graph has a subdivision with γ ≤ 4.

Exercise 16.15. If G is a planar map of girth at least 5, then γ(G) ≤ 3.

Exercise 16.16. Prove that a graph G has a full-dimensional representation in
Rd with the connectivity property with respect to all linear halfspaces, such that
the origin is not contained in the convex hull of representing vectors, if and only
if it has a Kd minor.

Exercise 16.17. Prove that if a graph G has a full-dimensional representation
in Rd in general position with the connectivity property with respect to all linear
halfspaces, then G is d-connected.
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Exercise 16.18. Prove the following characterizations of graphs having full-
dimensional representations in Rd with the nonempty connectivity property with
respect to all linear halfspaces, for small values of d: (a) for d = 1: forests; (b) for
d = 2: series-parallel graphs (graphs with no K4 minors).





CHAPTER 17

Metric Representations

Given a graph, we would like to embed it in a Euclidean space so that the
length of shortest paths between nodes in the graph (the graph metric) should be
the same as, or at least close to, the geometric distance of the representing vectors.
Our goal is to illustrate some of the embedding techniques, and, mainly, the use of
such embeddings to prove graph-theoretic theorems and to design algorithms.

We start with discussing a few embedding techniques that preserve distances.
It is not hard to see, however, that in most nontrivial cases every embedding will
necessarily have some distortion. For example, the graph metric on the “claw” K1,3

cannot be embedded isometrically in a Euclidean space of any dimension. We get
more general and useful results if we study embeddings where the distances may
change, but in controlled manner. To emphasize the difference, we will distinguish
distance preserving (isometric) and distance respecting representations.

The complete k-graph can be embedded isometrically in a Euclidean space with
dimension k−1, but not in lower dimensions. There is often a trade-off between
dimension and distortion. This motivates our concern with the dimension of the
space in which we represent our graph.

Most of the methods that have been developed for such embeddings extend to
more general (often all) finite metric spaces. Recall that a metric space is a set
V endowed with a distance function d2 : V ×V → R+ such that d2(u, v) = 0
if and only if u = v, d2(v, u) = d2(u, v), and d2(u,w) ≤ d2(u, v)+d2(v, w) for all
u, v, w ∈ V . Sometimes it will be convenient to extend the representability problem
to semimetric spaces (to spaces (V, d2) where d2 : V ×V is nonnegative, symmetric
and satisfies the triangle inequality, but d2(u, v) = 0 is allowed for different points
u, v ∈ V ).

There is a large literature of embeddings of one metric space into another so
that distances are preserved (isometric embeddings) or at least not distorted too
much. These results are often very combinatorial, and have important applica-
tions to graph theory and combinatorial algorithms; see [Indyk–Matoušek 2004],
[Matoušek 2002], [Matoušek 2013] for more.

Here we restrict our interest to embeddings of (finite) metric spaces into basic
normed spaces. It will be often convenient to use the scaled version of the standard
`p-norm, namely

‖x‖p =
1

d1/p
|x|p =

(1

d

d∑
i=1

|xi|p
)1/p

for x ∈ Rd and p ≥ 1. In the case of p = ∞, we have |x|∞ = ‖x‖∞ = maxi |xi|.
This version of the norms can be considered as function norms over the (finite)
probability space {1, . . . , d} endowed with the uniform measure. With this scaling,
we have ‖x‖p ≤ ‖x‖q for 1 ≤ p < q ≤ ∞.

323
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An `p-representation of a finite metric space (V, d2) is a mapping u : V → Rm
such that d2(i, j) = ‖ui−uj‖p. We say that (V, d2) is `p-representable, or shortly
an `p-metric. Note that in the definition of this representability we could use the
|.|p-norm instead of the ‖.‖p-norm, by scaling the representing vectors by a factor

of d1/p.
In our limited treatment of metric embeddings, our main interest will lie in

one embedding technique, the Bourgain random subset representation, which has
a variety of graph theoretic applications. It is perhaps natural that we need to do
some preliminary work discussing some examples of isometric embeddings which
will be needed later. We also need a fundamental tool, the Johnson–Lindenstrauss
Lemma, which helps to control the dimension of the embeddings.

After treating the random subset representation and its applications, we intro-
duce the fascinating notion of volume-respecting embedding, which can be consid-
ered as a quantitative version of “general position”. The random subset represen-
tation method can be extended to this case, but this will be somewhat hard going,
requiring several facts from high dimensional geometry, which are collected in the
Appendix.

17.1. Preserving distances

17.1.1. Supremum norm. The embedding problem is easy if the supremum
norm is used in the target space.

Theorem 17.1 (Fréchet). Any finite metric space on n points can be embedded
isometrically into (Rn, ‖.‖∞).

The theorem is valid for infinite metric spaces as well (when infinite dimensional
L∞ spaces must be allowed for the target space), with a slight modification of the
proof. We describe the simple proof for the finite case, since its idea will be used
later on.

Proof. Let (V, d2) be a finite metric space, and consider the vector labeling

v 7→ uv = (d2(v, i) : i ∈ V ) (v ∈ V ).

By the triangle inequality,

‖uu−uv‖∞ = max
i
|d2(u, i)−d2(v, i)| ≤ d2(u, v).

On the other hand, the coordinate corresponding to i = v gives

‖uu−uv‖∞ ≥ |d2(u, v)−d2(v, v)| = d2(u, v). �

17.1.2. Manhattan distance. Another representation with special combi-
natorial significance is a representation in Rn with the `1-distance (often called
Manhattan distance). For a fixed underlying set V , all `1-semimetrics form a closed

convex cone: if i 7→ ui ∈ Rm is an `1-representation of (V, d2) and i 7→ u′i ∈ Rm′ is
an `1-representation of (V, d′2), then

i 7→ (m+m′)

( α
mu
α′

m′u
′

)
is an `1-representation of αd2 +α′d′2 for α, α′ ≥ 0.
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A very useful way of representing `1-semimetrics is by Hamming metrics. We
have a measurable space (X,µ), and a family of measurable subsets of finite measure
Xi ⊆ X (i ∈ V ). Define

d2(i, j) = µ(Xi4Xj).

It is trivial to check that this defines a semimetric. Since we are interested in finite
metric spaces, we can always assume that the space X is finite: the sets Xi partition
X into a finite number of parts, and we can aggregate each part to a single atom
(with the same weight).

Hamming metrics on the same set V form a convex cone: clearly they can
be scaled by any positive number by scaling the measure µ, and the sum of two
Hamming metrics d2 and d′2 is again a Hamming metric. To see this, let (V, d2) be
represented by subsets Xi in a measurable space (X,µ), and (V, d′2) be represented
by subsets X ′i in a measurable space (X ′, µ′), where we may assume that X and X ′

are disjoint. Then (V, d2 +d′2) is represented by the sets Xi∪X ′i in the measurable
space (X∪X ′, µ∪µ′) (the measure µ∪µ′ being defined by (µ∪µ′)(S) = µ(S∩X)+
µ′(S∩X ′)).

This last remark is superfluous in the light of the following fact (but it is used
in its proof):

Proposition 17.2. Hamming semimetrics on a finite set coincide with `1-
semimetrics.

Proof. Let (V, d2) be represented by subsets Xi in a finite measurable space
(X,µ). Define a vector ui ∈ RX by

(ui)j =


µ(j)

|X|
, if j ∈ Xi,

0, otherwise.

It is straightforward to check that this defines an `1-representation of (V, d2).
Conversely, let u : V → Rd be an `1-representation of (V, d2). If k = 1, then

i 7→ [0,ui] is a Hamming representation of (V, d2) in the measurable space (R, λ). If
k > 1, we construct a Hamming representation for each coordinate, and add them
up as described above. �

Of special interest are the `1-semimetrics (V, dS) defined by a subset S ⊆ V ,

dS(i, j) =

{
1, if |{i, j}∩S| = 1,

0, otherwise,

which we call a 2-partition distance. (These are often called cut-semimetrics, but I
do not want to use this term since “cut norm” and “cut distance” are used in this
book in a different sense.) 2-partition distances and their connection to Manhattan
metrics are discussed in detail, with many applications from number theory to
optimization, in the book [Deza–Laurent 1997].

Proposition 17.3. A finite semimetric space (V, d) is an `1-semimetric if and only
if it can be written as a nonnegative linear combination of 2-partition distances.

Proof. Every 2-partition distance dS can be represented in the 1-dimensional
space by the map 1S . It follows that every nonnegative linear combination of 2-
partition distances on the same underlying set is an `1-semimetric. Conversely,
every `1-semimetric is a sum of `1-semimetrics representable in R1 (just consider
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the coordinates of any `1-representation). So it suffices to consider `1-semimetrics
(V, d) for which there is a representation i 7→ ui ∈ R such that d(i, j) = |ui−uj |.
We may assume that V = [n] and u1 ≤ · · · ≤ un, then for i < j,

d(i, j) =

n−1∑
k=1

(uk+1−uk)d{1,...,k}

expresses d as a nonnegative linear combination of 2-partition distances. �

There are a lot of results relating the `1-metric to other classical metrics on
linear spaces, most notably to `p-metrics. We only need the following fact.

Proposition 17.4. If a finite metric space (V, d) is `2-representable, then it is
`1-representable.

Proof. Let (V, d) be a finite metric space and let u : V → Rd be an `2-
representation. We may assume (by trivial scaling) that u(V ) ⊆ Bd.

By Proposition 17.2, it suffices to represent (V, d) as a Hamming distance.
Consider the measurable space (Bk, µ), where the measure is defined by

µ(Y ) = C

∫
Y

1

|x|1−d
dx,

(the constant C will be determined later). It is easy to see that

µ(Y ) ∼
∫
Sd−1

λ([−x,x]∩Y ) dσ(x),

where λ is the 1-dimensional Lebesgue measure and σ is the (d−1)-dimensional
Lebesgue measure on Sd−1.

x

-x

u
i

0

Figure 17.1. Representing an `2 metric in `1.

The sets Xi representing the points in V are easy to define: Xi is the “Thales
ball” over the segment [0,ui]. In formula, this means that

Xi = {x ∈ Rk : xT(ui−x) ≥ 0}.
To calculate the measure of Xi4Xj , note that for any x ∈ Sk−1, the intersection
[−x,x]∩(Xi4Xj) is just the segment between the orthogonal projections of ui and
uj onto the diameter [−x,x] (Figure 17.1). Hence

λ
(
[−x,x]∩(Xi4Xj)

)
= |xTui−xTuj | = |xT(ui−uj)| = |ui−uj | |xT(ui−uj)

0|.
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Integrating over x ∈ Sk−1, the integral of |xT(ui−uj)
0| is independent of (ui−uj)

0

(which is just a unit vector). Hence∫
Sk−1

λ
(
[−x,x]∩(Xi4Xj)

)
dσ(x) ∼ |ui−uj |,

and the scaling factor C above has been chosen so that µ(Xi4Xj) = |ui−uj |. �

The converse of the last proposition does not hold: there are `1-representable
finite metric spaces that are not `2-representable, as shown e.g. by the graph
distance in the 4-cycle.

17.2. Respecting distances

As we have seen, the possibility of a geometric representation that exactly
reflects the graph distance is limited, and therefore we allow distortion. Let
F : V1 → V2 be a mapping of the metric space (V1, d1) into the metric space
(V2, d2). We define the distortion of F as

sup
u,v∈V1
u6=v

d2

(
F (u), F (v)

)
d1(u, v)

/
inf

u,v∈V1
u 6=v

d2

(
F (u), F (v)

)
d1(u, v)

.

Note that to have finite distortion, the map F must be injective. The distortion
does not change if all distances in one of the metric spaces are scaled by the same
factor. So if we are looking for embeddings in Euclidean spaces (more generally, in
normed linear spaces), then we may scale the vectors, and restrict our attention to
embeddings that are contractive, that is, satisfying d2

(
F (u), F (v)

)
≤ d1(u, v) for

all u, v ∈ V1.
We present some basic theorems about embeddings, and give an important

application in flow theory.

17.2.1. Dimension reduction. In many cases, we can control the dimension
of the ambient space based on general principles, and we start with a discussion of
these. The dimension problem is often easy to handle, due to a fundamental lemma
[Johnson–Lindenstrauss 1984].

Lemma 17.5 (Johnson–Lindenstrauss). For every 0 < ε < 1, every n-point set
S ⊂ Rn can be mapped into Rd with d < (80 lnn)/ε2 with distortion at most ε in
the Euclidean distance.

Proof. Orthogonal projection onto a random d-dimensional subspace L does
the job. First, let us see what happens to the distance of a fixed pair of points
x,y ∈ S. Instead of projecting the fixed segment of length |x−y| on a random
subspace, we can project a random vector of the same length on a fixed subspace.
Then (C.17) in the Appendix applies, and tells us that with probability at least

1−4e−ε
2d/4, the projections x′ and y′ of every fixed pair of points x and x′ satisfy

1

1+ε

√
d

n
≤ |x

′−y′|
|x−y|

≤ (1+ε)

√
d

n
.

It follows that with probability at least 1−
(
n
2

)
4e−ε

2d/4, this inequality holds si-
multaneously for all pairs x, y ∈ S, and then the distortion of the projection is at
most (1+ε)2 < 1+3ε. Replacing ε by ε/3 and choosing d as in the Theorem, this
probability is positive, and the lemma follows. �
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Remark 17.6. More careful computation gives a constant of 8 instead of 80. It
will also be important later that the mapping constructed in the proof is linear,
and it can be assumed that it is nonsingular when restricted to any d-dimensional
affine subspace determined by S.

The Johnson–Lindenstrauss Lemma does not extend to all values of p. To
be more precise, there are examples of n-point subsets S of Rn for which every
mapping φ : S → Rd (d < nc) has a distortion of at least Ω(c2), if the `1-distance
is used in both S and φ(S) [Brinkman–Charikar 2005]. See [Matoušek 2008] for a
survey of the many extensions and variants of the Johnson–Lindenstrauss Lemma.

17.2.2. Embedding with small distortion. We describe an important con-
struction for the embedding of a general metric space into a Euclidean (`2) space
[Bourgain 1985], which has low distortion (and other interesting and useful prop-
erties, as we will see later).

Theorem 17.7. Every metric space with n points can be embedded in the Euclidean
space Rd with distortion O(log n) and dimension d = O(log n).

To motivate the construction, let us recall Fréchet’s Theorem 17.1: we embed a
general metric space (V, d) isometrically into `∞ by assigning a coordinate to each
point w ∈ V , and considering the representation

x : i 7→ (d(w, i) : w ∈ V ).

If we want to represent the metric space by Euclidean metric with a reasonably
small distortion, this construction will not work, since it may happen that all points
except u and v are at the same distance from u and v, and once we take a sum of
coordinates instead of the maximum to compute the norm, the contribution from
u and v will become negligible. The remedy will be to take distances from sets
rather than from points; it turns out that we need sets with sizes of all orders of
magnitude, and this is where the logarithmic factor is lost.

We start with describing a simpler version, which is only good “on the average”.
For a while, it will be more convenient to work with `1 distances instead of Euclidean
distances. Both of these deviations from our goal will be easy to fix.

Let (V, d) be a metric space on n elements. We may assume that the diameter
of the space is at most 1. Let m = dlog ne, and for every 1 ≤ r ≤ m, choose a
random subset Ar ⊆ V , putting every element v ∈ V into Ar with probability
2−r. Let d(v,Ai) denote the distance of node v from the set Ai (if Ai = ∅, we set
d(v,Ai) = 1). Consider the vector labeling x : V → Rm defined by

(17.1) xu =
(
d(u,A1), . . . , d(u,Am)

)T
.

We call this the random subset representation of (V, d) in `p.

Lemma 17.8. The random subset representation is contractive with respect to any
`p-norm.

Proof. For u, v ∈ V , by the triangle inequality,

|d(u,Ai)−d(v,Ai)| ≤ d(u, v),

and hence

‖xu−xv‖p ≤ ‖xu−xv‖∞ ≤ d(u, v). �
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To prove deeper properties of this representation, we have to use that it depends
on the random choice of the sets Ai, and so we have to make probabilistic statements
about it. It will be convenient to introduce, for any real-valued random variable X,
the median median(X), defined as a real number such that P

(
X < median(X)

)
≤

1/2 and P
(
X > median(X)

)
≤ 1/2. There may be a whole interval of such values,

in which case we denote by median(X) the midpoint of this interval (just to make
it well defined).

It is easy to see that every median of X minimizes E(|X−y|) over y ∈ R
(assuming the expectation is finite). In other words, E(|X−median(X)|) ≤ E(|X−
y|) for every y ∈ R. For a random vector X = (X1, . . . , Xm), we define median(X) =(
median(X1), . . . ,median(Xm)

)
.

Our next lemma says that for a fixed node u, the vector xu cannot be too
concentrated.

Lemma 17.9. Let u ∈ V and 0 < δ ≤ diam(V, d). Define Xr = min(d(u,Ar), δ)
and X = (X1, . . . , Xm). Then

E
(
|X−median(X)|1

)
≥ δ

4
.

Proof. For any integer r ∈ [m] and real number t ∈ (0, δ), the inequality
Xr > t is equivalent to d(u,Ar) > t, which in turn means that Ar∩B(u, t) = ∅.
Hence

(17.2) P(d(k,Ar) > x) = (1−pr)|B(k,x)| = (2k)−s
−r|B(k,x)|.

Define r(x) = ba log |B(k, x)|c, then clearly 1 ≤ r(x) ≤ m. Formula (17.2) implies
that

(17.3)
1

8k
< P(d(k,Ar(x)) > x) ≤ 1

2k
.

Hence

(17.4)
1

4
≤ P(Xr(t) > t) ≤ 3

4

for every t.
Whatever the value of median(Xr(t)) is, Xr(t) is on the other side of t with

probability at least 1/4 by (17.4). Hence P
(
t ∈ [Xr(t),median(Xr(t))]

)
≥ 1/4. The

coordinate r(t) depends on t, but we get rid of this dependence if we sum over r:

m∑
r=1

P
(
t ∈ [Xr,median(Xr)]

)
≥ 1

4
.

Now let T ∈ [0, δ] be a uniform random number, then for every choice of x and y,
P
(
T ∈ [x, y]

)
≤ |x−y|/δ, and so

E
(
|X−median(X)|1

)
=

m∑
r=1

E
(
|Xr−median(Xr)|

)
≥

m∑
r=1

δP(T ∈ [Xr,median(Xr)]) ≥
δ

4
. �

As an easy application of this lemma, we bound the distance of two represen-
tative points, at least in expectation.



330 17. METRIC REPRESENTATIONS

Lemma 17.10. The random subspace representation (17.1) satisfies

E
(
‖xu−xv‖p

)
≥ d(u, v)

8m
.

for every pair of points u, v ∈ V .

Proof. By the inequality relating different `p-norms, it suffices to prove this
for p = 1. Define δ = d(u, v)/2, Xr = min(d(u,Ar), δ), Yr = min(d(v,Ar), δ),
X = (X1, . . . , Xm)T and Y = (Y1, . . . , Ym)T. Since X and Y depend only on how
Ar behaves in the disjoint open neighborhoods of radius δ of u and v, respectively,
these quantities are independent random variables. Fix Y and invoke Lemma 17.9:

E
(
‖X−Y‖1

)
≥ δ

4m
.

It is easy to check that

|d(u,Ai)−d(v,Ai)| ≥ |Xi−Yi|,

and so

E
(
‖xu−xv‖1

)
≥ E(‖X−Y‖1) ≥ δ

4m
=
d(u, v)

8m
. �

Now we are ready to prove the theorem.

Proof of Theorem 17.7. Lemma 17.8 says that the random subset embedding
is contractive, so it suffices to prove that it does not contract any distance by more
than a factor of m = O(log n), with large probability. The previous lemma only
bounds the expectation of these distances. The Law of Large Numbers suggests the
remedy: the distance ‖xu−xv‖1 is the average of m independent bounded random
variables, and hence it will be close to its expectation with high probability, if m
is large enough. We can multiply m basically for free. To be more precise, let us
generate N independent copies x1, . . . ,xN of the representation (17.1), and consider
the mapping y : V → RNm, defined by

(17.5) yu =

x1
u
...

xNu


Then

‖yu−yv‖1 ≤ d(u, v) and E(‖yu−yv‖1) = E(‖xu−xv‖1) ≥ 1

8m
d(u, v).

For every u and v, ‖yu−yv‖1 → E(‖xu−xv‖1) ≥ d(u, v)/(8m) almost surely by the
Law of Large Numbers, and hence if N is large enough, then with high probability

(17.6) ‖yu−yv‖1 ≥
d(u, v)

9m
for all u, v ∈ V.

So y is a representation in `1 with distortion at most 9m.
The assertions above extend to every `p-distance instead of the `1-distance (in

particular, to the Euclidean distance): first, ‖yu−yv‖p ≤ ‖yu−yv‖∞ ≤ d(u, v)
just like above, and second, ‖yu−yv‖p ≥ ‖yu−yv‖1 ≥ d(u, v)/(9m) with high
probability for all u, v ∈ V .
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We are not done yet, since choosing a large N will result in a representation in a
very high dimension. For the Euclidean distance (p = 2), we can apply the Johnson–
Lindenstrauss Lemma 17.5 (in other words, we apply a random projection), to
reduce the dimension as stated in the Theorem. �

Remark 17.11. The theorem remains valid for all p ≥ 1, but the proof needs
additional work, since the Johnson–Lindenstrauss Lemma does not hold for all p.
One can estimate the concentration of ‖xu−xv‖1 using the Chernoff-Hoeffding
Inequality; the details of this computation are omitted.

Deep connections of the random subset representation with graph theory were
described by [Linial–London–Rabinovich 1995]. They showed how to construct an
embedding satisfying the conditions in Theorem 17.7 by a deterministic algorithm,
and gave the important application to flow theory to be described in Section 17.2.3.
They also showed that Bourgain’s embedding is essentially optimal, in the sense
that the O(log n) factor cannot be improved (see also [Matoušek 1997]):

Proposition 17.12. Let G be an a-regular graph (a ≥ 3), which is a b-edge-
expander (b > 0), and let (V, d) be the graph metric of G, then every embedding of
(V, d2) in a Euclidean space has distortion at least b log(n/2)/ log a.

Proof. Since the graph is a-regular, the number of nodes accessible from a
given node in at most t steps (t ≥ 1) is bounded by 1+a+a(a−1)+ · · ·+a(a−
1)t−1 < at. So in fewer than log(n/2)/ log a steps fewer than half of the nodes can
be reached, which implies that∑

u,v∈V
d(u, v) ≥ log(n/2)

log a

n2

2
.

Since the number of edges is an/2, it follows that the graph distance satisfies the
inequality

(17.7)
∑
u,v∈V

d(u, v) ≥ n

a

log(n/2)

log a

∑
uv∈E

d(u, v).

On the other hand, for the 2-partition distance dS determined by a set S ⊆ V , we
have ∑

u,v∈V
dS(u, v) = |S| |V \S|,

and by the hypothesis about the expansion of the graph,∑
uv∈E

dS(u, v) = eG(S, V \S) ≥ ab

n
|S| |V \S|,

whence ∑
u,v∈V

dS(u, v) ≤ n

ab

∑
uv∈E

dS(u, v).

Since every `1-semimetric is a nonnegative linear combination of 2-partition dis-
tances by Proposition 17.3, it follows that every `1-semimetric d1 satisfies

(17.8)
∑
u,v∈V

d1(u, v) ≤ n

ab

∑
uv∈E

d1(u, v).
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Comparing (17.7) and (17.8), we see that every `1-metric approximating the graph
distance must have distortion at least

(
log(n/2)

)
/ log a. By Proposition 17.4, the

same holds for every `2-metric. �

17.2.3. Multicommodity flows and approximate Max-Flow-Min-Cut.
The following fundamental result in the theory of multicommodity flows was
proved in [Leighton–Rao 1998]. Stated in a larger generality, as proved in
[Linial–London–Rabinovich 1995], it says the following. Suppose that we have a
multicommodity flow problem on a graph G. This means that we are given k pairs
of nodes (si, ti) (i = 1, . . . , k), and for each such pair, we are given a demand di ≥ 0.
Every edge e of the graph has a capacity ce ≥ 0. We would like to design a flow
f i from si to ti of value di for every 1 ≤ i ≤ k, so that for every edge the capacity
constraint is satisfied.

We state the problem more precisely. We need a reference orientation of G;

let
−→
E denote the set of these oriented edges. We want an (si, ti)-flow f i for every

1 ≤ i ≤ k, with prescribed flow values di, so that the total flow through an edge
does not exceed the capacity of the edge:

(17.9)

k∑
i=1

|f i(e)| ≤ ce for all e ∈
−→
E (G)

(this clearly does not depend on which orientation of the edge we consider).
Let us hasten to point out that the solvability of a multicommodity flow problem

is just the feasibility of a linear program (we treat the values f(e) as variables). So
the multicommodity flow problem is polynomial time solvable. We can also apply
the Farkas Lemma, and derive a necessary and sufficient condition for solvability. If
you work out the dual, quite likely you will get a condition that is not transparent
at all; however, there is a very nice form [Iri 1967, Shahroki–Matula 1990], which
fits particularly well into the topic of this book.

Consider a semimetric D on V . Let us describe an informal (physical) deriva-
tion of the conditions. Think of an edge e = uv as a pipe with cross section ce
and length D(e) = D(u, v). Then the total volume of the system is

∑
e ceD(e). If

the multicommodity problem is feasible, then every flow f i occupies a volume of at
least diD(si, ti), and hence

(17.10)
∑
i

diD(si, ti) ≤
∑
e

ceD(e).

We call this inequality the volume condition. This condition, when required for
every semimetric, is also sufficient:

Theorem 17.13. Let G be a graph, let si, ti ∈ V , di ∈ R+ (i = 1, . . . , k), and
ce ∈ R+ (e ∈ E). Then there exist (si, ti)-flows (f i : i ∈ [k]) satisfying the demand
conditions val(f i) = di and the capacity constraints (17.9) if and only if the volume
condition (17.10) holds for every semimetric D in V .

We leave the exact derivation of the necessity of the condition, as well as the
proof of the converse based on linear programming duality, to the reader.

The obvious cut conditions obtained by specializing (17.10) for 2-partition met-
rics, provide a system of necessary conditions for the problem to be feasible: If the
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multicommodity flows exist, then for every S ⊆ V , we must have

(17.11)
∑

tl(e)∈S,hd(e)/∈S

ce ≥
∑

i: S∩{si,ti}=1

di.

In the case of one or two commodities (k ≤ 2), these conditions are necessary
and sufficient; this is the content of the Max-Flow-Min-Cut Theorem of Ford and
Fulkerson (k = 1) and the Gomory–Hu Theorem (k = 2). However, for k ≥ 3, the
cut conditions are not sufficient any more for the existence of multicommodity flows.
The theorem of Leighton and Rao asserts that if the cut-conditions are satisfied,
then relaxing the capacities by a factor of O(log n), the problem becomes feasible.
The relaxation factor was improved by Linial, London and Rabinovich to O(log k);
we state the result in this tighter form, but for simplicity of presentation prove the
original (weaker) form.

Theorem 17.14. Suppose that for a multicommodity flow problem, the cut condi-
tions (17.11) are satisfied. Then replacing every edge capacity ce by 20ce log k, the
problem becomes feasible.

Proof. Using Theorem 17.13, it suffices to prove that for every semimetric D
on V ,

(17.12)
∑
i

dki=1D(si, ti) ≤ 20(log n)
∑
e∈E

cdD(e).

The cut conditions are equivalent to the volume conditions (17.10) for 2-
partition distances, which in turn implies their validity for semimetrics that are
nonnegative linear combinations of 2-partition distances, which, as we have seen,
are exactly the `1-semimetrics. By Bourgain’s Theorem 17.7, there is an `1-metric
D′ such that

D′(u, v) ≤ D(u, v) ≤ 20(log n)D′(u, v).

We know that D′ satisfies the semimetric condition (17.10), and hence D satisfies
the relaxed semimetric conditions (17.12). �

17.3. Respecting the volume

A very interesting extension of the notion of small distortion was formulated
in [Feige 1998]. We want an embedding of a metric space in a Euclidean space
such that is contractive, and at the same time volume respecting up to a given
size s, which means that every set of at most s nodes spans a simplex whose
volume is almost as large as possible. Obviously, the last condition above needs an
explanation, and for this, we will have to define a certain “volume” of an arbitrary
metric space (a fascinating notion in itself). Respecting the volume can also be
viewed as a quantitative version of “general position”. We describe an algorithmic
application of these results to the approximate computation of the bandwidth of a
graph.

17.3.1. Dimension reduction for volume. Before defining the volume in
general metric spaces, we stay for a while with the traditional notion of volume, and
prove a generalization of the Johnson–Lindenstrauss Lemma 17.5 [Magen 2007]. To
simplify notation, for a finite set S ⊆ Rd with k elements, we define vol(S) as the
(k−1)-dimensional volume of conv(S). For a vector labeling x : S → Rd of a
finite set S with k elements, we denote by volx(S) the (k−1)-dimensional volume
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of conv
(
x(S)

)
. If x is injective, then this is the same as vol

(
x(S)

)
. Note that vol(S)

can be zero if S is not affine independent, and similar warning holds for volx(S).

Lemma 17.15. For every real number ε > 0 and integer k ≥ 2, and for every
n-point set V ⊂ Rn, there is a linear map φ : Rn → Rd with d = O(ε−2k log n)
such that for every S ⊆ V with |S| = r ≤ k, we have the bounds

(1−ε)r−1vol(S) ≤ vol
(
φ(S)

)
≤ vol(S).

Note that such a mapping is necessarily contractive with respect to the Euclidean
distance and bijective on V .

Proof. This lemma can be proved extending the proof of Lemma 17.5, but a
more elementary proof can be obtained by reducing it to the Johnson–Lindenstrauss
Lemma. Recall that this lemma provides a linear map φ : Rn → Rd that is
contractive and almost isometric on V .

The property that the map is contractive does not imply that (say) areas of
triangles are not increased, and the property that distances are not decreased by
much does not imply that areas of triangles are not decreased by much. The
idea is to embed V into a larger finite set W , so that approximately preserving
distances between points in W will imply approximate preservation of volumes of
r-dimensional simplices with vertices in V for all r ≤ k.

To show how this idea works, let us start with proving the upper bound. For
every point v ∈ S and every affine space A ⊆ Rn, let vA denote the orthogonal
projection of v onto A. Let U be the set of all points vaff(X), where X ⊆ V , |X| < k.

(Note that V ⊆ U .) Let φ : Rn → Rd1 be a linear map into some dimension d1

that is contractive on U .
Consider a particular r-dimensional simplex conv(Y ), where r ≤ k and Y ∈(

V
r+1

)
. Choose any v ∈ Y , and let X = Y \v and A = aff(X). We may assume (for

notational convenience) that vA = 0, then φ(vA) = 0, A is a linear subspace, and
v ⊥ A. Let y denote the orthogonal projection of φ(v) onto φ(A) (Figure 17.2),
and let h = |v| and h′ = |φ(v)−y| denote the distance of v from A and of φ(v)
from φ(A), respectively.

v

v
A
=0

X

A
�(X)

✁(A)

�(v
A
)=0

�(v)

y

Figure 17.2. Adding projections to V , and the image of a simplex
under the Johnson–Lindenstrauss mapping.

By induction on r, we may assume that

(17.13) vol
(
φ(X)

)
≤ vol(X).
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Linearity of φ implies that lin
(
φ(X)

)
= φ(A), and since φ is contractive, h′ =

|φ(v)−y| ≤ |φ(v)| ≤ |v| = h. Using (17.13), we get

vol
(
φ(Y )

)
=
h′

r
vol
(
φ(X)

)
≤ h

r
vol(X) = vol(Y ).

This proves the upper bound in the lemma.
Unfortunately, this simple way of extending V is not sufficient to guarantee

that volumes do not shrink much. We extend U further by considering, for every
u ∈ V and every affine subspace A spanned by points in V with dim(A) = r < k
and u /∈ A, a cubic lattice Lu,A in A of edge-length |u−uA|/

√
r, containing uA,

and its finite subset Wu,A = {z ∈ Lu,A : |z| ≤ 3|u−uA|}. We add to V all of the
sets Wu,A to get a set W .

We have to construct the contractive map more carefully as above: We apply
the Johnson–Lindenstrauss Lemma 17.5 to the set W with error bound ε1 = ε/22
to get a linear map φ : Rn → Rd2 for the appropriate dimension d2.

To show that this mapping does not shrink the volumes of simplices of dimen-
sion at most k too much, consider Y,X,A,v and y as above. The argument for the
upper bound in the lemma remains valid, but now we can do a similar computation
for the lower bound as well. Induction on r gives

(17.14) vol
(
φ(X)

)
≥ (1−ε)r−1vol(X).

Linearity of φ implies that φ(Lv,A) is a lattice in φ(A); not cubic, but the con-
tractive property of φ implies that the images of lattice cubes, which are the basic
parallelopipeds of φ(Lv,A), have diameter at most h. Let C be the lattice cube in
Lv,A such that y ∈ φ(C) (Figure 17.3).

C

v �(v)

y
vA=0

�(vA)=0

Figure 17.3. The lattice added to V , and its image under the
Johnson–Lindenstrauss mapping.

Since |y| ≤ |φ(v)| ≤ |v|, it follows that for every vertex z of C, we have
|φ(z)| ≤ |y|+ |φ(z)−y| ≤ 2h. Hence |z| ≤ 3h, and so z ∈ Wv,A. By the distance-
respecting properties of φ,

|φ(v)−φ(z)|2 ≥ (1−ε1)2|z−v|2 = (1−ε1)2(|z|2 +h2),

and (considering the point −z)

|φ(v)+φ(z)|2 ≤ |v+z|2 = |z|2 +h2.

Expanding and subtracting, we get

(17.15) 4φ(v)Tφ(z) ≤ (2ε1−ε2
1)(|z|2 +h2) < 2ε1(|z|2 +h2) ≤ 20ε1h

2.
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This linear inequality holds for every vertex φ(z) of the parallelotope φ(C), so it
must hold for y ∈ φ(C) as well. Hence

|y|2 = φ(v)Ty < 20ε1h
2.

Thus

|φ(v)−y|2 = |φ(v)|2−|y|2 ≥ (1−ε1)2h2−20ε1h
2 ≥ (1−22ε1)2h2 = (1−ε)2h2,

and

vol
(
φ(Y )

)
=
h′

r
vol
(
φ(X)

)
≥ (1−ε)h

r
(1−ε)r−1vol(X) = (1−ε)rvol(Y ).

To bound the dimension in the application of Lemma 17.5, we have to estimate
the size of W . Quite elementary computations yield that |W | < (20n)k. Thus

d2 ≤ 80
1

ε2
1

ln |W | < 105 k

ε2
lnn. �

17.3.2. Volume in metric spaces. Let (V, d) be a finite metric space with
|V | = n. For a tree T on V (T ) = V , we define ΠT =

∏
uv∈E(T ) d(u, v), and we

define the tree-volume of (V, d) by

voltr(V, d) =
1

(n−1)!
min
T

ΠT .

Note that the tree T that gives here the minimum is also minimizing the total length
of edges (this follows from the fact that it can be found by the Greedy Algorithm).

Since we only consider one metric, denoted by d, in this section, we will not
indicate it in voltr(V, d) and similar quantities to be defined below. We will, however,
change the underlying set, so we keep V in the notation. The following lemma
relates the volume of a simplex in an embedding with the tree-volume.

Lemma 17.16. For every contractive map x : V → RN of a metric space (V, d),
volx(V ) ≤ voltr(V ).

Proof. We prove by induction on n that for any tree T on V ,

volx(V ) ≤ 1

(n−1)!
ΠT .

For n = 2 this is obvious. Let n > 2, and let i ∈ V be a node of degree 1 in T , let
j be the neighbor of i in T , and let h be the distance of i from the affine hull of
x(V \ i). Then by induction,

volx(V ) =
h

n−1
volx(V \ i) ≤ d(i, j)

n−1
volx(V \ i)

≤ d(i, j)

n−1

1

(n−2)!
ΠT−i =

1

(n−1)!
ΠT . �

The main result about tree-volume is that the upper bound given in Lemma
17.16 can be attained, up to a polylogarithmic factor, for all small subsets simul-
taneously.



17.3. RESPECTING THE VOLUME 337

Theorem 17.17. Every finite metric space (V, d) with n points has a con-
tractive map x : V → Rd (with respect to the Euclidean metric) with d =

O
(
(log n)4 log log n

)
, such that for every 2 ≤ k ≤ log n and every S ∈

(
V
k

)
,

volx(S)
1

k−1 ≥ 1

O
(
log n

√
log k

)voltr(S)
1

k−1 .

Proof. The proof of this theorem is built on the proof of Bourgain’s Theo-
rem 17.7, but it is of course more involved. It will be convenient to assume that
all distances in (V, d) are distinct; this can be achieved by an arbitrarily small
perturbation.

Instead of powers of 1/2, we define a finer sequence of probabilities for the
densities of the random sets. We use the following parameters:

(17.16) s = 1+
1

log log n
, m = d(log log n) log ne, pr = 1− 1

(2m)s−r .

It is clear that 0 < pr < 1, and so we can construct a random subset Ar ⊆ V ,
where every element v ∈ V is put into Ar with probability pr, independently of
each other (1 ≤ r ≤ m). For notational convenience, we assume that V = [n]. For
a while, we focus on a single set S, say S = [k].

Consider the balls Bj = B
(
j, 1

2d(j, S \j)
)

for j ∈ S. It is easy to see that these
sets are disjoint. We may assume that |Bk| = minj∈S |Bj |.

Just as in the proof of Theorem 17.7, we need to show that for an appropriate
r, the distance d(k,Ar) is not too concentrated as a random variable; we need,
however, a more complicated formulation of this fact than before. We let δ =
d(k, S \k)/2.

Claim 1. There are real numbers x1, x2 ∈ [0, δ] with x2 ≥ x1 + δ
2m , and an integer

r ∈ [m] such that the following inequalities hold:

P
(
d(k,Ar) ≤ x1

)
≥ 1

2
, P

(
d(k,Ar) ≥ x2

)
≥ 1

4m
, P

(
d(k,Ar) ≥ δ

)
<

1

2m
.

For any integer r ∈ [m] and real number 0 ≤ x ≤ δ, the inequality d(k,Ar) > x
is equivalent to Ar∩B(k, x) = ∅. Hence

(17.17) P
(
d(k,Ar) > x

)
= (1−pr)|B(k,x)| =

1

(2m)|B(k,x)|/sr .

Define r(x) = b(log log n) log |B(k, x)|c, then clearly 1 ≤ r(x) ≤ m. Formula (17.17)
implies that

(17.18)
1

4m
< P

(
d(k,Ar(x)) > x

)
≤ 1

2m
.

There is a specific value of r that belongs to at least a 1/m fraction of all x values,
and so there are two values 0 ≤ x1 < x2 ≤ δ with r(x1) = r(x2) = r and x2 ≥
x1 +δ/m. By (17.18), we have

P
(
d(k,Ar) ≥ x2

)
≥ 1

4m
,

and

P
(
d(k,Ar) ≥ δ

)
≤ P

(
d(k,Ar) ≥ x2

)
≤ 1

2m
.

The following claim is the main step in the proof.
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Claim 2. There are integers r1, . . . , rk−1 ∈ [m] such that the matrix

(17.19) M =


1 d(1, Ar1) . . . d(1, Ark−1

)
1 d(2, Ar1) . . . d(2, Ark−1

)
...

...
1 d(k,Ar1) . . . d(k,Ark−1

)


satisfies

E
(
|det(M)|

)
≥ voltr(S)

(16m)k
.

To prove this claim, we use induction on k. For k = 1 the assertion is trivial.
Let k > 1 and S′ = S \k. By induction, we have a choice of r1, . . . , rk−2 ∈ [m] so
that

(17.20) E
(
|det(M ′)|

)
≥ voltr(S

′)

(16m)k−1
,

where M ′ is the matrix constructed by (17.19) for S′. We may assume (rearranging
the rows if necessary) that det(M ′) > 0.

Consider the numbers x1, x2 and r from Claim 1, and define rk−1 = r. Ex-
panding det(M) by its last column, we get

det(M) =

k∑
j=1

(−1)k−jd(uj , Ar) det(M jk),

where M jk is the submatrix of M obtained by deleting row j and the last column
k. We can write this as

det(M) = d(k,Ar) det(M ′)+Y,

where Y is the sum of the first k−1 terms above. Here det(M ′) and d(k,Ar) are
independent random variables, but Y is not independent of either one of them.

Recall the proof of Theorem 17.7: there we forced independence by cutting off
the outliers: we replaced the numbers d(j, Ar) by min{δ, d(j, Ar)}. Here we want
to do something similar, but just cutting off the tail would not work: while this
did not increase the distances in the case k = 2, the volumes (determinants) could
increase or decrease for k ≥ 3. So we have to use a more tricky way to force some
degree of independence of the distances from various given points.

Let X = min{δ, d(k,Ar)}, and let W be the event that Bj ∩Ar 6= ∅ for all
j ≤ k−1. This event is independent of X, since X depends only on the choice of
Ar inside Bk, but the event W depends only on how Ar is chosen outside Bk, since
Bj ∩Bk = ∅. Furthermore, if we condition on W , then Y will be independent of X,
because under this condition d(j, Ar) depends only on the choice of Ar outside Bk
for j < k, and the random variable det(M jk) is independent of the choice of Ar.

Next we show that, conditioning on W , with probability at least 1/(4m), we
have

(17.21) |det(M)| ≥ δ

2m
det(M ′).

First, let us condition on W and also on the event Z = (Y ≥ det(M ′)(x1 +x2)/2).
We know by Claim 1 that d(k,Ar) ≥ x2 with probability at least 1/(4m); in this
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case, X ≥ x2 also holds. The random variable X is independent of events W and
Z, so even under these conditions, we have

d(k,Ar) ≥ X ≥ x2 ≥
x1 +x2

2
+

δ

2m

with probability at least 1/(4m). If this occurs, then

det(M) = d(k,Ar) det(M ′)+Y ≥ d(k,Ar) det(M ′)− x1 +x2

2
det(M ′)

≥
(
x2−

x1 +x2

2

)
det(M ′) ≥ δ

2m
|det(M ′)|.

Conditioning on W and on ¬Z = (Y < det(M ′)(x1 +x2)/2), we conclude similarly:
with probability at least 1/(4m),

det(M) = d(k,Ar) det(M ′)+Y ≤ d(k,Ar) det(M ′)− x1 +x2

2
det(M ′)

≤
(
x1−

x1 +x2

2

)
det(M ′) ≤ − δ

2m
|det(M ′)|.

This proves (17.21). Hence

E
(
|det(M)|

∣∣ W ) ≥ 1

4m

δ

2m
|det(M ′)| = d(k, S′)

8m2

voltr(S
′)

(16m2)k−1

≥ 2
voltr(S)

(16m2)k
.

To conclude, we use that

E
(
|det(M)|

)
= E

(
|det(M)|

∣∣ W )P (W )+E
(
|det(M)|

∣∣ ¬W )(1−P (W )
)

≥ E
(
|det(M)|

∣∣ W )P (W ) ≥ 2
voltr(S)

(16m)k
P (W ).

To estimate the probability of W , we use that |Bj | ≥ |Bk|, and so

P
(
d(j, Ar) > δ

)
= P(Bj ∩Ar = ∅) ≤ P(Bk∩Ar = ∅) = P(d(k,Ar) > δ) <

1

2m
.

Thus

P(W ) ≥ 1−
k∑
j=1

P
(
d(j, Ar) > δ

)
≥ 1

2
.

This completes the proof of Claim 2.

Now we are ready to complete the proof. Let A1
r, . . . , A

N
r be random subsets

with density pr. We assume that the sets Ajr are independently generated for
j = 1, . . . , N, r = 1, . . . ,m. To each point u ∈ V , we associate the row vector

yu =
1√
mN

(
1, d(u,Ajr) : j = 1, . . . , N, r = 1, . . . ,m

)
.

Let S ⊆ V , |S| = k, and assume again that S = [k]. Consider the k×(m+1)
matrix Y with rows y1, . . . ,yk. Let A be the family of k×k submatrices of Y
containing the first column. By the Binet–Cauchy Formula (A.6) and elementary
determinant transformations, we get

(17.22) voly(S)2 =
1

(k−1)!

∑
U∈A

det(U)2.
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By Claim 2, there is a subset U such that

E(|det(U)|) ≥ 1

(mN)k/2
voltr(S)

(16m)k
.

There are, in fact, not only one, but at least N(N−1) · · · (N−k+1) such sets.
(The reason why not quite Nk is because the integers r1, . . . , rk in Claim 2 may
not be different, but we need to pick different columns to insure probabilistic inde-
pendence.) Hence

(17.23) E(voly(S)2) ≥ N(N−1) · · · (N−k+1)

Nk

voltr(S)2

256m6k
.

As N → ∞, the random variable voly(S)2 will get more and more concentrated
around its expectation, by (17.22) and the Law of Large Numbers. (The terms
in (17.22) are not all independent, but can be partitioned into substantially large
independent subfamilies; we leave verification of the details to the reader). The
first factor in (17.23) tends to 1. So if N is large enough, then

|voly(S)| ≥ voltr(S)

20m3k
.

with probability arbitrarily close to 1. It follows that this inequality holds for all
sets S ∈

(
V
k

)
with high probability.

The last step needed is to reduce the dimension, using Lemma 17.15. �

17.4. Bandwidth

The theory of volume-respecting representations described above was devel-
oped in [Feige 1998] in order to design an efficient approximation algorithm for the
bandwidth of a graph. This application is described in this section. I believe that
this deep theory will have further important applications.

17.4.1. Bandwidth and density. Let G be a simple graph, and let d denote
the graph-distance in G. The bandwidth wbd(G) of a graph G is defined as the
smallest integer b such that the nodes of G can be labeled by 1, . . . , n so that
|i−j| ≤ b for every edge ij. The name refers to the fact that for this labeling of the
nodes, all 1’s in the adjacency matrix will be contained in a band of width 2b+1
around the main diagonal.

The bandwidth of a graph is NP-hard to compute, or even to approximate
within a constant factor [Dubey–Feige–Unger 2010]. As an application of volume-
respecting embeddings, we describe an algorithm that finds a polylogarithmic ap-
proximation of the bandwidth in polynomial time [Feige 1998]. The ordering of the
nodes which approximates the bandwidth will be obtained by projecting the rep-
resentation onto a random line, in a way reminiscent of the Goemans–Williamson
algorithm in Section 13.3.

We need some preliminary observations about the bandwidth. It is clear that
if there is a node of degree D, then wbd(G) ≥ D/2. More generally, if there are
k nodes of the graph at graph-distance at most t from a node v (not counting v),
then wbd(G) ≥ k/(2t). Let B(v, t) denote the set of elements at distance at most t
from v, and define the local density of the graph G by

dloc = dloc(G) = max
v,t

|B(v, t)|−1

t
.
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Then

(17.24) wbd ≥
1

2
dloc.

It is not hard to see that equality does not hold here, and the ratio wbd/dloc can
be as large as log n (see Example 17.18 below).

We need the following related quantity, which we call the harmonic density:

(17.25) dhar = dhar(G) = max
v∈V

∑
u∈V \v

1

d(u, v)
.

The following inequality establishes a relationship between these two density no-
tions.

(17.26) dloc ≤ dhar ≤ (1+lnn)dloc.

Indeed, for an appropriate t > 0 and v ∈ V ,

dloc =
|B(v, t)|−1

t
≤

∑
u∈B(v,t)\v

1

d(u, v)
≤
∑
u∈V \v

1

d(u, v)
≤ dhar.

On the other hand, dhar is the sum of n−1 positive numbers, among which the
k-th largest is at most dloc/k by the definition of the local density. Hence

dhar ≤
n−1∑
k=1

dloc

k
≤
(n−1∑
k=1

1

k

)
dloc,

which proves the second inequality in (17.26).
The following examples show that the above bounds cannot be improved (ex-

cept for the constants), but also that the bandwidth can be a quite tricky quantity.

Example 17.18. Consider the path Pn on n nodes. Clearly wbd(Pn) = 1. Since
|B(v, t)| ≤ 2t+1, and equality holds for t < n/2, we have dloc(Pn) = 2. Thus
inequality (17.24) is sharp for paths. Furthermore, for odd n and the midpoint v
of the path, we have

dhar =
∑
u∈V \v

1

d(u, v)
= 2

(n−1)/2∑
k=1

1

k
∼ 2 lnn,

showing that the upper bound in (17.26) is sharp up to a constant factor. �
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0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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✂ ✄
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✂ ✄
✂ ✄
✂ ✄
✂ ✄
✂ ✄
✂ ✄
✂ ✄
✂ ✄
✂ ✄
☎ ✆

Figure 17.4. Optimal labeling of a binary tree for bandwidth,
specified as a labeling and as a matrix.
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Example 17.19. Let Tr denote the full binary tree of depth r. This tree has
n = 2r+1−1 nodes, and if v denotes the root, then |B(v, r)| = n; it is easy to see
that this is the choice of v and r defining the local density, so

dloc =
n−1

r
=

2r+1−2

r
and wbd ≥

dloc

2
=
n−1

2r
=

2r−1

r
.

The bandwidth of d(n−1)(2r)e can indeed be realized [Chung 1997] (see Figure
17.4, and also Exercise 17.8). The harmonic density is given by

dhar =

r∑
j=1

2j
1

j
∼ 2r+1

r
.

This shows that the lower bound in (17.26) is asymptotically sharp. �

We conclude this preparation for the main result with a couple of inequalities
relating the harmonic density to the tree-volume. Specializing from the previous
section, we recall the notation ΠT =

∏
uv∈E(T ) d(u, v) for a tree T on some nodes

of the graph G (not necessarily a subgraph of G).

Lemma 17.20. Let G be a graph on n nodes and T , a tree on k nodes. Then∑
φ:V (T )↪→V

1

Πφ(T )
≤ ndhar(G)k−1.

Proof. This is clear for k = 1. Let k > 1. Select any leaf v of T , denote its
neighbor by u, and set T ′ = T \v and φ′ = φ|V (T ′). Then∑

φ

1

Πφ(T )
=
∑
φ′

∑
x∈V \φ(T ′)

1

Πφ(T ′)d
(
x, φ′(u)

) ≤∑
φ′

1

Πφ(T ′)
dhar.

From this the lemma follows by induction. �

As an application of this bound, we prove:

Lemma 17.21. For every graph G on n points,∑
S∈(V

k)

1

voltr(S)
≤ (k−1)!n (4dhar)

k−1.

Proof. We use the elementary fact that the number of isomorphism types of
trees on k nodes is bounded by 4k−1 (see e.g. [Lovász 1991], Problem 4.18). So
summing the bound in Lemma 17.20 over all isomorphism types of trees, we get∑

T

∑
φ:V (T )↪→V

1

Πφ(T )
≤ n(4dhar)

k−1,

and hence∑
S∈(V

k)

1

voltr(S)
≤
∑
S∈(V

k)

∑
T tree

V (T )=S

(k−1)!

ΠT
= (k−1)!

∑
T

∑
φ:V (T )↪→V

1

Πφ(T )

≤ (k−1)!n (4dhar)
k−1. �
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17.4.2. Approximating the bandwidth. Now we come to the main theo-
rem describing the algorithm to get an approximation of the bandwidth of a graph.

Theorem 17.22. Let G be a graph on n nodes, let η ≥ 1, let k = dlnne, and let
x : V → Rm be a contractive vector labeling such that volx(S) ≥ η1−kvoltr(S) for
every k-set S ⊆ V . Project the representing points onto a random line L through
the origin, and label the nodes by 1, . . . , n according to the order of their projections
on the line. Then with high probability, |i−j| ≤ 480ηdhar log n for every edge ij.

Proof. Let yi be the projection of xi on L. Let ij be an edge; since x is
contractive we have |xi−xj | ≤ 1, and hence by (C.17) it follows that with high
probability, |yi−yj | ≤ 2|xi−xj |/

√
m ≤ 2/

√
m for all edges ij. We will assume

below that this is indeed the case.
We call a set S ⊆ V squeezed, if diam

(
y(S)

)
≤ 2/

√
m. So every edge is

squeezed; but we are interested in squeezed k-sets, which we count in two different
ways. Let X be the number of squeezed k-sets.

By (C.22) (with m in place of n, k−1 in place of d, and 2/
√
m in place of S),

we have for every k-set S,

(17.27) P(S is squeezed) ≤
(m−k+1)π2

k−1πm−k+1

m(k+1)/2πm2k−1volx(S)
≤ ∗∗∗

Using Lemma 17.21, we can bound the expected number of squeezed k-sets.
Since n ≤ 3k by the choice of k, we get

E(X) ≤
( 40η

k−1

)k−1

k
∑
S∈(V

k)

1

voltr(S)

≤
( 40η

k−1

)k−1

(k−1)!n(4dhar)
k−1 ≤ (240ηdhar)

k−1.

On the other hand, let ij ∈ E (i < j). Every k-subset of {i, i+1, . . . , j} is squeezed,
and so

X ≥
(
j− i+1

k

)
>
(j− i

k

)k−1

(the last step is valid for j− i ≥ k−1, which we may assume), and comparing with
the upper bound, we get

E
((j− i

k

)k−1)
≤ (240ηdhar)

k−1.

Using Markov’s Inequality and taking (k−1)-st roots, we get with high probability
that

j− i ≤ 480ηdhark. �

As a consequence, we get that dloc approximates wbd up to a polylogarithmic
factor:

Corollary 17.23. For every graph with n points, its bandwidth and local density
satisfy

dloc ≤ wbd ≤ O
(
(log n)3

√
log log n

)
dloc.

Remark 17.24. We can generalize the notion of bandwidth to any finite metric
space (V, d): the parameter wbd = wbd(V, d) is the smallest real number a such that
there is a bijection f : V → [n] such that |f(i)−f(j)| ≤ a d(i, j) for all i, j ∈ V .
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It takes a minute to realize that this notion does generalize graph bandwidth: the
definition of bandwidth requires this condition only for the case when ij is an edge,
but this already implies that it holds for every pair of nodes due to the definition
of graph distance. (We do loose the motivation for the word “bandwidth”.)

Most of what we proved in this section extends to the more general setting of
finite metric spaces; see Exercises 17.11–17.13.

Exercise 17.1. Let (V, d) be a metric space. Prove that (V,
√
d) is a metric space.

Exercise 17.2. The graph metric C4 is `1-embeddable, but not `2-embeddable.

Exercise 17.3. The graph K2,3 is not `1-embeddable.

Exercise 17.4. A tree-metric is a graph metric defined by an edge-weighted tree.
Prove that every tree-metric is `1-embeddable.

Exercise 17.5. A metric space (V, d) is called hypermetric, if for every k ≥ 1,
every 2k+1 points p1, . . . , pk+1, q1, . . . , qk ∈ V satisfy∑

1≤i<j≤k+1

d(pi, pj)+
∑

1≤i<j≤k

d(qi, qj) ≤
∑

1≤i≤k+1
1≤j≤k

d(pi, qj).

Prove that every `1-embeddable metric is a hypermetric.

Exercise 17.6. Prove that every finite metric space (V, d) with n points has a

contractive vector-labeling x such that volx(V ) ≥ 21−n/2voltr(V ).

Exercise 17.7. Let (V, d) be a finite metric space and v ∈ V . Prove that (V, d)
is isometrically embeddable in a Euclidean space if and only if the (V \v)×(V \v)
matrix A defined by Aij = d(v, i)2 +d(v, j)2−d(i, j)2 is positive semidefinite.

Exercise 17.8. Prove that the bandwidth of the complete k-ary tree of depth r
is d(kr+1−k)/(2r(k−1))e.
Exercise 17.9. Let T be a spanning tree on a matrix space (V, d), and let i, j ∈ V ,
and let T1, . . . , Tk be the spanning trees that can be obtained from T by adding
the edge ij and deleting one of the other edges of the arising cycle. Prove that

1

Π(T )
≤ 1

π(T1)
+ · · ·+ 1

π(Tk)
.

Exercise 17.10. For every spanning tree T on a matrix space (V, d), we have

1

Π(T )
≤
∑
P

1

Π(P )
,

where P ranges over all spanning paths on V .

Exercise 17.11. Show how to construct for every finite metric space (V, d) an-
other finite metric space (V, d′) such that 1 ≤ d′(i, j) ≤ n and wbd(V, d) =
wbd(V, d′).

Exercise 17.12. Define the notions of local and harmonic densities for every
finite metric space, and prove that inequalities (17.24) and (17.26), and Lemmas
17.20 and 17.21 remain valid.

Exercise 17.13. Generalize Theorem 17.22 to finite metric spaces.



CHAPTER 18

Matching and Covering in Frameworks

In this chapter we study vector labelings from their purely linear algebraic
perspective—where only linear dependence and independence of the underlying
vectors play a role. Replacing “cardinality” by “rank” in an appropriate way, we
get generalizations of ordinary graph-theoretic parameters and properties that are
often quite meaningful and relevant. Furthermore, these results about frameworks
can be applied to purely graph-theoretic problems, where the vector-labeling is used
to encode information about other parts, or additional structure, of the graph.

We restrict our attention to the study of two basic notions in graph theory:
matchings (sets of pairwise disjoint edges) and node-covers (sets of nodes that
meet all edges). For a graph G, we denote by ν(G) its matching number, the maxi-
mum cardinality of a matching, and by τ(G) the node-cover number, the minimum
cardinality of a node-cover. It is clear that to cover the edges of a matching we
need to use different nodes, and hence

(18.1) ν(G) ≤ τ(G).

While these problems are in a sense dual to each other, their complexity is quite
different even for ordinary graphs: the matching problem is polynomially solvable,
while the node-cover problem is NP-hard.

The situation is similar for frameworks (G,v) where v : V → Rd. To avoid
some trivial complications, let us assume that the graph has no isolated nodes
and the node positions (vector labels) generate the whole space Rd. For S ⊆ V ,
we define v(S) = {vi : i ∈ S} and (whenever there is only one vector labeling
around) rk(S) = rk

(
v(S)

)
. The node-cover number τ(G,v) of a framework is the

minimum rank of a node-cover. A matching in (G,v) is a set of node-disjoint
edges such that all their endnodes are labeled by linearly independent vectors, i.e.,
rk(V (M)) = 2|M |. We denote by ν(G,v) the maximum cardinality of a matching.

Ordinary graphs can be considered as the special case when nodes are labeled
by linearly independent vectors. We denote such a vector labeling by u free (since
we are only concerned with the linear independence structure of the vector labels,
it does not matter which linearly independent set of vectors we use). It is easy to
check that τ(G,u free) = τ(G) and ν(G,u free) = ν(G).

The extension of inequality (18.1) to frameworks remains valid:

(18.2) ν(G,v) ≤ τ(G,v).

In this chapter, we formulate extensions of basic characterization results like
Kőnig’s and Tutte’s matching theorems to frameworks. Several of these results
are known from matroid theory, and have many applications in graph theory and
other combinatorial problems. The node-cover number τ is NP-hard even in the
case of ordinary graphs, so no similarly complete results can be expected; however,

345
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the geometric methods providing partial results will be important in the proof of a
classification theorem of cover-critical ordinary graphs (whose statement does not
involve vector labelings).

While the results on matchings are more complete and perhaps more important,
we start with a study of covering, since some results developed for covering will be
useful in the study of matchings.

Since only the linear structure is used, most of the considerations in this chapter
could be formulated over any field (or at least over any sufficiently large field).
Indeed, most elementary arguments would work over any matroid; however, two of
the main results (Theorems 18.8(b) and 18.15) do make use of the additional linear
structure provided by the underlying field.

Let us describe some examples of interesting matchings and coverings in frame-
works.

Example 18.1 (Branchings). Let G be a directed graph; we define an (unori-
ented) framework (H,v) as follows. For every edge e = ij ∈ E, we create two nodes
he and te of H, and connected them by an (unoriented) edge ê. We label he by the
unit vector v(he) = ej , and te by the difference v(te) = ej+n−ei+n.

In the framework (H,v), edges ê1, . . . , êk form a matching if and only if no
two of the edges e1, . . . , ek enters the same node of G (equivalently, the vectors
v(he) are linearly independent) and they form a forest in G in the unoriented sense
(equivalently, the vectors v(te) are linearly independent). Such a set of edges is
called a branching. It follows that ν(H,v) ≤ n−1; if equality holds for some set
of edges, then they form a spanning branching or arborescence: a spanning tree (in
the undirected sense) which has a root r so the branching contains a directed path
from the root to every other node. So every matching with n−1 edges in (H,v)
corresponds to a spanning branching in G, and vice versa. �

18.1. Cover-critical ordinary graphs

We start with recalling some basic facts about ordinary graphs and their node-
cover numbers. A graph G is called cover-critical, if deleting any edge from it,
τ(G) decreases. This is equivalent to saying that deleting any edge, α(G) increases,
and for this reason these graphs are often called α-critical. Since isolated nodes
play no role here, we will assume that cover-critical graphs have no isolated nodes.
These graphs have an interesting theory, initiated in [Erdős–Gallai 1961]. See also
[Berge 1973], [Lovász 1991], [Lovász–Plummer 1986].

There are some easy but very useful observations we can make. In a cover-
critical graph G every node v is contained in a minimum node-cover. Indeed, if we
delete v, the rest of the graph can be covered by τ(G)−1 nodes; adding v to this
set, we get a minimum node-cover containing v. It is just slightly more complicated
to see that every node is missed by some minimum node-cover.

For a cover-critical graph G, the following quantity, called its covering defect,
will play a crucial role: δ(G) = 2τ(G)−n = n−2α(G). The next theorem summa-
rizes some of the basic properties of cover-critical graphs.

Theorem 18.2. For every cover-critical graph G,

(a) [Erdős–Gallai 1961] δ(G) ≥ 0; in other words, n ≤ 2τ(G).

(b) [Erdős–Hajnal–Moon 1964] m ≤
(
τ(G)+1

2

)
.

(c) [Hajnal 1965] Every node has degree at most δ(G)+1.
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Figure 18.1. Some cover-critical graphs

These results will follow easily from more general considerations concerning
cover-critical frameworks.

Cover-critical graphs can be classified by their defect. Since a graph is cover-
critical if and only if each of its connected components are cover-critical, we may
restrict our attention to connected graphs. The only connected cover-critical graph
with δ = 0 is K2 [Erdős–Gallai 1961], and the only connected cover-critical graphs
with δ = 1 are odd cycles (this follows from Hajnal’s Theorem 18.2(c)).

The fact that all odd cycles are cover-critical with the same defect motivates
the following simple observation: if G′ is obtained from G by subdividing an edge
by two nodes, then G′ is cover-critical if and only if G is, and δ(G) = δ(G′). By
this fact, for δ ≥ 2 it suffices to describe those cover-critical graphs that do not
have two adjacent nodes of degree 2.

There is a slightly less trivial version of this observation: Let us split a node of a
graph G into two (both having positive degree), and connect both of them to a new
node. The resulting graph G′ is cover-critical if and only if G is, and δ(G) = δ(G′).
Together with Exercise 18.1, this implies that it is enough to describe connected
cover-critical graphs with minimum degree at least 3. Let us call these graphs basic
cover-critical.

There is only one basic cover-critical graph with δ = 2, namely K4

[Andrásfai 1967], and four basic cover-critical graphs with δ = 3, the last four
graphs in Figure 18.1 [Surányi 1973]. This motivates the following theorem
[Lovász 1978]:

Theorem 18.3. For every δ ≥ 2, the number of basic cover-critical graphs with
δ(G) = δ is finite.

The proof will show that every basic cover-critical graph has at most 23δ2 nodes.
(This bound is probably very rough.) The proof uses a generalization of the notion
of cover-critical graphs to frameworks, and is postponed to section 18.2.4.

18.2. Covering in frameworks

18.2.1. Extending the rank function. Our goal is to generalize the notions
of covers and criticality to frameworks [Lovász 1977], [Lovász 1978]. We start with
extending the notion of rank from sets to vectors.

Let u : V → Rd be a vector labeling of a finite set V . We can think of the rank
function rk(S) = dim

(
u(S)

)
as a function defined on the subsets of V , but also as
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a function defined on the set of all 0-1 vectors in RV . We extend the definition to
all vectors w ∈ RV+ as follows. There is a unique decomposition

(18.3) w =

t∑
i=1

αi1Si , αi > 0, S1 ⊂ S2 ⊂ · · · ⊂ St.

(Here t = 0 if w = 0.) To construct this decomposition, we let S1 be the set of
nodes with maximal wi, and let α1 be the difference this maximal wi and the next
largest entry of w. Then w−α11S1 has more maximal entries. We repeat this until
only zero entries are left. In other words, we choose the level-sets of w for the sets
Si.

Using this decomposition, we define

(18.4) rk(w) =

t∑
i=1

αirk(Si).

If w is 0-1 valued, then this is just the rank of its support.
The decomposition (18.3) is unique, but it does not remain unique if we drop

the condition that the sets Si form a chain. In other words, we have many decom-
positions of the form

(18.5) w =

t∑
i=1

αi1Ti
, αi > 0.

For such decompositions, we can still assert an inequality:

Lemma 18.4. For any decomposition of a vector w ∈ RV+ of the form (18.5), we
have rk(w) ≤

∑
i αirk(Ti).

In other words, among all representations of w in the form (18.5), the value∑
i αirk(Ti) is minimized when the sets Ti form a chain.

Proof. The proof is a straightforward application of a technique called “un-
crossing”. Suppose that there are two incomparable sets Ti and Tj . Let, say,
αi ≤ αj . Let us remove Ti from the family, but add Ti∩Tj and Ti∪Tj with co-
efficient αi, while keeping Tj with coefficient αj−αi. (If either one of Ti∩Tj and
Ti∪Tj was already used in the representation, we add αi to their coefficient. If
αi = αj , we remove Tj as well.) Since

1Ti
+1Tj

= 1Ti∩Tj
+1Ti∪Tj

,

this way we get a expression for the same vector w, and since

rk(Ti)+rk(Tj) ≥ rk(Ti∩Tj)+rk(Ti∪Tj),
this representation is not worse than the one we started with.

To conclude the proof, it suffices to argue that repeatedly performing this
uncrossing operation, we end up with a representation where the sets Ti form
a chain in a finite number of steps. This follows from the observation that the
quantity

∑
i αi|Ti|2 is strictly increasing at each uncrossing step. �

Corollary 18.5. The extended rank function rk : [0, 1]V → R is homogeneous,
subadditive and convex.

This corollary can be easily derived from the results of [Edmonds 1970]; this
form was stated in [Lovász 1983a].
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Proof. It is clear that rk is homogeneous. To prove that it is subadditive, we
prove that for w,w1,w2 : [0, 1]V → R and λ > 0,

rk(λw) = λrk(w) (λ ≥ 0), rk(w1 +w2) ≤ rk(w1)+rk(w2).

The first equation is trivial, since the same sets Si occur in the decomposition (18.3)
of w and λw. If we substitute for w1 and w2 their representation (18.3), we get
a decomposition of w1 +w2 of the form (18.5), and so the inequality follows by
Lemma 18.4.

Finally, convexity is a consequence of homogeneity and subadditivity. �

18.2.2. Multiple covers. A k-cover in an ordinary graph is a weighting w
of nodes by nonnegative integers such that for every edge, the sum of weights of
the two endpoints is at least k. For a node-cover T , the indicator function 1T is a
1-cover (and every minimal 1-cover arises this way).

It is a bit more complicated to describe 2-covers. For every set T ⊆ V , define
the weighting

2T = 1T +1N(V \T ).

(Recall that N(V \T ) is the set of all nodes having a neighbor in V \T , so it may
contain nodes of T as well as nodes of V \T ). We claim that 2T is a 2-cover of G
for every set T ⊆ V (Figure 18.2). If both endpoints of an edge are covered by T ,
then this edge is covered twice. If one of them is in T , but the other is one not, then
the first endpoint is in N(V \T ), and so it has weight 2 in 2T . If neither endpoint
is contained in T , then both of them are covered by N(V \T ).

2 1 1 2 2 

1 2 1 2 0 

Figure 18.2. A set T of nodes and the 2-cover 2T constructed
from it.

If T = V , then 2T = 1V . The same holds of T = ∅, provided G has no
isolated nodes. This illustrates the important fact that 2T does not depend on T
in any monotone way. If T is a node-cover, then we have N(V \T ) ⊆ T , and so the
support of 2T is T . If T is a minimal node-cover (with respect to inclusion), then
N(V \T ) = T , and so 2T = 21T .

If we allow the trivial operation of increasing some of the weights, then this
construction will produce all 2-covers. Indeed, for a 2-cover w, let T be its support.
Then T must be a node-cover, and all nodes in N(V \T ) must have weight 2, so
w ≥ 2T . This implies that w is a 2-cover if and only if there is a set T such that
w ≥ 2T . If the 2-cover w is minimal (i.e., no node-weight can be decreased and still
have a 2-cover), then w = 2T for some set T . This set T is by no means unique;
for example, it can always be chosen from among node-covers.

One would expect that to describe k-covers for larger values of k becomes
increasingly complicated, perhaps impossible. But in fact knowing 1-covers and
2-covers gives us all.

The sum of a k-cover and an l-cover is, trivially, a (k+ l)-cover. A 2-cover is
not necessarily the sum of two 1-covers (for example, the all-1 weighting of the
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nodes of a triangle). But every 3-cover is the sum of a 2-cover and a 1-cover; more
generally, for k ≥ 2 every k-cover w = (wi : i ∈ V ) can be decomposed into the
sum of a 2-cover w′ and a (k−2)-cover w′′ by the following simple formulas:

(18.6) w′i =


2, if wi ≥ k,
1, if 1 ≤ wi ≤ k−1,

0, if wi = 0,

w′′i = wi−w′i.

It is easy to check that w′ is a 2-cover and w′′ is a (k−2)-cover. Repeating this
argument, we can decompose every k-cover as a sum of bk/2c 2-covers and at most
one 1-cover (Figure 18.3).

5 1 4 2 3 

0 5 2 3 2 

2 1 1 1 1 

0 2 1 1 1 0 2 1 1 1 0 1 0 1 0 

1 0 1 0 1 2 0 2 1 1 

Figure 18.3. Decomposing a 5-cover into two 2-covers and a 1-cover.

The notion of k-covers is independent of the vector labeling, but the geometry
enters when we replace “size” by “rank”. Recalling the definition (18.4), we see
that the rank of the 2-cover defined by a node-cover T is

(18.7) rk(2T ) = rk(T )+rk
(
N(V \T )

)
.

In the decomposition (18.6) of a k-cover, every level-set of w′ or w′′ is a level-set
of w, and hence we can use the level sets of w to define the ranks of w′ and w′′

(some of them may have coefficient 0). This implies that

(18.8) rk(w′)+rk(w′′) = rk(w).

The k-cover number τk(G,v) for a framework (G,v) is defined as the minimum
rank of any k-cover. For the (most important) case of k = 1, we set τ(G,v) =
τ1(G,v). In other words, τ(G,v) is the minimum dimension of a linear subspace
L ⊆ Rd such that at least one endpoint of every edge of G is labeled by a vector in
L.

Since the sum of a k-cover and an m-cover is a (k+m)-cover, we have
τk+m(G,v) ≤ τk(G,v)+τm(G,v); in particular

(18.9) τk(G,v) ≤ kτ(G,v).

This implies that the difference

δ(G,v) = 2τ(G,v)−τ2(G,v)

is nonnegative. We call this quantity the covering defect of the framework (G,v).
(This quantity could be described as an “integrality gap” in integer programming;
cf. Exercise 18.4.) The covering defect is defined for all frameworks, in particular
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for ordinary graphs, and it is not hard to see that δ(G,u free) = δ(G) for all cover-
critical graphs G.

The following simple lemma is the key to the study of cover-critical graphs and
frameworks.

Lemma 18.6. Let S be any node-cover in a framework (G,v), and let T be a
node-cover with minimum rank. Then rk(2S∪T ) ≤ rk(2S).

Proof. If we decompose the 3-cover w = 1T +2S by (18.6), we get w =
w′+w′′, where w′ = 2S∪T is a 2-cover and w′′ is a 1-cover. Using the convexity
of the rank function and (18.8), we get

rk(T )+rk(2S) ≥ rk(w) = rk(2S∪T )+rk(w′′).

Since rk(T ) ≤ rk(w′′) by the minimality of rk(T ), this implies the lemma. �

Applying the lemma repeatedly, we get that if S is a node-cover, and T1, . . . , Tk
are node-covers with minimum rank, then

(18.10) rk(2S∪T1∪···∪Tk
) ≤ rk(2S).

This inequality will be most useful when there are many node-covers with minimum
rank, which will happen in the “cover-critical” case, to be discussed next.

18.2.3. Cover-critical frameworks. A framework is cover-critical, if delet-
ing any node or edge, its node-cover number decreases. This condition implies, in
particular, that the graph has no isolated nodes, and no node is labeled by the zero
vector.

If (G,v) is cover-critical, and we project the representing vectors onto a generic
τ(G)-dimensional space, then ranks up to τ(G) don’t change, and hence the result-
ing framework is still cover-critical. Hence we could always assume that the repre-
sentation is in τ(G)-dimensional space. Informally, there is no hyperplane meeting
every edge, but deleting any edge, there will be. (This reduction is, however, not
always convenient.)

Figure 18.4. Some cover-critical frameworks. The figures are
drawn in projective plane, so that 1-dimensional linear subspaces
are depicted as points, 2-dimensional linear subspaces are depicted
as lines etc. The reader is recommended to use this way of drawing
frameworks to follow the arguments in this chapter.
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A framework (G,u free) is cover-critical if and only if G is cover-critical as an
ordinary graph. This way the theory of cover-critical frameworks generalizes the
theory of cover-critical graphs.

Some basic results concerning cover-critical graphs can be generalized to the
vector-labeled case without difficulty. For example, every node is contained in a
minimum rank node-cover, and missed by another minimum rank node-cover.

There are properties that are trivial in the unlabeled case, but need a proof in
our case.

Lemma 18.7. In a cover-critical framework (G,v), the neighbors of any node are
represented by linearly independent vectors.

Proof. Let b ∈ N(a). By criticality, τ(G\ab,v) < τ(G,v), and hence there is
a (τ(G,v)−1)-dimensional subspace L that contains one of the endnode positions
of every edge except ab. Clearly, va,vb /∈ L (otherwise L would be a node-cover
of G). Hence L must contain vj for every j ∈ N(a), j 6= b. It follows that
vb /∈ lin

{
vj : j ∈ N(a)\{b}

}
. This holds for every b ∈ N(a), showing that the

vectors vb (b ∈ N(a)) are linearly independent. �

The last lemma implies that the degree of each node is at most rk(V ). We
are going to prove a much sharper bound on the degrees, as part of the following
generalization of Theorem 18.2 to frameworks. For a ∈ V , set εa = rk(V )−rk(V \
{a}). In other words, εa = 1 if va is linearly independent of the vectors {vj : j 6= a},
and εa = 0 otherwise.

Theorem 18.8. Let (G,v) be a cover-critical framework and a ∈ V . Then

(a) rk(V ) = τ2(G,v).

(b) m ≤
(
τ(G,v)+1

2

)
.

(c) deg(a) ≤ δ(G,v)+εa.

Proof. (a) follows easily from our considerations about multiple covers. Since
V is a 2-cover, we have τ2(G,v) ≤ rk(V ). On the other hand, let T1, . . . , Tk
be all minimum node-covers, and S, a further node-cover. Then, as remarked,
T1∪· · ·∪Tk = V , and so by (18.10), we have

rk(2S) ≥ rk(2S∪T1∪···∪Tk
) = rk(2V ) = rk(V ).

This proves that rk(V ) = τ2(G,v).

(b) Let (G,v) be a cover-critical framework in dimension d. We may assume
that d = τ(G,v). Consider the matrices Mij = viv

T
j +vjv

T
i (ij ∈ E). We claim

that these matrices are linearly independent.
For any edge ab, the graph G\ab has a node-cover T that does not span the

space Rd; let u ∈ Rd (u 6= 0) be orthogonal to the span of T . Clearly uTva 6= 0
and uTvb 6= 0, else {j ∈ V : uTvj} = 0 would be a set covering all edges of G of
rank d−1 < τ(G). Then

uTMiju = uTviv
T
ju+uTvjv

T
iu = 2(uTvi)(u

Tvj) = 0

for every edge ij 6= ab (since one of i and j must be in T ), but

uTMabu = 2(uTva)(uTvb) 6= 0.
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This shows that Mab is linearly independent of the matrices Mij , ij 6= ab. Since ab
was an arbitrary edge, this implies that the matrices Mij are linearly independent.
Hence their number cannot be larger than the dimension of the space of symmetric
d×d matrices, which is

(
d+1

2

)
.

(c) Let T ⊆ V \a be a node-cover. We claim that

(18.11) deg(a) ≤ rk(2T )−rk(V )+εa.

Applying this to an optimal node-cover not containing a, and using (a), assertion
(c) of the theorem will follow. We prove this inequality by induction on |V \T |.

Let S1, . . . , Sk be all node-covers of minimum rank that do not contain a, and
let T ′ = T ∪S1∪· · ·∪Sk. By Lemma 18.6, we have rk(2T ′) ≤ rk(2T ).

If T ′ = V \a, then 2T ′ = 1T ′+1N(a), and so by Lemma 18.7,

deg(a) = rk
(
N(a)

)
= rk(2T ′)−rk(T ′) ≤ rk(2T )−rk(V )+εa,

and we are done. So suppose that A = V \T ′ 6= {a}, and so B = A\a is nonempty.
Note that A and B are stable sets of nodes.

Claim. Let i ∈ N(a). Then i /∈ N(B), and vi is linearly independent of the set
v(N(A)\ i).

Indeed, by the cover-critical property of (G,v), the framework (G\ai,v) has
a node-cover Z with rank τ(G,v)−1. Clearly va and vi are linearly independent
of v(Z). The set Z∪{i} is a node-cover of G with minimum rank, and hence it is
one of the sets Sj . By the definition of A, it follows that Z∩A = ∅. Since Z covers
all edges except ai, there is no edge connecting i to B, and N(A)\ i ⊆ Z. So vi is
linearly independent of v(N(A)\ i). This proves the Claim.

The Claim implies that rk
(
N(A)

)
= rk

(
N(B)

)
+deg(a). Let b ∈ B. Applying

(18.11) with V \B in place of T (which we can do by the induction hypothesis), we
get

deg(b) ≤ rk(2V \B)−rk(V )+εb = rk(V \B)+rk
(
N(B)

)
−rk(V )+εb.

Since deg(b) ≥ 1 and rk(V \B) ≤ rk(V \A)+1, this implies that rk
(
N(B)

)
≥

rk(V )−rk(V \A)−εb, and hence

deg(a) = rk
(
N(A)

)
−rk

(
N(B)

)
≤ rk

(
N(A)

)
+rk(V \A)−rk(V )+εb

= rk(2T ′)−rk(V )+εb ≤ rk(2T )−rk(V )+εb.

We are done, unless εa = 0 and εb = 1 for all b ∈ B. In this latter case va
depends linearly on

{
vj : j ∈ V \a

}
, but in this dependence the elements of B

cannot be involved. So va depends linearly on {vj : j ∈ V \A}. This shows that
rk(V \B) = rk(V \A), and we gain 1 in the above computation, proving (18.11). �

Assertion (a) implies that the set V is an optimal 2-cover, and

(18.12) rk(V ) ≤ 2τ(G,v).

If equality holds in (18.12), then part (c) of the theorem implies that deg(a) = 1 and
εa = 1 for every node a, and so G is a matching. This characterizes cover-critical
frameworks with δ = 0.

Theorem 18.8(b) generalizes Theorem 18.2(b), giving a good upper bound on
the number of edges. What about the number of nodes? Since we do not allow
isolated nodes, a cover-critical framework in Rd can have at most d(d+1) nodes
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by Theorem 18.8(b). One cannot say more in general, since from every cover-
critical framework we can construct another one by splitting every node to nodes
of degree 1, labeled by the same vector. From the complete (d+1)-graph with the
free labeling, we get a framework (G,v) with d(d+1) nodes and τ(G,v) = d.

The next step should be to generalize Theorem 18.3 to frameworks. However, it
seems that the structure of cover-critical frameworks can be much more complicated
than the structure of cover-critical ordinary graphs, and a classification theorem
seems to be out of reach. But, somewhat surprisingly, Theorem 18.3 and some
other results about “ordinary” cover-critical graphs will be proved using vector-
labelings.

Before returning to ordinary graphs, we need a couple of technical lemmas,
nothing deep, but involving some case-distinction. The first one analyzes how
changing the label of a single node in certain ways influences the cover-critical
property. Given a linear subspace L ⊆ Rd and a finite set S ⊂ Rd, we say that a
point x ∈ L is in general position on L relative to S, if x ∈ lin(S′) for some S′ ⊆ S
only if L ⊆ lin(S′). It is clear every subspace contains a point in general position
relative to any finite set.

Lemma 18.9. Let (G,v) be a framework in Rd, let j ∈ V , and construct a new
labeling v̄ by replacing vj by a vector v̄j in general position on lin

(
v(N(j))

)
relative

to v(V \j) (we keep every other position). Then τ(G, v̄) ≥ τ(G,v). If, in addition,
the original label vj is in general position in Rd relative to v(V \j), then τ(G, v̄) =
τ(G,v). If, in addition, (G,v) is cover-critical, then (G, v̄) is cover-critical as well.

Proof. Let T be a node-cover of G for which rk
(
v̄(T )

)
is minimal. If

rk
(
v(T )

)
≤ rk

(
v̄(T )

)
, then τ(G,v) = rk

(
v(T )

)
≤ rk

(
v̄(T )

)
≤ τ(G, v̄), and we are

done. So suppose that rk
(
v̄(T )

)
< rk

(
v(T )

)
, then j ∈ T and v̄j ∈ lin

(
v(T \j)

)
.

By the assumption that v̄j is in general position on lin
(
v(N(j))

)
, it follows that

lin
(
v(N(j))

)
⊆ lin

(
v(T \j)

)
. But then T ′ = T \j∪N(j) is a node-cover of G with

rk
(
v(T ′)

)
= rk

(
v(T \j)

)
≤ rk

(
v̄(T )

)
= τ(G, v̄), a contradiction.

Now suppose that vj is in general position relative to v(V \j), and let T be a
node-cover ofG for which rk

(
v(T )

)
is minimal. If j /∈ T , then τ(G, v̄) ≤ rk

(
v̄(T )

)
=

rk
(
v(T )

)
= τ(G,v). Suppose that j ∈ T . By the assumption about vj , we have

either vj /∈ lin
(
v(T \j)

)
, or lin

(
v(T \j)

)
= lin

(
v(V \j)

)
. In the first case,

τ(G, v̄) ≤ rk
(
v̄(T )

)
≤ rk

(
v(T \j)

)
+1 = rk

(
v(T )

)
= τ(G,v).

In the second,

τ(G, v̄) ≤ rk
(
v(V \j)

)
= rk

(
v(T \j)

)
≤ rk

(
v(T )

)
= τ(G,v).

Finally, suppose that G is cover-critical, and let e ∈ E. If e is not incident with
j, then the same argument as above gives that τ(G\e, v̄) = τ(G\e,v) < τ(G,v) =
τ(G, v̄). If e is incident with j, then a node-cover T of G\e with rk

(
v(T )

)
< τ(G,v)

cannot contain j, and hence

τ(G\e, v̄) ≤ rk
(
v̄(T )

)
= rk

(
v(T )

)
< τ(G,v) = τ(G, v̄). �

The second technical lemma deals with conditions under which deleting a node
preserves the cover-critical property.

Lemma 18.10. Let (G,v) be a framework, and let j be a node such that vj ∈
lin
(
v(N(j))

)
. Let v′ be the orthogonal projection of v onto the hyperplane v⊥j .
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Then τ(G\j,v′) = τ(G,v)−1. If, in addition, (G,v) is cover-critical, then so is
(G\j,v′).

Proof. Let T be a node-cover of G\j with rk
(
v′(T )

)
= τ(G\j,v′). Then

T ∪{j} is a node-cover of G with rk
(
v(T )

)
≤ rk

(
v′(T )

)
+1, showing that τ(G,v) ≤

τ(G\j,v′)+1.
Conversely, let T be a node-cover of G with rk

(
v(T )

)
= τ(G,v). The node-

cover T contains either j or N(j). In both cases, vj ∈ lin
(
v(T )

)
. Since T \j is a

node-cover in G\j, this implies that

τ(G\j,v′) ≤ rk
(
v′(T \j)

)
= rk

(
v′(T )

)
< rk

(
v(T )

)
= τ(G,v).

Finally, assume that (G,v) is cover-critical, and let e ∈ E(G\j). There exists
a node-cover T of G\e with rk

(
v(T )

)
= τ(G,v)−1. It follows as above that

rk
(
v′(T )

)
= τ(G,v)−2 = τ(G\j,v′)−1. This shows that (G\j,v′) is cover-

critical. �

18.2.4. Classifying cover-critical graphs. Combining the previous lemmas
with Theorem 18.8, we get an important corollary for ordinary graphs, saying that
a large cover-critical graph with small cover defect is almost bipartite: a minimal
cover T spans a small number of edges only, while its complement is, of course, a
stable set.

Corollary 18.11. Let G be a cover-critical graph, and let T ⊆ V be a node-cover.
Then

|E(G[T ])| ≤
(
τ(G)+ |T |−n+1

2

)
.

In particular, if T is a minimum node-cover, then

|E(G[T ])| ≤
(
δ(G)+1

2

)
.

Proof. Let A = V \T . Starting with the framework (G,u free), we apply the
constructions in Lemmas 18.9 and 18.10: we replace vi (i ∈ A) by a point v̄i ∈
v
(
N(i)

)
in general position, and then delete i and project the remaining labels

onto v̄⊥i . Repeating this with all nodes of A, we are left with a cover-critical
framework (G[T ],u) with τ(G[T ],u) = τ(G)−|A|. An application of Theorem
18.8(b) completes the proof. �

We need one further lemma, which is “pure” graph theory.

Lemma 18.12. Let G be a bipartite graph, and let S1, . . . , Sk ⊆ V be such that
G\Si has a perfect matching for every i. Assume, furthermore, that deleting any
edge of G this property does not hold any more. Let s = maxi |Si|. Then the number

of nodes of G with degree at least 3 is at most 2s3
(
k
3

)
.

Proof. Suppose that G has more than 2s3
(
k
3

)
nodes of degree at least 3. Let

us label every edge e with an index i for which G\e\Si has no perfect matching,
and let Mi denote a perfect matching in G\Si. Clearly all edges labeled i belong
to Mi.

Let us label every node with degree at least 3 by a triple of the edge-labels
incident with it. There will be more than 2s3 nodes labeled by the same triple, say
by {1, 2, 3}.
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The set M1∪M2 consists of the common edges, of cycles alternating with re-
spect to both matchings, and of alternating paths ending at S1∪S2. A node labeled
{1, 2, 3} cannot belong to a common edge of M1 and M2 (trivially), and it cannot
belong to an alternating cycle, since then we could replace the edges of M1 on
this cycle by the other edges of the cycle, to get a perfect matching in G\Si that
misses an edge labeled i, contrary to the definition of the label. So it must lie on
one of the alternating paths. The same argument holds for the sets M1∪M3 and
M2∪M3. The number of alternating Mi-Mj paths is at most s, so there are three
nodes labeled {1, 2, 3} that lie on the same Mi-Mj paths for all three choices of
{i, j} ⊆ {1, 2, 3}. Two of these nodes, say u and v, belong to the same color class
of G.

We need one more combinatorial preparation: the alternating Mi-Mj path
through u and v has a subpath Qij between u and v, which has even length, and
therefore starts with an edge labeled i and ends with an edge labeled j, or the other
way around. It is easy to see that (permuting the indices 1, 2, 3 if necessary) we
may assume that Q12 starts at u with label 1, and Q23 starts at u with label 2.

Now traverse Q23 starting at u until it first hits Q12 (this happens at v at the
latest), and return to u on Q12. Since G is bipartite, this cycle is even, and hence
alternates with respect to M2. But it contains an edge labeled 2, which leads to a
contradiction just like above. �

Now we are able to prove the finite basis theorem for cover-critical graphs.

Proof of Theorem 18.3. Let G be a basic cover-critical graph with δ(G) = δ,
let T be a minimum node-cover in G, let F be the set of edges induced by T , and let
G′ be obtained by deleting the edges of F from G. By Corollary 18.11, |F | ≤

(
δ+1

2

)
.

Let R1, . . . , Rk be the minimal sets of nodes that cover all edges of F . Trivially
|Ri| ≤ |F | and k ≤ 2|F |. Let τi = τ(G′ \Ri); clearly τi ≥ τ(G)−|Ri|. Since G′ \Ri
is bipartite, it has a matching Mi of size τi. Let Si = V \V (Mi). (We can think of
the matching Mi as a “certificate” that Ri cannot be extended to a node-cover of
size less than τ(G).)

By this construction, the graphs G′−Si have perfect matchings. We claim
that deleting any edge from G′ this does not remain true. Indeed, let e ∈ E(G′),
then G\e has a node-cover T with |T | < τ(G). Since T covers all edges of F , it
contains one of the sets Ri. Then T −Ri covers all edges of G′−Ri except e, and
so τ(G′−Ri−e) ≤ |T |−|Ri| < τ(G)−|Ri| ≤ τi. Thus G′−Ri−e cannot contain
a matching of size τi, and hence G′−Si−e cannot contain a perfect matching.

We can estimate the size of the sets Si as follows:

|Si| = n−2τi ≤ n−2(τ(G)−|Ri|) = 2|Ri|−δ ≤ 2|F |−δ ≤ δ2.

We can invoke Lemma 18.12, and conclude that G′ has at most 2
(
k
3

)
δ6 nodes of

degree at least 3. Putting back the edges of F can increase this number by at most
2|F |, and hence

n ≤ 2

(
k

3

)
δ6 +2δ(δ+1) < 23δ2 .

�
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18.3. Matchings

18.3.1. Gallai’s Identity. Let G be a graph without isolated nodes, and
let ρ(G) denote the minimum number of edges covering all nodes. A simple but
important fact in graph theory is Gallai’s Identity:

(18.13) ρ(G)+ν(G) = n.

As a warm-up to the topic of matchings in frameworks, we prove a generalization
of this identity. Let (G,v) be a framework in Rd, where we assume that the graph
G has no isolated nodes and the vector labels span the whole space. Recall that
ν(G,v) denotes the maximum cardinality of a matching. Let us call a set of edges
an edge-cover, if their endpoint labels span the space Rd, and let ρ(G,v) denote
the minimum cardinality of an edge-cover. We claim that

(18.14) ρ(G,v)+ν(G,v) = d.

To prove this, first let M ⊆ E be a matching of size ν(G,v). The vector labels
of edges in M span a subspace L of dimension 2ν(G,v). If this is not the whole
space, there must be an edge f with at least one endpoint label not in L, so adding
this edge to M we increase the dimension of L. Repeating this at most d−2ν(G,v)
times, we get an edge-cover. Thus

ρ(G,v) ≤ ν(G,v)+
(
d−2ν(G,v)

)
= d−ν(G,v).

Conversely, let S be an edge-cover of minimum size, and let M ⊆ S be a matching
of maximum size among subsets of S. For every edge e ∈ S \M , the set M ∪{e} is
not a matching, and hence rk

(
V (M)∪V (e)

)
≤ 2|M |+1. Thus

d = rk
(
V (S)

)
= rk

(
V (M)∪V (S \M)

)
≤ 2|M |+ |S \M |

= |S|+ |M | ≤ ρ(G,v)+ν(G,v).

This completes the proof of (18.14).

Example 18.13 (Pinning a framework). Let (G,u) be a bar-and-joint frame-
work in the plane. Our goal is to pin down some of the nodes so that we prevent
all infinitesimal motions. Recall the basic equation system (15.4):

(18.15) (ui−uj)
T(vi−vj) = 0 (ij ∈ E),

where the unknowns are the 2n coordinates of the velocities v. A pin at node i
adds the equations vi,1 = 0 and vi,2 = 0. Note that neither one of these equations is
automatically fulfilled, since a rigid translation in a non-coordinate direction does
not satisfy them.

Recall that Inf ⊆ R2×V denotes the linear space of infinitesimal motions. A
condition viν = 0 defines a hyperplane in Inf; let fνi be its normal vector in Inf.
Pinning a set S ⊆ V eliminates all infinitesimal motions if and only if the vectors
fνi, (ν = 1, 2, i ∈ S) generate the whole space Inf.

Define a graph H on the set W = {1, 2}×V by connecting (1, i) and (2, i)
for every i ∈ V , and label node (ν, i) by fνi. Without the vector labels this is a
trivial graph, but the vector labels make it interesting. By our discussion above,
the minimum number of nodes of G whose pinning fixes the framework is equal
to ρ(H, f). By Gallai’s Identity (18.14), this is equal to dim(Inf)−ν(H, f). To
determine the dimension of Inf is a straightforward computation in linear algebra.
We’ll see that ν(H, f) is computable in polynomial time, so the pinning number is
computable in polynomial time. �
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18.3.2. Bipartite frameworks. We want to extend the fundamental Mar-
riage Theorem, which states that for bipartite graphs, equality holds in (18.1). Let
us define a framework to be bipartite if its node set has a bipartition V = V1∪V2

such that every edge connects V1 to V2, and rk(V ) = rk(V1)+rk(V2). In other
words, the space has a decomposition Rd = L1⊕L2 such that every edge has an
endpoint labeled by a vector in L1 and an endpoint labeled by a vector in L2.

Theorem 18.14. If (G,v) is a bipartite framework, then ν(G,v) = τ(G,v).

A proof follows almost immediately from the results of the previous section
(this proof would extend to the non-representable case easily).

Proof. We have seen that ν(G,v) ≤ τ(G,v), so it suffices to prove the reverse
inequality. We may assume that (G,v) is cover-critical (just delete edges and/or
nodes as long as τ(G,v) remains unchanged; it is enough to find a matching of size
τ(G,v) in this reduced graph). Let V = V1∪V2 be the bipartition of (G,v), then
both V1 and V2 are node-covers, and hence

τ(G,v) ≤ min{rk(V1), rk(V2)} ≤ rk(V1)+rk(V2)

2
=

rk(V )

2
.

By (18.12) and the remark after it, this implies that (G,v) is a matching, and so
ν(G,v) = m ≥ τ(G,v). �

18.3.3. General frameworks. Tutte’s Theorem characterizing the existence
of a perfect matching and Berge’s Formula describing the maximum size of match-
ings extend to frameworks as well [Lovász 1980]. Various forms of this theorem are
called the “Matroid Parity Theorem” or “Matroid Matching Theorem” or “Poly-
matroid Matching Theorem”. In spite of these names, this result does not belong to
matroid theory; it uses more from the structure of linear spaces than what matroids
can capture.

In a framework, we can consider the 2-dimensional subspaces determined by
the pairs of vectors assigned to the endpoints of an edge. The matching problem
can be formulated in terms of these subspaces, and in fact this provides useful
geometric insight.

Recall an elementary exercise from geometry: if a family of lines in projective d-
space has the property that every pair intersects, then either all lines lie in the same
plane, or they all go through one and the same point. In the language introduced
in Appendix A.4, a set of lines contains no two independent lines if and only if
either they are coplanar or concurrent.

What happens if we exclude three independent lines? Figure 18.5 shows four
configurations with this property. Theorem 18.15 below will imply that these are
all.

We can rephrase this as a question about 2-dimensional linear subspaces of real
linear space instead of lines in a projective space. Our starting observation is then
that if a family of 2-dimensional linear subspaces in a real linear space contains
no two linearly independent subspaces, then either they are all contained in a 3-
dimensional subspace, or they all contain a common 1-dimensional subspace. The
general question is: what is the maximum number of linearly independent subspaces
in a family of 2-dimensional subspaces?

To show how this question relates to the matching number of frameworks, select
a finite set V of vectors so that each of the given subspaces contains at least two
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dim=4 

dim=3 

dim=2 

dim=2 

Figure 18.5. Four configurations of lines in a projective space
(of arbitrary dimension) not containing three independent lines:
(a) lines in a 4-dimensional subspace; (b) lines in a 3-dimensional
subspace, together with lines going through a particular point of
this subspace; (c) lines in two 2-dimensional subspaces; (d) lines
intersecting a given line.

of them, and for each of the given subspaces, join two of the points of V in it by
an edge. The condition on the subspaces says that the matching number of the
resulting framework is less than k.

Conversely, consider a framework. If the vectors representing the endpoints
of an edge are not linearly independent, then this edge will not be a member of
any matching, and we can forget about it. So we may assume that the vectors
representing the endpoints of any edge generate 2-dimensional subspace. A set of
edges forms a matching if and only if the corresponding 2-dimensional subspaces
are linearly independent.

There is a trivial bound on the matching number of a framework in Rd:

(18.16) ν(G,v) ≤
⌊d

2

⌋
.

Combining the ideas behind the bounds (18.2) and (18.16), we can formulate an
upper bound that, for an optimal choice, gives equality [Lovász 1980].

Theorem 18.15. Let (G,u) be a framework in Rd, and let P = {E1, . . . , Ek} range
over all partitions of its edge set and let L range over linear subspaces of Rd. Let
Li = lin

(
u(V (Ei))

)
. Then

ν(G,v) = min
P,L

{
dim(L)+

k∑
i=1

⌊1

2
dim(Li/L)

⌋}
.
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The bound (18.16) corresponds to the choice k = 1, L = 0, L1 = Rd. To get the
bound (18.2), let L be the linear span of a node-cover T , and let V \T = {i1, . . . , ik},
and let Ej consist of all edges contained in the linear span of L and uij .

The proof of the ≤ direction in Theorem 18.15 is easy: for any subspace L and
any partition P, we have

ν(G,v) ≤ dim(L)+ν(G,v/L)

and for any matching M in (G,v/L), we have

|M ∩Ei| ≤
⌊dim(Li/L)

2

⌋
,

and hence

|M | =
k∑
i=1

|M ∩Ei| ≤
k∑
i=1

⌊dim(Li/L)

2

⌋
.

The proof of the ≥ direction is quite lengthy, and has been reproduced in another
book [Lovász–Plummer 1986], so we do not present it here.

Example 18.16 (Graph matching). Let us apply the above result to “ordinary”
matchings. If the nodes of the graphG are labeled by the standard basis (ei : i ∈ V )
in RV , then ν(G, e) = ν(G). So the graph G has a perfect matching if and only if
ν(G, e) = n/2. By Theorem 18.15, this holds if and only if

(18.17) dim(L)+

k∑
i=1

⌊1

2
dim v(Ei)

⌋
≥ n

2

for every partition P = {E1, . . . , Ek} of the edge set and every linear subspace L,
where vi = ei/L. If L is spanned by some of the vectors ei, then we can directly
see that this condition is equivalent to Tutte’s. In the general case, we need a little
induction argument.

If any vi = 0, then we can delete this node and proceed by induction. If the
graph is disconnected, we can use induction on the connected components.

So suppose that G is connected and the vectors vi are nonzero. If k > 1, then,
since the graph is connected, there are two partition classes, say E1 and E2, with
V (E1)∩V (E2) 6= 0. Then

dim v(V (E1∪E2)) ≤ dim v(V (E1))+dim v(V (E2))−1,

which implies that⌊1

2
dim v(V (E1∪E2))

⌋
≤
⌊1

2
dim v(V (E1))

⌋
+
⌊1

2
dim v(V (E1))

⌋
,

so we can merge E1 and E2 to get a partition for which the inequality (18.17) is
tighter. Going on similarly, we get that it suffices to check (18.17) for the partition
of the edge set into a single class. Then we need

dim(L)+
⌊1

2
dim v(E)

⌋
≥ n

2

Since dim v(E) = n−dim(L), this holds unless dim(L) = 0 and n is odd, so Tutte’s
condition is violated. �
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18.3.4. Matching and multilinear algebra. Let (G,u) be a framework,
where u : V → Rd. To every edge e = ij, we assign the antisymmetric tensor
Ae = ui∧uj . (If you prefer a more elementary language, we can instead consider
the skew symmetric d×d matrix Ae = uiu

T
j −uju

T
i .) The sign of Ae depends on

the orientation of the edge e, and we fix an orientation for each edge (this will not
play an important role).

By basic exterior algebra, it is clear that the edges e1, . . . , em form a matching
if and only if Ae1 ∧· · ·∧Aem 6= 0. It would be nice to have a proof of Theorem
18.15 based on exterior algebra, but this seems to be elusive. However, the following
theorem (see [Lovász–Plummer 1986]) generalizes a characterization of graphs with
perfect matchings [Tutte 1947], and it does provide a useful tool for randomized
matching algorithms.

Theorem 18.17. For every framework (G,u),

ν(G,u) =
1

2
max
xe∈R

rk
(∑
e∈E

xeAe

)
.

Proof. First, we prove the ≤ direction. Let k = ν(G,u), and let M be a
maximum matching. The assertion is independent of the basis in Rd, so we may
assume that the endpoints of the edges in M are labeled by e1, . . . , e2k. Choosing
x = 1V (M), the matrix

∑
e xeAe will consist of 2k 1’s in different rows and columns

and zeros everywhere else, so its rank will be 2k.
Second, let 2r be the rank of the matrix A =

∑
e xeAe for an arbitrary choice

of the numbers xi (the rank of a skew symmetric matrix is always even). Then, by
elementary multilinear algebra,

A∧· · ·∧A︸ ︷︷ ︸
r

6= 0

Expanding this exterior product, there must be a nonzero term, i.e., there must be
edges e1, . . . , er such that Ae1 ∧· · ·∧Aer 6= 0. Let ek = ikjk, then

Ae1 ∧· · ·∧Aer = ui1 ∧uj1 ∧· · ·∧uir ∧ujr ,

and if this is nonzero, then ui1 ,uj1 , . . . ,uir ,ujr are linearly independent, and so
{e1, . . . , er} is a matching. This proves that ν(G,u) ≥ r. �

Theorem 18.17 is of the form max = max, and so it does not provide a good
characterization of the matching number. But the maximum on the right side is
clearly attained for algebraically independent values of the xi, and so the maximum
is attained for almost all random choices, say from the uniform distribution in
[0, 1]. By the Schwartz–Zippel Lemma 3.12, the maximum is attained with high
probability if the coefficients xi are chosen randomly from (say) {0, 1, . . . , n2}. So
the theorem provides an efficient randomized algorithm for computing ν(G,u).

Example 18.18 (Gyrators). A gyrator g is an ideal device in an electrical net-
work: it has a real parameter Rg (its resistance), and it forces the currents and
voltage differences of two given directed edges ij and kl as

(18.18) Uij = RgIkl Ukl = −RgIij .

Note that Rg depends on the order as well as on the orientation of the two edges:
if we reverse ij, then Rg changes sign, and so it does when the edges ij and kl are
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interchanged. We denote this gyrator by g(ij, kl) if the participating edges need
emphasis.

Perhaps it helps understand this if we compare it with an (ideal) transformer,
which also establishes a relationship between two edges ij and kl:

Uij = aUkl Ikl = aIij .

The behavior of a gyrator is more complicated, mostly because of the negative sign
in the second equation.

Consider an electrical network composed of (ohmic) resistances, voltage and
current sources, and gyrators. Determining the currents and voltages on the edges
means the solution of a system of linear equations in the variables Uij and Iij . This
system may be overdetermined or underdetermined, depending on the graph and
on the numerical values of the resistances.

But let us assume that the parameters (resistances) of these devices are alge-
braically independent: the network is “generic”. (This is not such an unreasonable
assumption: in the case of real physical devices, their resistances are only approxi-
mately specified by the production process, and so no two will be exactly the same,
and more generally, no exact algebraic relation will hold between them.) In this
case, the combinatorial information (the graph and the pairs of edges that are re-
lated by gyrators) determines whether the network is over- or underdetermined.
The following theorem was proved by [Milić 1974]:

Theorem 18.19. Let G be a network consisting of voltage and current sources,
resistances, and gyrators. Suppose that the resistances and the parameters of the
gyrators are algebraically independent over the rationals. Then there is a unique
assignment of currents and voltage differences to the edges if and only if G has a
spanning tree which contains all voltage sources, no current source, and either both
or none of the edges of each gyrator.

Proof. We work with the electric potential function p : V → R. For the sake
of simplicity, suppose that the network contains only gyrators. Then setting all
currents and voltages to zero, we get a solution; we want to know whether this
is unique. The voltage of an edge ij can be expressed as Uij = pj−pi, and the
currents are determined by

(18.19) Iij = − 1

Rg
(pl−pk), Ikl =

1

Rg
(pj−pi)

for the two edges ij and kl forming a gyrator g. The only condition that is left is
Kirchhoff’s Current Law:

(18.20)
∑

j∈N(i)

Iij = 0.

So we have n equations in n unknowns pi. These equations are not independent,
since their sum is trivially zero; but this is fine, since we need only the potential
differences pj−pi. For the equations to determine the differences pj−pi uniquely,
the rank of the system of these equations must be n−1.

Substituting the expressions (18.19) in (18.20), we get after some transforma-
tions ( ∑

g=g(ij,kl)

1

Rg
((ei−ej)∧(ek−el))

)
p = 0,



18.3. MATCHINGS 363

where the summation extends over all gyrators. By Theorem 18.17, the rank of
the matrix of this system is twice the matching number of the framework (H,v)
on node set E, in which two edges are adjacent if and only if they form a gyrator,
and an edge e = ij (as a node of H) is labeled with the vector vij = ej−ei. It is
easy to check that (n−1)/2 edges of H form a matching in (H,v) if and only if the
n−1 edges of G corresponding to them form a spanning tree in G. �

So the gyrator problem can be reduced to the matching problem of frameworks.
Theorem 18.15 gives a good characterization (NP∩co-NP). �

Exercise 18.1. Let G be a cover-critical graph with a node u of degree two,
different from the triangle. Prove that the neighbors of u ar nonadjacent, and
have no neighbor in common other than u.

Exercise 18.2. Prove that the nodes of a cover-critical graph can be covered by
node-disjoint edges and odd cycles of the graph.

Exercise 18.3. Let (G,v) be a cover-critical framework. Prove that for every
node there is an optimal node-cover that contains it and also one that avoids it.

Exercise 18.4. A fractional cover of a graph G is a map ω : V → R+ such that
ω(i)+ω(j) ≥ 1 for every edge ij. Let τ∗(G) = min

∑
i ω(i), where the minimum

ranges over all fractional covers of G. Prove that τ∗(G) = τ2(G)/2.

Exercise 18.5. Let V be a finite set and let f : 2V → R be a setfunction.

Extend f to a function f̂ : RV+ → R by f̂(w) =
∑t
i=1 αif(Si), where the αi and

Si are defined as in (18.3). Prove that f̂ is convex if and only of f is submodular.

Exercise 18.6. Prove that for any framework, τ2k(G,v) = kτ2(G,v) and
τ2k+1(G,v) = kτ2(G,v)+τ1(G,v).

Exercise 18.7. For every representation v of G, the setfunction rk(2X) is sub-
modular.

Exercise 18.8. Let i be a node of a framework (G,v). Let us delete all edges
incident with i, create a new node j, connect it to i, and represent it by a vector vj
that is in general position in the space lin

(
v(N(i)

)
. Let G′ be the graph obtained.

Prove that τ(G,v) = τ(G′,v), and if (G,v) is cover-critical, then so is (G′,v).

Exercise 18.9. For a framework (G,v), split every node i into deg(i) nodes
of degree 1, and represent each of these by the vector vi. Let (G′,v′) be the
framework obtained. Prove that τ(G,v) = τ(G′,v), and (G,v) is cover-critical if
and only if (G′,v′) is cover-critical.

Exercise 18.10. Prove that if a family of lines in projective d-space contains no
three independent lines, then it is one of the configurations in Figure 18.5.

Exercise 18.11. Let G be a simple graph and u : V → Rd, a full-dimensional
vector labeling. We say that u is independence preserving, if every independent
(stable) set of nodes is labeled by linearly independent vectors. Prove that u
is independence preserving if and only if its Gale dual v : V → Rn−d satisfies
τ(G,v) = τ(G).
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Exercise 18.12. Let B be a skew symmetric matrix of dimension p = 2n. For
each partition P = {{i1, j1}, . . . , {in, jn}} of the set {1, . . . , 2n} into pairs, let
πP denote the permutation 2k−1 7→ ik, 2k 7→ jk of {1, . . . , 2n}, and let bP =
sgn(πP )bi1j1 · · · binjn (where sgn denotes the sign of the permutation). Define the
Pfaffian of B by Pfaff B =

∑
P bP .

(a) Prove that bP depends neither on the order in which the classes of the partition
are listed nor on the order of the two elements of a class. (So Pfaff B is well
defined.)

(b) Prove that detB = (Pfaff B)2.

(c) Let B be obtained from the adjacency matrix of G by replacing each pair of
1’s corresponding to the same edge by xe and −xe, where the numbers xe are
algebraically independent transcendentals. Prove that G has a perfect matching
if and only if det(B) 6= 0.



CHAPTER 19

Combinatorics of Subspaces

In this chapter we have a look at several results from previous chapters, from
a more general point of view. In fact, we do so in two stages.

First, we discuss some results about combinatorial properties of subspaces,
which generalize results concerning stresses and rigidity, covering and matching in
frameworks, and more. Collections of subspaces (points, lines, planes) in Euclidean,
affine, or projective spaces have many interesting and important combinatorial
properties, which are treated in detail in books about combinatorial geometry,
and could themselves fill one or more monographs. There are deep studies of
the numbers of cells of different dimensions they form, and of the topological and
algebraic geometric properties of their union or its complement, just to name a
few. Some of their properties are generalizing graph-theoretic results treated in
this book, and we restrict our attention to results of this nature.

The second level of more abstract and more general results uses matroid theory.
This theory has been the topic of several monographs, and it is difficult to fit it
in a book whose aim is to establish more direct connections between graph theory
and geometry. On the other hand, matroid theory provides deeper insight into
several of the results presented in this book. In the last section of this chapter, a
minimalist introduction to matroids is followed by a survey of how some of the key
constructions and key results can be put in the framework of matroid theory.

19.1. Covering of hypergraphs and subspaces

Several questions about covering the edges of graphs extend to covering the
edges of hypergraphs, and even to covering the members of a family of subspaces.
[Bollobás 1965] proved the following generalization of Theorem 18.2(b):

Theorem 19.1. Let A1, . . . , An be p-element sets and B1, . . . , Bn, q-element sets.
Suppose that Ai∩Bi = 0 for all i, but Ai∩Bj 6= 0 for i 6= j. Then n ≤

(
p+q
p

)
.

To obtain Theorem 18.2, we take p = 2 and q = τ(G)−1, let the sets Ai be
the edges of G, and let Bi be a minimal node-cover of G\{Ai}. Recall that we
proved and used a generalization (Theorem 18.8(b)), where Bi was a subspace of
dimension τ(G,u)−1 covering all edges of the framework (G,u)\{Ai}. An anal-
ogous generalization of Theorem 19.1 can also be proved (see Exercise 19.5). One
can even replace both families of subsets by families of subspaces [Lovász 1979a]:

Theorem 19.2. Let A1, . . . , An be p-dimensional subspaces and B1, . . . , Bn, q-
dimensional subspaces of Rd. Suppose that Ai∩Bi = 0 for all i, but Ai∩Bj 6= 0

for i 6= j. Then n ≤
(
p+q
p

)
.

365
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Proof. We may assume that d = p+q. Indeed, trivially d ≥ p+q. If d > p+q,
then the orthogonal projections A′i and B′i of Ai and Bi onto a generic (p+q)-
dimensional space satisfy the same conditions as the original subspaces Ai and
Bi, so it suffices to prove the lemma for these projected subspaces of a (p+q)-
dimensional space.

For a subspace A ⊆ Rd, choose a basis a1, . . . ,ar and define the antisymmetric
r-form ΨA = a1∧· · ·∧ar. This form depends on the choice of the basis, but only up
to a nonzero scalar factor. The important property for us will be that ΨA∧ΨB = 0
if and only if the subspaces A and B have a nonzero intersection. In particular,
ΨAi
∧ΨBi

6= 0, but ΨAi
∧ΨBj

= 0 for i 6= j.
We claim that the tensors ΨA1

, . . . ,ΨAn
are linearly independent. Suppose (by

way of contradiction) that there is a linear dependence
∑
i αiΨAi

= 0, and let j be
any subscript with αj 6= 0. Then

0 =
(∑

i

αiΨAi

)
∧ΨBj

=
∑
i

αi(ΨAi
∧ΨBj

) = αj(ΨAj
∧ΨBj

) 6= 0,

a contradiction.
It follows that n is not larger than the dimension of the space of antisymmetric

p-tensors in a (p+q)-dimensional space, which is
(
p+q
p

)
. �

Remark 19.3. The proof shows that the condition that Ai∩Bj 6= 0 for i 6= j
could be weakened: it would suffice to assume that Ai∩Bj 6= 0 for i < j. Theorem
19.1 can be proved by a similar linear algebra argument, replacing exterior product
of vectors by their symmetric product, or (essentially equivalently) by the product
of variables.

These theorems can be applied to bound the size of critical families of sets.
A hypergraph is a finite family of finite sets. The node-cover number τ(H) of a
hypergraph H is the minimum cardinality of a set meeting every member of H.
The hypergraph is called cover-critical, if τ(H′) < τ(H) for every H′ ⊂ H.

For a family F of subspaces, we define its linear covering number τlin(F) as
the minimum dimension of a linear subspace intersecting every subspace in F in
a nonzero subspace. The family F is called cover-critical, if τlin(F ′) < τlin(F) for
every F ′ ⊂ F . The first assertion of the next theorem was proved in [Bollobás 1965];
the second, in [Lovász 1977].

Theorem 19.4.
(a) If H is a cover-critical family of k-sets, then |H| ≤

(
τ(H)+k−1

k

)
.

(b) If F is a cover-critical family of k-dimensional subspaces, then |F| ≤(
τlin(F)+k−1

k

)
.

Proof. We prove the second assertion; the proof of the first one is similar. Let
F = {A1, . . . , An}. For each 1 ≤ i ≤ n, the family F \{Ai} can be covered by a
subspace Bi of dimension l−1. This means that Aj ∩Bi 6= 0 for j 6= i. On the
other hand, Bi cannot cover F , and hence Ai∩Bi = 0. By Lemma 19.2, it follows
that n ≤

(
l+k−1
k

)
. �

19.2. Transcendence degree and transcendence rank

Notions like “general position” and “generic” have played an important role in
several chapters of this book. In this section we put these notions in a more general
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context, leading to a couple of combinatorial results in the next section that, as we
shall see, generalize several previously presented results.

We fix a real closed field K ⊂ R (that is, the square root of every positive
number in K is in K, and every polynomial of odd degree with coefficients in K
has a root in K). Most of the time, you could think of this as the field of real
algebraic numbers without losing any of the essential ideas (many of the arguments
would even work over the rational field), but for a few arguments we need this
generality. It is well known that every real number that is algebraic over K belongs
to K. We need, in addition, that K is not too large: we assume that R has infinite
transcendence degree over K (so that we can find arbitrarily many real numbers
that are transcendental over K). For a set A of real numbers, we denote by K(A)
the real closed field generated by K and the elements of A. For a finite set A of

vectors and/or matrices, we define K(A) = K(Â), where Â is the set of all entries
of all elements in A.

Let L be a linear subspace of Rd. It is clear that if L 6= 0, then K(L) = R is
uninteresting. To measure how “transcendent” L is, we consider “simple” vectors
generating L. Let k = dim(L). There is at least one k-tuple of coordinates such
that the projection of L onto these coordinates is k-dimensional; let us call such a
k-tuple of coordinates basic. Unless said otherwise, we fix a basic k-tuple, and (for
notational convenience) reorder the coordinates so that this basic k-tuple consists
of the first k coordinates. Let Rd,k denote the linear space of all vectors in Rd
supported on the first k coordinates. The spaces Rd,k and Rk are isomorphic in a
trivial way: the map Πk : Rd → Rk deleting the last d−k coordinates provides
this isomorphism; but it will be useful to distinguish them.

There is a unique basis in L whose projection onto the first k coordinates is the
standard basis in Rk; we call this the standard basis in L (with respect to the basic
set {1, . . . , k}). The matrix whose columns are the vectors in the standard basis

can be written as
(
Ik
X

)
, where X ∈ R(d−k)×k. Any other basis of L can be obtained

as the columns of a d×k matrix
(
B
XB

)
with some nonsingular k×k matrix B. We’ll

abuse terminology and say that a d×k matrix A is a basis of L if its columns form
a basis of L.

We say that the subspace is algebraic over K, if it has a basis consisting of
vectors with all entries in K. We are going to omit “over K” if no confusion can
arise.

Lemma 19.5. For every linear subspace L ⊆ Rd, there is a unique smallest real
closed field over which it is algebraic. This field is generated (as a real closed field)
by the entries of any standard basis.

Proof. Let
(
Ik
X

)
be a standard basis of L. Consider any other basis A =

(
B
XB

)
.

Here B is a submatrix of A, and so the entries of B−1 belong to the field K(A).
Hence

K(A) ⊇ K(B−1A) = K
(
Ik
X

)
= K(X).

This shows that K(X) is the smallest field generated by any basis of L. �

We denote the field in the lemma by KL. The proof above shows that L is
algebraic over a field K if and only if the standard basis (with respect to one, or
all, basic k-tuples of coordinates) has all of its entries in K. Another consequence
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of Lemma 19.5 is that

(19.1) KL⊥ = KL,

since the space L⊥ has a standard basis
(−XT

Id−k

)
, and so KL⊥ = K(−XT) = K(X) =

KL.
For a field K and a set of real numbers X, we define the transcendence degree

degtr(X|K) of X over K as the maximum number of elements of X that are al-
gebraically independent over K. In the case of the field denoted by K, we often
use the simplified notation degtr(X), where “over K” is understood. For a linear
subspace L ⊆ Rd, we define its transcendence rank as the transcendence degree of
KL over K:

(19.2) θ(L) = θ(L|K) = degtr(KL) = min
{

degtr(A|K) : A is a basis of L
}
.

We need some simple properties of the transcendence rank. From the proof of
Lemma 19.5 we see that for any k-dimensional subspace L ⊆ Rd, we have

(19.3) θ(L) ≤ k(d−k).

Equation (19.1) implies that

(19.4) θ(L⊥) = θ(L).

It is easy to see that

(19.5) θ(L1 +L2) ≤ θ(L1)+θ(L2).

We have noted that “bad” bases of a subspace L can have arbitrary transcen-
dental entries. But no basis can be “too transcendental”.

Lemma 19.6. For every k-dimensional subspace L ⊆ Rd, we have

max
{

degtr(A) : A is a basis of L
}

= θ(L)+k2.

Proof. Let
(
Ik
X

)
be a standard basis of L, then degtr(X) = θ(L). Let

(
B
XB

)
be any other basis, where B is a nonsingular k×k real matrix. Since the entries
of
(
B
XB

)
can be computed from the entries of

(
B
X

)
algebraically, and vice versa, we

have

degtr

(
B

XB

)
= degtr

(
B

X

)
= degtr(X)+degtr(B|K(X)) = θ(L)+degtr(B|K(X)).

The last term is maximized when all entries of B are algebraically independent over
K(X). �

19.2.1. Transcendental subspaces. A subspace is “generic”, if it does not
satisfy any special condition it does not absolutely have to. . . This is not a defini-
tion. One way of making it precise is the following.

We say that a set of vectors in Rd is fully transcendental (over K) if all their
entries are algebraically independent over K. It is easy to see that a fully transcen-
dental set of k vectors is linearly independent as long as k ≤ d.

A k-dimensional subspace L ⊆ Rd is transcendental (over K), if it has a fully
transcendental basis. By Lemma 19.6, this is equivalent to saying that

(19.6) θ(L) = k(d−k).

By (19.4), this implies that a subspace L ⊆ Rd is transcendental if and only if L⊥

is.
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Applying a nonsingular linear transformation with entries in K, every algebraic
subspace is mapped onto an algebraic subspace, and every transcendental subspace
is mapped onto a transcendental subspace. If K ⊆ K′ ⊆ R are fields, then any
subspace algebraic over K is algebraic over K′, and any subspace transcendental
over K′ is transcendental over K. If J is a transcendental subspace of Rd, then
any k = dim(J) coordinates are basic, since the projection of a fully transcendental
basis of J to Rk is a fully transcendental basis of Rk.

Let L ⊆ Rd by any subspace of dimension k. We say that a subspace of L
is transcendental within L, if it is the intersection of L with a subspace that is
transcendental over KL. Note that 0 and L are both transcendental subspaces of
L.

In the special case when L = Rd, to be transcendental within L is equivalent to
being a transcendental subspace of Rd. More generally, we can state the following
fact, which is absolutely natural, but it takes some work to prove it (Exercise 19.2).

Lemma 19.7. A subspace J ⊆ Rd,k is transcendental within Rd,k if and only if its
projection ΠkJ is a transcendental subspace of Rk. �

If L is any algebraic subspace of dimension k, then we can apply a linear
transformation with entries in K that maps L onto Rd,k, and this preserves tran-
scendentality of subspaces of L. Sometimes we will need this linear transformation
to be orthogonal. For this, we need to compute an orthonormal basis B in L, to be
mapped onto the standard basis of Rd,k; in general, this basis cannot be expressed
rationally by the entries of a standard basis of L, but the entries of B are in K
nevertheless (here we use that K is real closed). We will refer to this procedure as
“normalization”.

Using normalization, we can extend several simple previous observations about
transcendental subspaces to subspaces that are transcendental within a subspace.
For example, we have

(19.7) θKJ
(H) ≤ dim(H)

(
dim(J)−dim(H)

)
for any two subspaces H ⊆ J , with equality if and only if H is transcendental
within J . As another consequence, we have seen that the orthogonal complement
of a transcendental subspace of Rd is transcendental. This can be extended to
transcendental subspaces of any subspace: If H is transcendental within J , then so
is J ∩H⊥.

Lemma 19.8. Let H ⊆ J be subspaces of Rd with dim(H) = q and dim(J) = r.
Then

θ(J)−(r−q)(d−r) ≤ θ(H) ≤ θ(J)+(r−q)q
If equality holds in the first inequality, then J ∩H⊥ is transcendental within H⊥.
If equality holds in the second, then H is transcendental within J .

Proof. Since H and J ∩H⊥ generate J , we have

θ(J) ≤ θ(H)+θKH
(J ∩H⊥).

Here by (19.1) and (19.7),

(19.8) θKH
(J ∩H⊥) ≤ dim(J ∩H⊥)

(
dim(H⊥)−dim(J ∩H⊥)

)
= (k−r)(d−k).

This proves the first inequality. If equality holds, then we have equality in (19.8),
which means that J ∩H⊥ is transcendental within H⊥.
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The second inequality follows from the first by replacing H and J by J⊥ and
H⊥, using the relations θ(J⊥) = θ(J) and θ(H⊥) = θ(H). In the case of equality we
know that H⊥∩J is transcendental within J . Then so is its orthogonal complement
within J , which is just H. �

19.2.2. The intersection of algebraic and transcendental subspaces.
The following lemma summarizes a number of useful relations between an algebraic
subspace and a transcendental subspace.

Lemma 19.9. Let L be a algebraic subspace and J , a transcendental subspace of
Rd. Let k = dim(L) and r = dim(J). Then

(a) either L+J = Rd or L∩J = ∅;
(b) if L+J 6= Rd, then θ(L+J) = r(d−k−r);

(c) if L∩J 6= 0, then θ(L∩J) = (k+r−d)(d−r);
(d) J is transcendental within L+J , and L∩J is transcendental within L.

Proof. We may assume by normalization that L = Rd,k.
(a) First, assume that k+r = d. Let B be a fully transcendental basis of J .

The submatrix of B formed by the last r rows is nonsingular, and hence no vector
in J is supported on the first k = d−r rows. Thus L∩J = Rd,k∩J = 0. This also
implies that L+J = Rd.

Next, if k+r < d, then we extend L arbitrarily to a (d−r)-dimensional alge-
braic subspace L′, and by the above, L′∩J = 0 and so L∩J = 0. It follows by a
similar argument that if k+r > d, then L+J = Rd.

(b) We have dim(L+J) = k+r < d by (a). We may assume that the last r

coordinates are basic in J , so J has a basis of the form
(
B
Ir

)
, where B ∈ R(d−r)×r.

Let B′ be the (d−r−k)×r matrix obtained from B by deleting its first k rows.
Then the columns of the matrix

A =

Ik 0
0 B′

0 Ir


form a basis of L+J , showing that θ(L+J) ≤ degtr(A) = degtr(B

′) ≤ (d−k−r)r.
On the other hand, J is transcendental in Rd, so θ(J) = r(d−r), Lemma 19.8
implies that θ(L+J) ≥ θ(J)−kr = r(d−k−r).

(c) This follows by applying (b) to the algebraic subspace L⊥ and transcenden-
tal subspace J⊥.

(d) Both assertions follow from Lemma 19.8, since the pairs J ⊆ L+J and
L∩J ⊆ L satisfy the inequality in the lemma with equality. �

Here is a heuristic idea; the rest of this section will be devoted to make it
precise. Let us choose a “generic” subspace J and a subspace H ⊆ J . We expect
that J ∩H⊥ is a “generic” subspace in H⊥. Otherwise, making a “generic” choice
U among the subspaces of H⊥ of the same dimension as J ∩H⊥, the subspace
H+U would be even “more generic” than J .

This conclusion is, however, false in general:

Example 19.10. Let a, b and c be algebraically independent over K, and consider
the 2-dimensional subspace J ⊆ R3 defined by the equation ax+by+cz = 0. Then
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J⊥ is generated by the fully transcendental vector (a, b, c), and hence J is a tran-
scendental subspace of R3. Let H be the 1-dimensional subspace generated by the
vector (1/a, 1/b,−2/c)T. Clearly H ⊂ J , and KH = K(a/c, b/c) = KJ . A vector
spanning the subspace J ∩H⊥ can be computed in KH = KJ , and so it is not a
transcendental subspace of H⊥. �

Lemma 19.8 gives a sufficient condition on J and H for the above conclusion
to hold. A simple special case when this applies is if H = J ∩L for some algebraic
subspace L. More generally,

Lemma 19.11. Let J be a transcendental subspace of Rd, and let H = (L1∩
J)⊕· · ·⊕(Lm∩J), where L1, . . . , Lm are algebraic. Then J ∩H⊥ is transcendental
within H⊥.

Note the “⊕” operation sign, which implies that the subspaces L1∩J, . . . , Lm∩
J are linearly independent.

Proof. We may assume that the intersections Li∩J are nonzero subspaces.
Let r = dim(J) and ki = dim(Li), then dim(Li∩J) = ki+r−d by Lemma 19.9(a),
and so dim(H) =

∑m
i=1(ki+r−d). By Lemma 19.9(d), the subspace Li∩J is

transcendental within Li, and hence θ(Li∩J) = (ki+r−d)(d−r). Thus

θ(H) ≤
m∑
i=1

θ(Li∩J) =

m∑
i=1

(ki+r−d)(d−r) = dim(H)(d−r)

= θ(J)−(r−dim(H))(d−r).

By Lemma 19.8, this implies that J ∩H⊥ is transcendental within H⊥. �

19.3. Generic points

19.3.1. The rank of generic points. After these rather technical lemmas,
we come to the first main result in this topic. We say that a point a is a generic
point of a rational subspace L, if lin(a) is a transcendental subspace of L over K.
The definition guarantees that a generic point of a rational subspace L does not
have any property expressible by algebraic relations (with coefficients in K) between
the entries of the point, unless all points of L have this property. For example, if a
is a generic point of a rational subspace L, and a ∈ J for another rational subspace
J , then L ⊆ J .

Informally, if we introduce in some arguments below a “generic point” a, we
mean that it is fully transcendental over the field generated by all coordinates of
all vectors introduced in the argument previously (including appropriate bases of
all the subspaces we considered).

Lemma 19.12 (Generic Point Lemma). Let F be a family of subspaces of Rd.
For every A ∈ F , select a generic point xA ∈ A. Then

rk{xA : A ∈ F} = min
G⊆F

(
|F \G|+rk(G)

)
.

By the remark above, we should select the points xA one by one so that they are
generic taking into account the previously selected points. This property does not
depend on the order in which these points are selected.
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Proof. For every G ⊆ F , we have rk{xA : A ∈ G} ≤ |G| and rk{xA : A ∈
G} ≤ rk(G), whence

rk{xA : A ∈ F} ≤ rk{xA : A ∈ F \G}+rk{xA : A ∈ G}(19.9)

≤ |F \G|+rk(G).

(This inequality holds, in fact, for every choice of representatives xA ∈ A, not only
for a generic choice.)

To prove that equality holds for a generic choice of the representatives and for
a suitable G, let us consider any subspace A ∈ F , and its representative xA. If
xA /∈ lin

{
xB : B ∈ F \{A}

}
, then we can delete A from F and apply induction:

rk{xB : B ∈ F} = 1+rk
{
xB : B ∈ F \{A}

}
= 1+ |F \{A}\G|+rkG

for a suitable G ⊆ F \{A}. This shows that this set G gives equality in (19.9) as
well.

So we may assume that xA ∈ lin
{
xB : B ∈ F \{A}

}
. Using the assumption

that xA is a generic point of A, it follows that A ⊆ lin
{
xB : B ∈ F \{A}

}
, and

so, even more, A ⊆ lin{xB : B ∈ F}. This holds for every subspace A ∈ F , and
hence ∪F ⊆ lin{xB : B ∈ F}. Clearly equality must hold, whence

rk{xA : A ∈ F} = rk(F),

showing that G = F gives equality in (19.9). �

The following version of the Generic Point Lemma does not involve generic
points.

Corollary 19.13. Let A1, . . . , An be finite subsets of a linear space Rd. Then

max
ai∈Ai

rk{a1, . . . ,an} = min
S⊆[n]

(
rk
(⋃
i∈S

Ai

)
+n−|S|

)
.

We could replace the expression on the left by

max{|X| : X ⊆ Rd, X linearly independent, |X∩Ai| ≤ 1}.

Proof. The max ≤ min direction is clear by the same simple argument as
above. To prove the reverse inequality, let Li = lin(Ai), and let xi be a generic
point in Li. Then

rk{x1, . . . ,xn} = min
S⊆[n]

(
rk
(⋃
i∈S

Ai

)
+n−|S|

)
by the Generic Point Lemma 19.12. We want to replace the points xi by appropriate
points ai ∈ Ai so that the dimension of the set does not decrease. This can be
done one-by-one: if x1 is linearly dependent on x2, . . . ,xn, then we can replace
it by any element of A1. If it is linearly independent from x2, . . . ,xn, then L1 6⊆
lin{x2, . . . ,xn}, and hence A1 has an element a1 /∈ lin{x2, . . . ,xn}, and we can
replace x1 by a1. Repeating this procedure for every xi, the corollary follows. �

We can also formulate a probabilistic version of the theorem.
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Corollary 19.14. Let F be a family of nonnull subspaces of Rd. For every A ∈ F ,
select a random point xA ∈ A uniformly from the unit sphere in A. Then almost
surely,

rk{xA : A ∈ F} = min
G⊆F

(
|F \G|+rkG

)
.

We could replace the uniform distribution on the sphere by any probability
distribution on A that is not concentrated on a finite number of hyperplanes in A.

19.3.2. Applications of generic points. As an application of the Generic
Point Lemma, let us prove the Matroid Sum Theorem, at least in the linear case.

Theorem 19.15. Let us consider k vector labelings vj : V → Rdj (j = 1, . . . , k)
of the same set V = {1, . . . , n}. Let Yi ⊆ V (i = 1, . . . , k) range over sets such that
vi(Yi) is a linearly independent set of vectors. Then

max |Y1∪· · ·∪Yk| = min
X⊆V

|V \X|+
k∑
i=1

rk
(
vi(X)

)
.

Clearly we could restrict the sets Yi to be disjoint, or, going in the other direc-
tion, we could require that Yi is a basis for vi.

Proof. The max ≤ min direction is easy to check. To prove the converse,
consider the set of vectors

(19.10) Aj =




v1
j

0
...
0

 ,


0
v2
j
...
0

 ,


0
0
...

vkj


 (j = 1, . . . , k)

in Rd1⊕· · ·⊕Rdk .
Let Y1, . . . , Yk ⊆ V be disjoint sets such that vi(Yi) is a linearly independent

set. For each j ∈ Yi, choose aj ∈ Aj so that the i-th block of aj is nonzero. For the
indices in V \(Y1∪· · ·∪Yk), choose aj ∈ Aj arbitrarily. Then the set a(Y1∪· · ·∪Yk)
is linearly independent, and so

rk(a(V )) ≥ |Y1∪· · ·∪Yk|.
It is easy to reverse this argument, and show that for every choice of vectors aj ∈ Aj
we can find disjoint sets Yi ⊆ V such that vi(Yi) is linearly independent and

rk(a(V )) = |Y1∪· · ·∪Yk|.
So

(19.11) max
a

rk(a(V )) = max
Y1,...,Yk

|Y1∪· · ·∪Yk|.

To find the maximum on the left, we use Corollary 19.13, and get the theorem. �

As a special case, we describe the answer to the following question: Given a
finite set of vectors S ⊆ Rd, when can we partition it into k linearly independent
subsets? A trivial necessary condition is that |S| ≤ dk. This condition, when
stipulated for every subset of S, is also sufficient.

Let S = {u1, . . . ,un}, and invoke Theorem 19.15 with v1 = · · · = vk =
u : [n]→ Rd. The set of vectors S can be partitioned into k linearly independent
subsets if and only if the maximum on the left side of the min-max formula in
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Theorem 19.15 is n; this means that the right side must be at least n for every
X ⊆ S: krk(X)+ |S \X| ≥ n. Rearranging, we get the following corollary:

Corollary 19.16. A finite set S ⊆ Rd can be partitioned into k linearly independent
subsets if and only if

krk(X) ≥ |X|
for every X ⊆ S.

From this Corollary, it is not hard to derive the theorems of Tutte and Nash-
Williams on covering a graph by forests and on disjoint spanning trees (Theorem
15.16; see Exercise 19.9).

19.3.3. Bipartite matching revisited. As an application of Theorem 19.15,
let us give a new proof of the Marriage Theorem for frameworks (Theorem 18.14),
or, more precisely, in the following form (which is just the Matroid Intersection
Theorem [Edmonds 1970], for representable matroids; see Section 19.5).

Theorem 19.17. Let u : V → Rd and v : V → Re be two vector labelings of the
same finite set. Then

max{|X| : X ⊆ V, u(X) and v(X) linearly independent}
= min{rk(u(Y ))+rk(v(V \Y )) : Y ⊆ V }.

To see the connection with the Marriage Theorem, first note that Theorem
19.17 is a special case of Theorem 18.14, when the bipartite framework consists
of disjoint edges. Conversely, starting with an arbitrary bipartite framework, we
can delete isolated nodes and split each node into nodes of degree 1 with the same
vector label. This does not change the values of τ and ν, and so it reduces the
general case to the case when each node has degree 1.

Proof. With the notation of the theorem, we may assume that u(V ) spans Rd
and v(V ) spans Re. For a set X to be considered on the left side, u(X) must be
linearly independent, so X extends to a basis for u, and similarly, X extends to a
basis Z for v. So the left side can be formulated as follows:

max{|Y ∩Z| : u(Y ) is a basis of Rd,v(Z) is a basis of Re}.

Let w : V → Rn−e be a Gale dual of v, then Z is a basis of v if and only if
Z ′ = V \Z is a basis of w. Since

|Y ∩Z| = |Y ∪Z ′|−|Z ′| = |Y ∪Z ′|−(n−e),

finding the maximum of |Y ∩Z| is equivalent to finding the maximum of |Y ∪Z ′|,
where Y is a basis for u and Z ′ is a basis for w. But this is answered by the special
case k = 2 of Theorem 19.15:

max |Y ∪Z ′| = min
X⊆V

{
|V \X|+rk

(
u(X)

)
+rk

(
w(X)

)}
= min
X⊆V

{
n−|X|+rk

(
u(X)

)
+rk(v(V \X))+ |X|−e

}
.

and so

max |Y ∩Z| = max |Y ∪Z ′|−(n−e) = min rk
(
u(X)

)
+rk(v(V \X))

as claimed. �
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19.4. Generic hyperplanes

19.4.1. The rank of generic intersections. The following theorem was
proved in [Lovász 1977] (with a somewhat sketchy proof; see also Section 19.5
below for its matroid-theoretical predecessors).

Lemma 19.18 (Generic Hyperplane Lemma). Let F be a family of nonzero
subspaces in Rd, and let H be a linear hyperplane that is transcendental over the
field generated by the fields KL (L ∈ F). Let F ′ = {H∩A : A ∈ F}. Then

rk(F ′) = min
{

rk(G1)+ · · ·+rk(Gk)−k
}
,

where {G1, . . . ,Gk} ranges over all partitions of the set F .

Proof. Define A′ = H∩A for subspaces A ⊆ Rd, and let G′ = {A′ : A ∈ G}
for G ⊆ F . Note that lin(G′) ⊆ lin(G)′ (but equality does not always hold). Hence
rk(G′) ≤ rk(G)−1 if G′ 6= ∅ (here we use already that H is transcendental), and so
for any partition {G1, . . . ,Gk} of F ,

rk(F ′) ≤
k∑
i=1

rk(G′i) ≤
k∑
i=1

(
rk(Gi)−1

)
.

We want to prove that equality holds here for a suitable partition of F .
Let Q = lin(F ′). Clearly Q ⊆ H. For every A ∈ F , we have dim(A′) =

dim(A)−1 (since H is transcendental). Since A′ ⊆ Q (by the definition of Q),
but A 6⊆ Q (as A 6⊆ H), this implies that Q∩A = A′. Hence dim(Q∪A) =
dim(Q)+dim(A)−dim(A′) = dim(Q)+1.

Let N1, . . . , Nk be all the different subspaces of the from Q+A (A ∈ F). It
follows from the above that dim(Ni) = dim(Q)+1 and Ni∩Nj = Q for i 6= j.
Let Gi = {A ∈ F : Q+A = Ni}. Clearly G1, . . . ,Gk form a partition of F . Set
Mi = lin(Gi) and Li = lin(G′i). So Li ⊆ M ′i ⊂ Mi ⊆ Ni and L1 + · · ·+Lk = Q
(Figure 19.1).
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Figure 19.1. Intersecting a family of subspaces {M1,M2,M3} by
a generic hyperplane H (the picture uses the representation in
projective space). Here k = 3, and each Gi consists of a single
2-dimensional subspace. If the (1-dimensional) subspaces M ′1, M ′2
and M ′3 are linearly dependent, then projecting from M ′1, the image
ofH will go through the common image ofM ′2 andM ′3, soH cannot
be generic.

The key step in the proof is the following claim.

Claim 1. The subspaces M ′i are linearly independent.
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Suppose this is not the case, and let M ′1, . . . ,M
′
r be a minimal family of these

subspaces that are not linearly independent, so there are nonzero vectors xi ∈ M ′i
such that x1 + · · ·+xr = 0. Let X = M ′1 + · · ·+M ′r−2, then xr−1/X 6= 0 (else,
M ′1 . . . ,M

′
r−1 would be dependent), and xr−1/X+xr/X = 0. Hence Mr−1/X∩

Mr/X 6= 0.
On the other hand, (Mr−1 +X)∩(Mr+X) ⊆ Nr−1∩Nr = Q, and hence

Mr−1/X∩Mr/X = Q/X ⊆ H/X. Notice that M ′1, . . . ,M
′
r−2 are linearly inde-

pendent by the minimality of r, and so X = M ′1⊕· · ·⊕M ′r−2, where every M ′i is
the intersection of a rational subspace G′i with H. So Lemma 19.11 can be applied,
and we obtain that H/X = H∩X⊥ is transcendental within X⊥. It is easy to
see that the subspaces Mr−1/X and Mr/X are algebraic within X⊥, and so H/X
cannot contain Mr−1/X∩Mr/X 6= 0, a contradiction.

We can strengthen this Claim a bit:

Claim 2. The subspaces M1,M
′
2, . . . ,M

′
k are linearly independent.

Indeed, if x1 ∈ M1, xi ∈ M ′2 for i = 2, . . . , k, and x1 + · · ·+xk = 0, then
x1 ∈ H (since all the other xi belong to H), and so xi ∈M ′i for all i. By the Claim,
this implies that every xi = 0.

Now it is easy to complete the proof. Claim 1 implies that L1, . . . , Lk are
linearly independent:

(19.12) dim(L1)+ · · ·+dim(Lk) = dim(L1 + · · ·+Lk) = dim(Q).

Claim 2 implies that

dim(M1)+dim(L2)+ · · ·+dim(Lk) = dim(M1 +Q) = dim(N1) = dim(Q)+1.

It follows that

(19.13) dim(L1) = dim(M1)−1.

Applying (19.13) to the other subspaces Mi as well, and using (19.12), we get

rk(F ′) = dim(Q) =

k∑
i=1

dim(Li) =

k∑
i=1

(dim(Mi)−1) =

k∑
i=1

(rk(Gi)−1). �

19.4.2. Generic hyperplanes and rigidity. As an application of the
Generic Hyperplane Lemma, we give a description of generically rigid graphs and
new proofs of Theorem 15.11 (the equivalence of (a) and (b)) and Theorem 15.14.

Consider a framework (G,u) in the plane. As shown in Section 15.2, the frame-
work is stress-free if and only if the matrices Ubeb

T
e are linearly independent, where

U is the 2×V matrix whose columns are the vectors ui, and be = ej−ei for
e = ij ∈ E. These matrices have two properties: first, they are of the form xbT,
where xe ∈ R2; second, they satisfy the equation (RU) ·X = 0, where R is the
counterclockwise rotation by 90◦ in the plane. This equality is easy to verify by
direct computation, or through the argument

(RU) ·(Ubeb
T
e) = tr(RUbT

ebeU
T) = R ·(UbT

ebeU
T) = 0,

since R is a skew symmetric 2×2 matrix, while UbT
ebeU

T is a symmetric 2×2
matrix.

So for every edge e we have a 2-dimensional linear subspace Le of R2×V ,
consisting of the vectors xbT

e. Furthermore, we have a hyperplane H defined by
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(RU) ·X = 0. The matrix Ubeb
T
e is a (typically nonzero) vector in the intersection

of this line with this hyperplane.
Now assume that U is generic; then the hyperplane is generic (with respect to

the subspaces Le) Ubeb
T
e 6= 0, and the intersections H∩Le are 1-dimensional, i.e.,

they consist of scalar multiples of Ubeb
T
e. The Generic Hyperplane Lemma 19.18

can be applied, and gives that

(19.14) rk{Ubeb
T
e : e ∈ E} = min

E1,...,Ek

k∑
i=1

(rk{Le : e ∈ Ei}−1),

where {E1, . . . , Ek} ranges over all partitions of E.
It is not hard to figure out the rank of {Le : e ∈ Ei}. If the edges in Ei form

a connected graph Gi, then the vectors be (e ∈ Ei) generate all vectors supported
on Vi = V (Gi) whose entries sum to 0. The dimension of this space is |Vi|−1, and
so rk({Le : e ∈ Ei}) = 2(|Vi|−1). If Gi is disconnected, then we have to sum
this over all components, but in this case we improve the value on the right side of
(19.14) if we split Ei into its connected components. So we get that

(19.15) rk{Ubeb
T
e : e ∈ E} = min

E1,...,Ek

k∑
i=1

(2|Vi|−3).

To get a rigid graph, this value must be 2n−3 (the dimension of Mat in this case),
which is just the partition condition in Theorem 15.14. To get a stress-free graph,
we need that this dimension is at least m, in other words,

∑
i(2|Vi|−3) ≥ m for

every partition {E1, . . . , Ek} of E. We can write this condition as

(19.16)

k∑
i=1

(2|Vi|−3−|Ei|) ≥ 0.

If Laman’s condition holds, then all terms here are nonnegative, and so (19.16) is
valid, and the graph is stress-free. Together with the trivial implication (a)⇒ (b),
this proves the equivalence of conditions (a) and (b) in Theorem 15.11. (This
approach does not yield the equivalence of Henneberg’s condition 15.11(c).)

19.5. Matroids

Matroids are common generalizations of several “independence” notions (lin-
ear independence, algebraic independence, circuit-freeness in a graph). This con-
cept was introduced by [Whitney 1935]; independently, a couple of years later
[van der Waerden 1937] observed that linear and algebraic independence satisfy
the same basic properties. Here we recall some very basic facts only, which are nec-
essary for describing the matroid theoretic aspects of our discussions in this book.
There are several excellent monographs on the subject [Recski 1989], [Oxley 1992],
covering much more. In particular, the reader is referred to these monographs or
to any of the numerous survey articles for the proofs of the results quoted below.

19.5.1. Basics. A matroid is a pair (E,M), where E is a finite set andM⊆
2E is a family of its subsets called independent sets, satisfying the following axioms:

(M1) ∅ ∈ M;

(M2) If X ∈M and Y ⊆ X, then Y ∈M;
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(M3) If X,Y ∈M and |X| > |Y |, then there is an element x ∈ X \Y such that
Y ∪{x} ∈ M.

These axioms impose a lot of structure on the matroid. It follows that all max-
imal (by inclusion) independent subsets of a set S ⊆ E have the same cardinality,
which we call the rank of S, and denote by r(S). Maximal independent subsets of
E are called bases; they all have the same cardinality r(E), which we call the rank
of the matroid, and denote it simply by r.

Maximal subsets of S with a given rank are called flats. Flats of rank r−1
are called hyperplanes. Minimal dependent sets are called circuits. There are many
important properties of the rank function, of flats and of circuits; we need some
basic properties of the rank function only.

It will be useful to consider a larger class of setfunctions. Let f : 2E → R be a
setfunction. We say that f is monotone, if Y ⊆ X ⊆ E implies that f(Y ) ≤ f(X);
it is called submodular, if

f(X∩Y )+f(X∪Y ) ≤ f(X)+f(Y )

for every two sets X,Y ⊆ E. In this brief section we need integer-valued set-
functions only, but there are interesting examples of submodular setfunctions that
are not integer-valued (see Exercises 19.11-19.13). An integer valued, monotone,
submodular setfunction f with f(∅) = 0 is called a polymatroid. Restricting a
polymatroid to the set of elements of rank at most 1 we get a matroid.

The rank function of a matroid is integer valued, monotone and submodular,
and in addition it satisfies the trivial conditions that r(∅) = 0 and r({x}) ≤ 1 for
every x ∈ E. Conversely, these conditions characterize rank functions of matroids.

The terminology above already suggests that matroids are motivated by two
basic examples.

Example 19.19 (Linear matroids). In this most basic example, the underlying
set of the matroid as a finite set E ⊆ Kd (where K is any field), and independence
mean linear independence. The rank of a set is the dimension of the subspace it
generates, and flats are intersections of E with linear subspaces. We also say that
E represents the matroid over the field K.

Which matroids are representable over which fields? This question leads to a
deep and rich theory, which is, alas, beyond the scope of this book.

Many properties of sets of vectors used in this book are “matroidal” (depend
only on the matroid induced by these vectors). For example, E is in general position
if and only if it induces the matroid consisting of all sets of cardinality at most d.
This matroid is called the uniform matroid of rank d. As a special case, we get the
free matroid, in which every subset of E is independent. �

Example 19.20 (Graphic matroids). Let G = (V,E) be a multigraph, and
assume for convenience that it is connected. Let M consist of those subsets of E
that contain no cycles; in other words, they are edge-sets of those subgraphs of G
that are forests. Then (E,M) is a matroid, called the graphic matroid induced by
G. Then rank of (E,M) is n−1, the bases of (E,M) are the spanning trees of G,
and the circuits of (E,M) are the cycles in G.

Graphic matroids are all linear; in fact, they can be represented by vectors over
an arbitrary field K. �

Let us describe a third class of matroids, which is not as well studied as the
previous two, but is tied to the contents of this book, in particular to Section 19.2.
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Example 19.21 (Algebraic matroids). Let KK be a subfield of a field K1, and
let E ⊆ K1 be a finite set. LetM consist of those set X ⊂ E that are algebraically
independent over K. The (E,M) is a matroid, which we call an algebraic matroid
over the field K. The transcendence degree of a set of numbers, used in Section
19.2, is just the rank in this matroid. Some basic matroidal properties of algebraic
independence have been used implicitly in that section. �

Let us describe an example of very unstructured matroids, which can serve as
counterexamples of many conjectures motivated by the more structured examples
above.

Example 19.22 (Paving matroids). For a given rank r > 0 and underlying set
E, start with a family S of subsets of E such that the intersection of any two of
them has at most r−2 elements. Let M consist of all subsets X ⊆ E such that
|X| ≤ r, and |X∩A| < r for every A ∈ S. (In particular, every set of size r−1 or
less belongs to M.) Then (E,M) is a matroid, called the paving matroid induced
by S.

The paving matroid of rank 4 on the set {1, . . . , 8} induced by the family of
5 sets

{
{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6}, {3, 4, 7, 8}

}
, called the Vámos

matroid is an example of a matroid that is neither linear nor algebraic. �

We also need the following very simple example of a submodular setfunction.

Example 19.23. Let H be a hypergraph. We define a setfunction on the subsets
of E = E(H) by

f(S) = |∪S| =
∣∣∣ ⋃
A∈S

A
∣∣∣.

More generally, we can consider a family F of flats in a matroid (as the most
important special case, a family of finite dimensional linear subspaces of a linear
space), and define setfunction on the subsets of F by

f(S) = r(∪S) (S ⊆ F).

This setfunction is trivially integer valued, monotone, and satisfies f(∅) = 0. It
is not hard to see that it is submodular, so it is a polymatroid. A polymatroid
obtained from a family of linear subspaces is called linear. �

19.5.2. Duality. For a matroid (E,M), we construct its dual matroid
(E,M∗), in which a set X ⊆ E is independent if and only if E \X spans the
whole space in (E,M) (in other words, it contains a basis). It is not hard to verify
that this is indeed a matroid. It also follows that (M∗)∗ = M. The bases of M∗
are the complements of the bases of M. The rank function r∗ in the dual matroid
can be expressed by the formula

r∗(X) = r(E \X)+ |X|−r(E).

The construction of the Gale dual in Section C.3.4 implies that if a matroid (E,M)
is representable over a given field, then so is (E,M∗). Note that while the Gale
dual is not uniquely determined, its underlying matroid is.

The dual of a graphic matroid is not graphic in general; in fact, it is graphic if
and only if the graph is planar. If the graph is a planar map, then the dual of its
matroid is the matroid of the dual map.
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19.5.3. Generic points and hyperplanes. The Generic Point Lemma is
closely related to a purely matroid-theoretical result [Edmonds 1970]. One way
to introduce this is to construct an extension of a polymatroid (E, f) with a new
element a, of which we think of (for the sake of a geometric motivation) as a generic
k-dimensional “subspace” of an element b ∈ E in the polymatroid. Here the word
“generic” should mean that a “sticks out” of the span of any subset X ⊆ E as
much as submodularity allows. In formula:

(19.17) f(X∪{a}) = min{f(X)+k, f(X∪{b}).

It is not hard to very that this extended function is still a polymatroid on the
subsets of E∪{a}. In particular, we can extend (E, f) by a point (element of rank
1). Repeating this with all elements of E, and keeping track of the rank function,
we get the following theorem.

Theorem 19.24. If f : 2V → Z is a polymatroid, then

Mf = {X ⊆ V : |X∩S| ≤ f(S) for all S ⊆ V }

is a matroid, whose rank function is given by

r(X) = min
Y⊆X

(
f(Y )+ |X \Y |

)
.

Lemma 19.12 concerns the special case when the polymatroid is linear. In this
setting, the content of the theorem is that a generic choice of representative points
provides a linear representation of the matroid Mf . So Lemma 19.12 says less than
Theorem 19.24 in the sense that it concerns only linearly representable submodular
functions, but more in the sense that it gives a linear representation of the induced
matroid. This geometric view of matroid-theoretical results was worked out by
[Mason 1977].

Similarly, the Generic Hyperplane Theorem is closely related to a result about
submodular functions [Edmonds 1970]:

Theorem 19.25. If f : 2V → Z is a submodular setfunction that is nonnegative
on nonempty sets, then

f ′(X) = min
(
f(X1)+ · · ·+f(Xk)

)
(where {X1, . . . , Xk} ranges over all partitions of X into nonempty sets) defines a
submodular setfunction. �

Clearly f ′(∅ = 0. If f(∅) ≥ 0, then f ′(X) = f(X) for every nonempty set; so
the only interesting case is when f(∅) < 0. As a result on submodular setfunctions,
the last theorem says that f ′ “fixes” this problem of f : it is the unique submodular
setfunction that is nonnegative, f ′(∅) = 0, f ′(X) ≤ f(X) for X 6= ∅, and which
majorizes every other submodular setfunction with these properties.

What Lemma 19.18 adds to this result is that if g is a linear polymatroid defined
by nonnull subspaces, and we define f = g−1, then f ′ is a polymatroid realizable
by the family of intersections of these subspaces with a transcendental hyperplane.

This result can be combined with Theorem 19.24:

Corollary 19.26. Let f : 2V → Z be a submodular setfunction that is positive on
nonempty sets. Then

M′f = {A ⊆ V : |A∩X| ≤ f(X)−1 for all X ⊆ V, X 6= ∅}
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is a matroid, whose rank function is given by

r(X) = min
Y0,Y1,...,Yk

|Y0|+(f(Y1)−1)+ · · ·+(f(Yk)−1),

where {Y0, . . . , Yk} ranges over all partitions of X. �

Again, if f is linearly representable, then so is the matroid M′f . Starting with
the free matroid on a set V , we get the graphic matroid induced by the complete
graph on V .

19.5.4. Matroid sum. We have come to a point where a matroid theoretical
formulation of the results is not only be more general, but allows for a more elegant,
more conceptual treatment. Given two matroids (E,M1) and (E,M2) on a com-
mon underlying set, we can construct the set system M1∨M2 = {X1∪X2 : Xi ∈
Mi}, which we call the sum of the matroids (E,M1) and (E,M2).

Theorem 19.27. The set-system (E,M1∨M2) is a matroid. The rank function
r̂ of (E,M1∨M2) can be expressed in terms of the rank functions ri of (E,Mi)
as follows:

r̂(X) = maxY⊆X(r1(Y )+r2(X \Y )) = minY⊆X
{
r1(Y )+r2(Y )+ |X \Y |

}
. �

Note that this gives a min-max (NP∩co-NP) characterization of this rank func-
tion.

It is straightforward to define the sum (E,M1∨· · ·∨Mk) of k matroids
(E,Mj) on the same underlying set and generalize the above expressions for its
rank function. Corollary 19.16 is the special case when we add up the same lin-
ear matroid k times, and it generalizes to matroids in a straightforward manner
(Exercise 19.14).

19.5.5. Matroids and rigidity. Consider a vector labeling u of the complete
graphKn in Rd, where we assume that n ≥ d+1 to avoid some trivial complications.
Stress-free sets of edges of Kn define a matroid on E(Kn), which we call the d-
dimensional rigidity matroid of (Kn,u). For an explicitly known representation u,
we can do computations in this matroid using elementary linear algebra.

It is not hard to see that for a full-dimensional vector labeling u, the rank of
this matroid is dn−

(
d+1

2

)
(this specializes to our favorite value of 2n−3 for d = 2).

A graph on V (Kn) is rigid in this realization if and only if its edges form a basis of
this matroid.

Now assume that u is generic; trivially, this leads to the richest matroid on
E(Kn) (with the largest family of independent sets), which we call the generic
rigidity matroid on n elements.

In the case d = 2, we can invoke matroid theoretical results through the fol-
lowing argument. The setfunction |V (E)| (E ⊆ E(Kn)) is submodular (a special
case of Example 19.23), and hence so is the setfunction f(E) = 2|V (E)|−3. This
setfunction is nonnegative on every nonempty set of edges, but negative for E = ∅.
By Theorem 19.25, we can define a nonnegative setfunction f ′ by the formula

f ′(X) = min

k∑
i=1

f(Xi),

where {X1, . . . , Xk} ranges over all partitions of X into nonempty sets. We see
that f ′({x}) = 1 for every singleton set {x}, and so f ′ is the rank function of a
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matroid, which is just the rigidity matroid. The graph G is generically rigid if and
only if f ′(E) = 2n−3, and hence we get the partition condition for generic rigidity.

For higher d, we can also consider the submodular setfunction f(X) =

d|V (X)|−
(
d+1

2

)
, and “fix” it similarly as for d = 2. This is more complicated

than for d = 2, but the main problem is that, as we have seen, it does not capture
the generic rigidity matroid; it is a freer matroid for d > 2 and large enough n
(having more independent sets).

19.5.6. Graphs on matroids. The problems treated in Chapter 18 offer
themselves to a generalization to matroids. We can label the nodes of a graph G
by the elements of a matroid; it will be convenient to identify the nodes with their
labels, so we consider a graph whose nodes are the elements of a matroid. So we
consider pairs (G,M), where G is a finite graph and (V (G),M) is a matroid.

All the quantities introduced in Chapter 18 can be defined. We define τ(G,M)
as the minimum rank of a node-cover. We define a matching as a family of disjoint
edges whose union is independent in the matroid, and ν(G,M) as the maximum
cardinality of a matching.

Most of the results about covering and cover-critical graphs in Sections 18.2.1,
18.2.2 and 18.2.3 extend to this more general setting with essentially the same
proofs. The most notable exception is Theorem 18.8(b), whose proof uses more of
the algebra of linear spaces than just dependence-independence. For cover-critical
graphs on general matroids, only a weaker bound

(19.18) m ≤ 2τ(G,M)−1

seems to be known.
For matchings, the situation is worse: The problem of computing ν(G,M)

contains NP-hard problems for explicitly described matroids. To show a simple
example, let G be a graph and k ≥ ω(G). We want to decide whether ω(G) = k or
ω(G) < k. It is clear that this is an NP-hard task.

Consider the graph H = G�K2, and let F be the family of (2k)-cliques in H
(this may be an empty family). We define an almost trivial graph on U = V (H)
by connecting nodes (i, 1) and (i, 2) for every i ∈ V (G). All the information we
need about G goes into the matroid (U,M), which is the paving matroid of rank
2k defined by the family F . (Every (2k)-clique in H is of the form B×V (K2),
where B is a k-clique in H, so any two sets in F have at most 2k−2 elements in
common.) Now ν(G,M) = k if and only if ω(G) = k. So to determine ν(G,M)
for this graph on this matroid is NP-hard.

The matching problem for graphs on matroids can be solved in polynomial time
when the matroid is linear, but not in general. One can go beyond the class of linear
matroids: for example, it can be solved for algebraic matroids [Dress–Lovász 1987].
To illustrate how the same geometric argument can lead to very different results
when applied in different matroid models, let us state one version of this result.

Theorem 19.28. Let K1 ⊂ K2 be two fields, and let u1, . . . , un, v1, . . . , vn ∈ K2.
Then the maximum cardinality of a subset {i1, . . . , ik} ⊆ {1, . . . , n} such that
ui1 , vi1 , . . . , uik , vik are algebraically independent over K1 is given by the formula

min
{

degtr(K|K1)+

r∑
j=1

⌊1

2
degtr

(
{ui, vi : i ∈ Sj} |K

)⌋
,
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where the minimum is taken over all field extensions K of K1, and over all parti-
tions {S1, . . . , Sr} of {1, . . . , n}. �

A larger class of matroids to which the min-max theorem about matchings can
be extended was studied in [Björner–Lovász 1987]. However, the complexity of the
matroid matching problem is still not completely understood.

Exercise 19.1. Let ν(F) denote the maximum number of elements in a linearly
independent family F , and let τlin(F) be the minimum dimension of a subspace
intersecting every element of F in a nonzero vector. Prove that ν(F) ≤ τlin(F),
and show that equality does not hold in general.

Exercise 19.2. Prove Lemma 19.2.

Exercise 19.3. Construct a vector-labeling u of K4 such that τ(K4,u) = 3 but
τlin(FK4,u) = 2.

Exercise 19.4. For each edge ij of a framework (G,v), let Lij = lin{vi,vj}, and
let FG,v be the family of these subspaces. (a) Prove that ν(FG,v) = ν(G,v). (b)
Prove that if the vector labels are linearly independent, then τlin(FG,v) = τ(G,v).
(c) Prove that τlin(FG,v) ≤ τ(G,v) for all vector labels.

Exercise 19.5. Let A1, . . . , An be p-sets of points in Rn, and let B1, . . . , Bn be
q-dimensional subspaces of Rd.. Suppose that Ai∩Bi = 0 for all i, but Ai∩Bj 6= 0
for i < j (no condition on i > j). Prove that n ≤

(
p+q
p

)
.

Exercise 19.6. Let H be a family of 2-dimensional subspaces of a linear space,
such that rk(H) = 2|H|−2 and rk(H\{A}) = 2|H|−2 for every A ∈ H.
(a) Prove that there is a unique partition H = {H1, . . . ,Hk} such that

rk(F) =


2|F|−2 if F = H,
2|F|−1 if F contains exactly k−1 of the classes Hi,
2|F|, otherwise.

(b) Prove that if k ≥ 3, then lin(H\H1)∩· · ·∩ lin(H\Hk) 6= 0.

Exercise 19.7. Let L be a algebraic subspace of Rd and J , any other subspace.
(a) Prove that KL+J ⊆ KJ and KL∩J ⊆ KJ . (b) Prove that L/J is algebraic
within J⊥.

Exercise 19.8. Let L ⊆ Rd and J ⊆ L be subspaces. Prove that J is transcenden-
tal within L if and only if J has a basis obtained by taking r linear combinations
of a standard basis of L with coefficients algebraically independent over KL.

Exercise 19.9. Derive Theorem 15.16 from Corollary 19.16.

Exercise 19.10. Prove that every polymatroid can be represented by a family
of flats of a matroid as in Example 19.23.

Exercise 19.11. Let A1, . . . , An be random events, and for X ⊆ [n], define

f(X) = P
( ∧
i∈X

Ai
)
.

Prove that f is a submodular setfunction.

Exercise 19.12. Let a1, . . . ,an be linearly independent vectors in Rn. For X =
{i1, . . . , ik} ⊆ [n], let

f(X) = ln volk(P (ai1 , . . . ,aik )),

where P (ai1 , . . . ,aik ) denotes the (k-dimensional) parallelotope spanned by the
vectors ai1 , . . . ,aik . Prove that f is a submodular setfunction.
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Exercise 19.13. Let A be an n×n positive definite matrix, and let AX denote
the submatrix formed by its rows and columns in X (X ⊆ [n]). Prove that
ln det(AX) is a submodular setfunction.

Exercise 19.14. Let (E,M) be a matroid. Prove that E can be partitioned into
k independent subsets if and only if

k r(X) ≥ |X|
for every X ⊆ E.

Exercise 19.15. Let (V,M) be a matroid and H ⊆ 2V , a family of r-sets. Define
τM(H) as the minimum rank of a subset X ⊆ V meeting every set in H. Suppose
that H is critical in the sense that τM(H \{A}) < τM(H) for every A ∈ H. Prove
that

|H| ≤ rτM(H).



CHAPTER 20

Concluding Thoughts

We have seen a fairly large variety of geometric representations. Is there a
way to fit these into a single theory? Perhaps not, considering the abundance of
possibilities how the graph structure can be reflected in geometry. But while writing
this book, more and more common ideas between this variety of representations
have emerged. Let us describe some of these (admitting that they form a germ of
a coherent theory at most).

20.1. Non-degeneracy

A common theme in various geometric representations is that imposing non-
degeneracy conditions on the representation often makes it easier to analyze and
therefore more useful (most often, by eliminating the possibility of numerical co-
incidence). There are at least four types of non-degeneracy conditions that play a
role in several types of geometric representations (and so they pop up in several
chapters of this book). It is interesting that different non-degeneracy conditions can
be imposed on one and the same representation model, leading to different combi-
natorial conditions; we have seen this in connection with orthogonal representations
as well as with rigidity and motions of frameworks.

Faithfulness. This is perhaps the most natural non-degeneracy condition. As
a simple example, we want to represent a graph so that adjacent nodes are at unit
distance (recall Section 13.2.1). Such a representation is faithful, if nonadjacent
nodes have distance different from 1. We have seen in Section 10.4 that faith-
ful orthogonal representations behave quite differently from arbitrary orthogonal
representations. This is a very natural but often rather weak condition.

General position. Recall that a vector representation in Rd is in general po-
sition if no d+1 of the points are contained in a hyperplane. This property of
quite different geometric representations is often connected to the connectivity of
the graph. In Section 3.3, we characterized graph connectivity by the general posi-
tion of rubber band representations; in Section 10.3, by the existence of orthogonal
representations in general position; and in Section 15.5, by the existence of glob-
ally rigid bar-and-joint frameworks in general position. Orthogonal representations
in general position were the key to several properties of the variety of orthogonal
representations. A quantitative form of general position, “respecting the volume”,
lead us to an efficient approximation algorithm for the bandwidth of a graph.

Genericity. The most powerful nondegeneracy condition is that the represen-
tation is generic, which means that the coordinates of node positions (sometimes
other numerical data) are algebraically independent real numbers. This cannot
happen, of course, for a unit distance representation of any graph with at least one

385
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edge; but if we allow arbitrary prescribed distances instead of unit distances, then
generic representations may exist, playing a central role in the study of rigidity
properties and flexing of bar-and-joint frameworks (Sections 15.3 and 15.5).

Using generic points and projections was a basic tool in the study of matching
and covering in frameworks (Chapter 18). We did a general study of “genericity”
in subspaces, and applied it in the combinatorics of subspaces (Sections 19.2 and
19.4).

Genericity certainly avoids unwanted numerical coincidences between the data,
but it may seem quite far from anything practical; transcendental numbers are
almost impossible to explicitly describe and do computations with. But there is a
very simple way out: choose the coordinates randomly, independently and uniformly
from [0, 1]. With probability 1, these coordinates will be algebraically independent.
This seems to be of no help though, since to describe a random point of [0, 1],
we need infinitely many digits. Here is where general lemmas (see the Schwartz–
Zippel Lemma 3.12) come to help, showing that if any substitution for the variables
eliminates unwanted algebraic relations, then random choice from any sufficiently
large finite set does so.

Transversality. To be generic is a condition that is often too strong; this leads
us to what is (I feel) the deepest nondegeneracy notion, transversality (closely re-
lated to the Strong Arnold Property of matrices). This condition was introduced in
a general context in Section 10.5; recall that it means that, writing the constraints
on the representation as algebraic equations, the corresponding hypersurfaces in-
tersect transversally. Thus the existence and properties of the representation (the
intersection point of these hypersurfaces) are not just accidental, but forced by
some more fundamental structure. If a solution of the system is transversal, and
we perturb each equation by a small amount, then we get another solvable system
with a solution nearby.

In graph theory, this condition was first used by Colin de Verdière, in his
beautiful work on the “Colin de Verdiére number” (Chapter 16) and on a version
of tree-width (algebraic width, see Section 10.5) But in a sense, in the study of
rigidity of bar-and-joint frameworks, the transversality condition played a central
role ever since the study of such frameworks began in the 19th century: for such a
framework, it corresponds to stress-freeness, a central notion in Chapters 14 and
15.

Can we tell what kind of combinatorial properties are related to these different
kinds of nondegeneracy conditions? Probably not in general, but a couple of points
are worth mentioning.

As we have seen, representations in general position are often related to connec-
tivity properties of the graph. Connectivity properties of graphs have interesting
and somewhat surprising connections with geometric representations, and some-
times, through those, with topological properties. Various versions of the connec-
tivity property with respect to halfspaces (Section 16.5) are a good example.

Transversality was instrumental in proving minor-monotonicity of the Colin de
Verdière number and of algebraic width. Minor monotonicity is a basic feature of
a graph property or a graph parameter, and its connection with transversality is, I
feel, worth of further exploration.
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Genericity was used most substantially in Chapters 15 and 19, and has strong
matroid-theoretic connections. The interplay between the two matroids involved
(the linear matroid of the vector representation and the algebraic matroid of the
coordinates) is, I feel, not completely understood.

20.2. Duality

Many related but different forms of duality have played a role in this book.

• Gale duality, introduced in Section 19.4, is perhaps the simplest form of du-
ality. This construction is known under many aliases (dual chain group in matroid
theory, dual code in coding theory, Gale diagram in the theory of hyperplane ar-
rangements). We can carry out this construction for any vector representation of
a graph G, to get a dual vector representation. In some cases, this gives interest-
ing new constructions; for example, from cover preserving representations we get
independence preserving representations (recall Exercise 18.11).

• Matroid duality generalizes Gale duality, as well as the duality of planar
maps.

• Linear programming duality is a basic construction in linear programming
and through this, in much of applied mathematics.

• Semidefinite duality is a generalization of linear programming duality, treated
in detail in Chapter 13.

• Polarity is a duality construction in convex geometry, which is closely re-
lated to linear programming duality. Related duality notions are the blocking and
antiblocking relations for polyhedra in the nonnegative orthant (Section C.3). Po-
larity of 3-polytopes is a metric form of planar graph duality. A duality between
resistance and energy (as can be observed in Section 4.2.1) is related to blocking
duality.

• The Weak Perfect Graph Theorem, asserting that the complement of a per-
fect graph is perfect, expresses a certain duality. This can be extended to a full-
blown duality (anti-blocking relation) between the TSTAB bodies of a graph and
its complement, as described in Section 11.4. This duality goes back, ultimately,
to semidefinite duality, so it is quite interesting that it connects complementation
of graphs as well as to antiblocking of polytopes.

• Self-duality in various situations is also worth mentioning. We have met self-
polar polytopes (Example 11.16) and self-complementary graphs (Corollary 11.7).
Self-duality of nonnegative orthant and of the positive semidefinite cone are the
key ingredients behind the duality theory of linear and semidefinite programming,
respectively. Discrete holomorphic forms are the self-dual subspace of the space
of circulations on a map (those circulations which define a circulation on the dual
graph).

Not all duality-type phenomena are fully understood. The Gale dual is only
determined up to an affine transformation; for geometric representations with met-
ric properties (which is the majority), this dualization does not seem to be useful.
Yet in some cases more than the basic linear structure is dualized. We don’t have
a general theory for this, but let us briefly describe two examples.

We have mentioned a complete duality of the TSTAB bodies of a graph and
its complement. This is a duality between the profiles of the orthogonal representa-
tions. However, there is a duality-type relationship between the optimal orthogonal
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representations themselves. Consider an orthogonal representation (u, c) of a graph
G that is optimal with respect to a weighting w, and construct from it the following
matrix, adding the handle as a last column:

U = ((cTu1)u1, . . . , (c
Tu1)un, c)

Also construct a similar matrix from an optimal dual representation (with a little
twist in the sign of the last column):

W = ((dTv1)v1, . . . , (d
Tv1)vn,−d).

Then (11.48) expresses that every row of U is orthogonal to every row of W . If, in
addition, u is d-dimensional and v is r-dimensional with d+r = n+1, then W is
a Gale dual of U . These matrices have the additional property that (disregarding
the last column) any two columns are orthogonal either in U or in W . Is there a
deeper duality principle behind this observation?

Turning to our second example, Theorems 16.15 and 16.16 seem to indicate a
duality between the Colin de Verdère numbers of outerplanar/planar graphs and
their complements. This is thanks to two almost-dual geometric representations,
the nullspace representation of the graph and the 1-engaged representation of its
complement. But while the 1-engaged representation has strong metric properties,
it is unclear how to impose those on the nullspace representation, and the theory
is incomplete.

20.3. Very large graphs and their limits

It is more and more apparent that the notion of a network is fundamental for
many branches of science. The networks one studies are often very large, even huge
with billions of nodes, and investigating such large networks raises novel problems
and takes novel tools. For example, the graph may not be fully known or only
be inspectable by sampling (see the Introduction of [Lovász 2012] for a detailed
description).

Based on the applications of geometric representations in this book, one would
like to see how these geometric tools have to be modified to be applicable to very
large graphs. As an illustration, we may want to compute a useful representation,
say an optimal orthogonal representation in the sense of Section 11.1. Everything
we proved about such representations remains valid independently of how large the
graph is, but to compute the representation we need to know the whole graph, and
even then, its size may be prohibitive. What can be computed from the limited
information available (for example, from sampling)?

Very large graphs are often better understandable if we introduce limit objects
for sequences of graphs whose size goes to infinity, while becoming more and more
similar in an appropriate sense. Random graphs with a fixed edge density are simple
examples. We want to generalize geometric representation notions and results to
these limit objects. The expectation is that if we succeed in generalizing a graph
parameter or other graph-theoretic concept to the limiting case, then this indicates
its tractability for very large finite graphs.

There are several limit notions for graphs, and the possibilities of extending
geometric representation theory is quite different for different types of graphs and
limit notions. We discuss three of these. I tried to collect the rather sporadic results
about the types of representations considered in this book, and also add some
speculation about the possibilities for some of our main representation concepts.



20.3. VERY LARGE GRAPHS AND THEIR LIMITS 389

Dense limit. Convergence of a dense graph sequences was introduced in
[Borgs et al. 2008]. The limit object for a sequence of dense graphs has several
avatars. Geometric representations may mean different things even for equivalent
models.

• A graphon is a symmetric, measurable function [0, 1]2 → [0, 1]
[Lovász–Szegedy 2006]. This is the most commonly used description of the limit
object. Various basic notions of graph theory have been extended to graphons: sub-
graph densities, connectivity, spectrum, matchings, coloring etc. (See [Lovász 2012]
and also [Hladký–Rocha 2017] and the references there.)

Some geometric representations have nice extensions to graphons; for example,
the A-squared representation introduced in Section 9.3 can be defined for graphons,
as a vector-labeling from a Hilbert space (or from some other Lebesgue space). In
particular, the 2-neighborhood distance can be defined, and regularity partitions
can be generalized. Perhaps most importantly, several crucial compactness proper-
ties of graphons as well as of the space of graphons can be proved with the help of
this representation.

On the other hand, it seems to be difficult to generalize orthogonal representa-
tions to graphons. Can we generalize at least the graph parameter ϑ(G)? One has
to be careful about the normalization, to guarantee that the values converge for an
appropriately convergent graph sequence. Proposition 11.4 and inequality (11.35)
suggest that ϑ(G)/

√
n may be an interesting normalization. Let me raise a spe-

cific question: For every graphon W and every n, we can sample from the graphon
and obtain a “W -random graph” G(n,W ). Is it true that for every graphon W ,
ϑ(G(n,W ))/

√
n converges to a limit almost surely as n → ∞ (the limit may be 0

or ∞)?

• Another equivalent (cryptomorphic) form of limits of dense graph sequences
is a local random graph model on a countable set, which is a probability distribution
on (infinite) graphs on node set N, which is invariant under permutations of the
nodes, and has the “locality” property that observing two disjoint finite subsets of
the nodes (two “windows”), the subgraphs induced by them are independent (in the
probabilistic sense). This version has the advantage that the node set is countable,
so (for example) we can generate independent random weights for the nodes, which
(among others) allows us to define a random ordering of the nodes. Unfortunately,
I don’t know of any work exploiting this equivalent but different model.

• A third equivalent description of a limit object is a graph parameter expressing
the limiting densities of finite graphs in a convergent sequence of dense graphs. Such
parameters can be characterized by linear inequalities and semidefiniteness condi-
tions. This formulation is analogous (in a sense generalizes) the theory of moments
of random variables (see [Borgs–Chayes–Lovász 2010] and [Lovász–Szegedy 2010]
for details). Since moments of random variables have many geometric connections,
it is likely that such connections will be discovered for these graph parameters as
well.

Scaling limit. Turning to the case of sparse graphs (which are much more
relevant for applications), the first thing to note is that these graphs may be in-
teresting on various scales. The simplest way of defining these scales is the graph
distance. Since for sparse graphs the diameter may be very large, we may want to
scale the distances so that we keep the diameter of the graph fixed, or we may want
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to keep the edge lengths fixed (and not worry about the diameter). A limit object
in the first sense is called the scaling limit; this preserves global properties of the
graphs. A limit object in the second sense is called the local limit; this preserves
local properties of the graphs. As a very simple but useful example, the limit of
an n×n grid, as n → ∞, may be a full square in the plane, but also an infinite
grid—depending on what properties we are interested in.

Scaling limit is a rich and extensively studied limit notion for graphs, and we
encountered this notion several times, mostly in Chapter 8, but also (not under this
name) in Section 5.3, where conformal mappings were obtained as scaling limits of
coin representations.

Generally, we talk about scaling limits when the graph already has a geometric
representation. This is often rather simple (say, a lattice domain), and it is some
other feature whose limiting behavior is interesting. To define and describe scaling
limits without a predefined geometry (say, for bounded degree graphs which are
not planar or almost planar) would be very interesting.

Local limit. Local limit theory has been developed in the extreme case, when
the degrees are universally bounded by a number D (some extensions to the case
when the degrees are “almost bounded” are also available). There are again different
ways of describing limit objects; these are not completely equivalent, but closely
related.

• Involution-invariant random rooted graphs (also called unimodular networks)
is the original limit concept introduced in [Benjamini–Schramm 2001]. This is a
probability distribution on bounded-degree connected graphs with a specified root,
under a measure-preservation condition.

In this latter setting one can define random countable planar graphs, and use an
appropriate generalization of the coin representation (Theorem 5.1) to prove, among
others, that the random walk on a random countable planar graph is recurrent with
probability one. Appropriate generalizations of the square tiling theorems (Chapter
6) have applications in a similar fashion [Benjamini–Schramm 1996a].

Dual orthogonal representations in a finite dimension d > D exist in this setting,
and G-orthogonalization makes sense. Results in Section 10.3 remain valid mutatis
mutandis, but how many new problems and phenomena the infinite setting provides
remains an unexplored question.

• A graphing is a bounded-degree graph on [0, 1], whose edge-set is a Borel set
in the unit square, and a certain measure-preserving condition is satisfied. An easy
example is a circle, where diagonals of a fixed length are the edges.

The underlying space of a graphing is often a manifold, and in this case a
dual orthogonal representation means some sort of a vector field. Dual orthogonal
representations in dimension d > D exist on every connected component, but it
is unclear whether they can be chosen in a measurable (let alone continuous or
smooth) way. Would such a representation tell us anything interesting about the
combinatorial structure of the graphing?

20.4. Graphs and geometry

The interplay between graph problems and geometry has many forms. Often
the graph we want to study comes together with a predefined geometric represen-
tation, and the issue is to test certain mathematical and physical properties of the
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resulting structure, or compute some parameters that connect combinatorial and
geometric structure. Typical of this problem setting is the rigidity of bar-and-joint
frameworks. Some basic graph theoretic questions have interesting and natural
extensions to this situation, as in Chapter 18, where instead of asking for the min-
imum number of nodes covering all edges, we asked for the minimum rank of such
a set. Besides raising interesting questions, this extension of the problem was es-
sential for the solution of a basic problem of classifying cover-critical graphs in the
original (geometry-free) setup.

This leads us to the really interesting combination of geometric and combina-
torial ideas: we start with just a graph and a purely combinatorial problem. We
try to find a way to represent a graph in a “good” form, helping to find the answer
to the combinatorial question. Visualizing the structure of the graph this way may
in itself be very useful, but the most interesting cases are when a proof uses this
geometric structure in an essential way. Determining the Shannon capacity of the
pentagon (as described in the Introduction) is a good example of such a proof.

As it is to be expected in mathematics, the two different starting aspects above
cannot be strictly separated. For example, Tutte’s rubber band method produces
a nice planar drawing for planar graphs, but then it can be applied in connectivity
algorithms, and the basic physical notion it leads to, namely the notion of a stress,
is fundamental in rigidity theory.

These connections with physics are classical, but new connections seem to
emerge, as discussed Chapters 8 and 12. The connection with quantum physics
is particularly tantalizing. After all, in quantum physics one assigns vectors in a
linear space to the states of a physical system, even if these states form a discrete
set; and the mathematical methods discussed in this book do the same. I think
that the material in the last chapter is only the tip of the iceberg.

The boundaries of geometry cannot be sharply drawn, and further connections
between graph theory and other areas of geometric nature could have been included
in our book:

• It is difficult to draw a border between geometry and linear algebra, and
there are many applications of linear algebra in graph theory and other areas of
combinatorics, which can now be considered classical, and are not treated in this
book. The lecture notes [Babai–Frankl 1992] provide an excellent introduction to
this method.

•One highly developed interface between geometry and combinatorial questions
(mostly combinatorial optimization) is polyhedral combinatorics. Since thousands
of pages have been written about this topic, I decided not to treat it in this book
as a topic on its own right. (Of course, some of its basic results I had to use in
the presentation of other topics.) I refer to [Schrijver 2003] for a comprehensive
treatment of polyhedral combinatorics.

• The applications of combinatorial and algebraic topology in the solution of
combinatorial problems also has its successes, but it is a method with a quite
different flavor, and I have not treated it in this book. [Matoušek 2003] gives a nice
introduction to this area.

• In this book, we considered geometry over the real field (with some excursions
to the complex numbers and a brief excursion to finite fields in Section 3.3). One
could expect that geometry over finite fields, while perhaps somewhat less expressive
visually, is even more closely tied to combinatorial problems. There are indeed many
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connections, from error-correcting codes to expander graphs to quasirandom graphs
to Ramsey theory.

I am certain that many new results of this nature will be obtained in the future
(or are already in the literature, sometimes in a quite different disguise). Whether
these will be collected and combined in another monograph, or integrated into
science through some other platform provided by the fast changing technology of
communication, I cannot predict. But the beauty of nontrivial connections between
combinatorics, geometry, algebra and physics will remain here to inspire research.



APPENDIX A

Linear Algebra

A.1. Vectors, matrices and vector labelings

Usually we define vectors as elements of Rd for some nonnegative integer d, and
we think of them as column vectors (unless said otherwise). But it will be useful to
consider, for a finite set V , every map V → R as a vector. These vectors form the
linear space RV . If we label the elements of V by 1, . . . , n, then RV is isomorphic
Rn in a trivial way. Using the notation [n] = {1, . . . , n}, the spaces R[n] and Rn
are identical.

Similarly, matrices can mean any map A : U×V → R, where U and V are
finite sets; we call this a U×V matrix, and the space of all such matrices will be
denoted by RU×V . We also say that the rows of A are indexed by the elements of
U , and the columns, by elements of V .

A U×V matrix A can also be thought of as a map a : V → RU . In this way, it
corresponds to a vector labeling of the set V , assigning to i ∈ V the vector ai ∈ RU .
We also write (ai : i ∈ V ) for such a matrix, and define the rank of the set of
labeling vectors as rk{ai : i ∈ V } = rk(A).

A basis of a set of vectors S ⊆ RV is a subset of S that is linearly independent
and spans the same linear subspace as S. A column basis of a matrix A ∈ RU×V is
a basis of the set of its columns. If we think of A as a vector labeling a : V → RU ,
then it will be convenient to call a subset X ⊂ V a basis for a if {ai : i ∈ X} is a
column basis of A.

The all-1 vector in dimension d is denoted by 1d. The d×d identity matrix
is denoted by Id, the all-one matrix of the same dimensions, by Jd. The vector
1S ∈ RV and the matrices IS , JS ∈ RS×S are defined similarly for every finite set
S. In the case when the coordinates are indexed by the set V (usually the node set
of the graph G) we omit the subscript: 1 ∈ RV and I, J ∈ RV×V . If A is some
logical assertion, then 1(A) = 1 if A is true and 1(A) = 0 otherwise. The vector
1S is the incidence vector of the set S: (1S)i = 1(i ∈ S) (where the universe is
understood). The vectors ei ∈ Rd having 1 in the i-th position and 0 elsewhere
form the standard basis of Rd. The standard basis of RV can be defined analogously.

For two subsets A,B ⊆ Rd, we define A+B = {a+b : a ∈ A, b ∈ B}. The
set A−B is defined analogously. For a subset A ⊆ Rd, we denote by A⊥ the set of
vectors orthogonal to all vectors in A. We need, for linear subspaces A and B, the
elementary relations (A⊥)⊥ = A and (A+B)⊥ = A⊥∩B⊥.

For v ∈ Rd, we denote by |v| its Euclidean norm, and by v0 = (1/|v|)v, the
unit vector in the direction of v (this is only defined for v 6= 0).

393
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A.2. Eigenvalues

Let A be an n×n real matrix. An eigenvector of A is a nonzero vector such
that Ax is parallel to x; in other words, Ax = λx for some real or complex number
λ. This number λ is called the eigenvalue of A belonging to eigenvector v. Clearly
λ is an eigenvalue if and only if the matrix A−λI is singular, equivalently, if and
only if det(A−λI) = 0. This is an algebraic equation of degree n for λ, and hence
has n roots (with multiplicity).

The trace of the square matrix A = (Aij) is defined as

tr(A) =

n∑
i=1

Aii.

The trace of A is equal to the sum of the eigenvalues of A, each taken with the
same multiplicity as it occurs among the roots of the equation det(A−λI) = 0.

We can think of n×m matrices as vectors with nm coordinates. For two
matrices of the same shape, A,B ∈ Rn×m, we define their inner product by

A ·B = tr(ATB) =

n∑
i=1

m∑
j=1

AijBij .

This should not be confused with the matrix product, but it is related:

A ·B = tr(ATB).

If the matrix A is symmetric, then its eigenvalues and eigenvectors are par-
ticularly well behaved. All the eigenvalues are real, and there is an orthonormal
basis v1, . . . , vn of the space consisting of eigenvectors of A. Let λ1 ≥ · · · ≥ λn be
the corresponding eigenvalues, then they are precisely the roots of det(A−λI) = 0.
The matrix A can be written as

A =

n∑
i=1

λiviv
T
i .

Another way of saying this is that every symmetric matrix can be written as UTDU ,
where U is an orthogonal matrix and D is a diagonal matrix. The eigenvalues of A
are just the diagonal entries of D.

The largest eigenvalue of a symmetric matrix can be expressed by the Rayleigh
quotient:

λ1 = max
x∈Rn\0

xTAx

|x|2
,

and every maximizer is an eigenvector belonging to λ1. This formula generalizes:
if we know the first i−1 eigenvectors v1, . . . , vi−1, then the i-th largest eigenvalue
can be expressed by the i-th Rayleigh quotient:

λi = max
xTAx

|x|2
,

where the maximization is over all vectors x ∈ Rn such that x 6= 0 but vTjx = 0 for
j = 1, . . . , i−1. Again, every maximizer is a corresponding eigenvector.

A principal minor of A is a submatrix B obtained by deleting some rows and the
corresponding columns. The following important theorem was proved by Cauchy.
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Theorem A.1 (Interlacing eigenvalues). Let A be an n×n symmetric matrix
with eigenvalues λ1 ≥ · · · ≥ λn. Let B be an (n−k)×(n−k) principal minor of A
with eigenvalues µ1 ≥ · · · ≥ µn−k. Then

λi ≥ µi ≥ λi+k.

We conclude this little overview with a further basic fact about eigenvectors of
nonnegative matrices. The following classical theorem concerns the largest eigen-
values and the eigenvectors corresponding to it.

Theorem A.2 (Perron-Frobenius). If an n×n matrix has nonnegative entries,
then it has a nonnegative real eigenvalue λ which has maximum absolute value
among all eigenvalues. This eigenvalue λ has a nonnegative real eigenvector. If, in
addition, the matrix has no block-triangular decomposition (i.e., it does not contain
a k×(n−k) block of 0-s disjoint from the diagonal), then λ has multiplicity 1 and
the corresponding eigenvector is positive.

For us, the case of symmetric matrices is important; in this case the fact that
the eigenvalue λ is real is trivial, but the information about its multiplicity and the
signature of the corresponding eigenvector is used throughout the book.

A.3. Semidefinite matrices

A symmetric n×n matrix A is called positive semidefinite, if all of its eigen-
values are nonnegative. This property is denoted by A � 0. The matrix is positive
definite, if all of its eigenvalues are positive.

There are many equivalent ways of defining positive semidefinite matrices, some
of which are summarized in the Proposition below. We need a definition: the Gram
matrix of n vectors u1, ...,un ∈ Rd is the matrix Gram(u) = Gram(u1, . . . ,un) =
(aij)

n
i,j=1, where aij = uT

iuj . If U is the matrix with columns u1, . . . ,un, then

A = UTU . The matrix A does not determine the vectors ui uniquely, but almost:
since the inner products of the vectors ui are determined, so are their lengths and
mutual distances, and hence two representations of the same matrix differ only in
an isometric linear transformation of the space.

Proposition A.3. For a real symmetric n×n matrix A, the following are equiva-
lent:

(i) A is positive semidefinite;

(ii) the quadratic form xTAx is nonnegative for every x ∈ Rn;

(iii) A can be written as the Gram matrix of vectors u1, . . . ,un ∈ Rd for some
d. The smallest dimension d from where the vectors ui can be chosen is the rank
of A.

(iv) A is a nonnegative linear combination of matrices of the type xxT;

(v) The determinant of every principal minor of A is nonnegative. �

It follows that the diagonal entries of any positive semidefinite matrix are non-
negative, and it is not hard to work out the case of equality: all entries in a row or
column with a 0 diagonal entry are 0 as well. In particular, the trace of a positive
semidefinite matrix A is nonnegative, and tr(A) = 0 if and only if A = 0.
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Even though above we have described a large collection of equivalent neces-
sary and sufficient conditions for semidefiniteness, simpler sufficient conditions are
useful. One of these is being diagonally dominant: If a real symmetric matrix
A ∈ Rn×n satisfies aii ≥

∑
j 6=i |aij | for every row, then A is positive semidefinite.

The sum of two positive semidefinite matrices is again positive semidefinite (this
follows e.g. from (ii) again). The simplest positive semidefinite matrices are of the
form aaT for some vector a. These matrices are precisely the positive semidefinite
matrices of rank 1. Property (iv) above shows that every positive semidefinite
matrix can be written as a sum of rank-1 positive semidefinite matrices.

The product of two positive semidefinite matrices A and B is not even sym-
metric in general (and so it is not positive semidefinite); but the following can still
be claimed about the product:

If A and B are positive semidefinite matrices, then A ·B = tr(AB) ≥ 0, and
equality holds if and only if AB = 0. A matrix A is positive semidefinite if and
only if A ·B ≥ 0 for every positive semidefinite matrix B.

Property (v) above provides a way to check whether a given matrix is positive
semidefinite. This works well for small matrices, but it becomes inefficient very
soon, since there are many symmetric minors to check. An efficient method to test
if a symmetric matrix A is positive semidefinite is the following algorithm:

Carry out Gaussian elimination on A, pivoting always on diagonal entries. If
you ever find a negative diagonal entry, or a zero diagonal entry whose row contains
a nonzero, stop: the matrix is not positive semidefinite. If you obtain an all-zero
matrix (or eliminate the whole matrix), stop: the matrix is positive semidefinite.

If this simple algorithm finds that A is not positive semidefinite, it also provides
a certificate in the form of a vector v with vTAv < 0.

x
11

x
12

x
22

Figure A.1. The semidefinite cone for dimension 2.

Positive semidefinite matrices have some important properties in terms of the
geometry of the space Rn×n. The fact that the sum of two positive semidefinite
matrices is again positive semidefinite (together with the trivial fact that every
positive scalar multiple of a positive semidefinite matrix is positive semidefinite),
translates into the geometric statement that the set of all positive semidefinite
matrices forms a convex closed pointed cone P in Rn×n with vertex 0.

This cone P is important, but its structure is quite nontrivial. In particular, it
is not polyhedral for n ≥ 2; for n = 2 it is a nice rotational cone (Figure A.1; the
fourth coordinate x21, which is always equal to x12 by symmetry, is suppressed). For
n ≥ 3 the situation becomes more complicated, because P is neither polyhedral nor
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smooth: any matrix of rank less than n−1 is on the boundary, but the boundary
is not differentiable at such points.

A.4. Geometric spaces

A.4.1. Linear, affine and projective spaces. While from an algebraic
point of view linear spaces are most basic, in a geometric setting it is often more
convenient to use (real) affine and projective spaces. An affine space is simply a
linear space where the location of the origin is forgotten. To be precise, all we need
to do is to define an affine subspace A of a linear space Rd as a translation of a
linear subspace L ⊆ Rd by a vector a: A = L+a. Two affine subspaces of the same
dimension are parallel, if they are translates of the same linear subspace.

Projective spaces can be defined in two ways. The shortest way to construct a
projective space P d−1 from a linear space Rd is by deleting the origin and identifying
parallel vectors. Projective subspaces are the images of linear subspaces under this
identification. An important point to remember is that the dimension of P d−1 is
one less than the dimension of Rd. In particular, a projective plane is obtained
from a linear 3-space this way.

If we consider coordinates, then a point in the projective (d−1)-space can be
represented by a nonzero vector in Rd, whose entries are called its homogeneous
coordinates. We have to keep in mind that two vectors which are nonzero scalar
multiples of each other represent the same projective point. Each projective (d−2)-
dimensional hyperplane corresponds to a (d−1)-dimensional linear subspace. This
can be described by an equation aTx = 0. The entries of the vector a are the
homogeneous coordinates of the hyperplane. From this description it is clear that
we can interchange the roles of points and hyperplanes in projective spaces.

Another way of constructing a projective space is to start with an affine space,
and extend it with ideal points, where an ideal point is created for each maximal
family of parallel lines. The ideal point becomes an element of each line in this par-
allel family. The set of all ideal points is the ideal hyperplane. Every affine subspace
is extended to a projective subspace by including the ideal points of lines contained
in it; projective subspaces constructed this way are called ordinary. Additional ideal
projective subspaces are formed by the ideal points added to an affine subspace; in
other words, ideal subspaces are the intersections of ordinary subspaces with the
idea hyperplane. Extension with ideal points does not change the dimension of an
affine space.

In the first construction of projective spaces, it is clear that all subspaces of
the same dimension are “alike”, i.e., they can be transformed into each other by
linear transformations of V . So even if the second construction seems to distinguish
between ordinary and ideal subspaces, this is just an artifact of the construction
method.

For this book, the significance of these constructions is that they allow us
to represent configurations of linear subspaces of a d-dimensional linear space as
configurations of subspaces of a (d−1)-dimensional projective space (Figure A.2,
which we can visualize in a (d−1)-dimensional affine space (where we either don’t
need to think about ideal points, or visualize them as “infinitely distant”).

A.4.2. Circle geometry. Linear, affine and projective geometries are built
on (straight) lines, planes and flats. There is another beautiful piece of geometry



398 A. APPENDIX

Figure A.2. A family of 2-dimensional linear subspaces in 3-
space, and their picture as lines in the projective plane.

built on circles and spheres. We are going to need some of its basic facts, which are
summarized here.

For a radius r > 0, a ball is the set of points at a distance at most r from a
given point x called its center. Its boundary is a (d−1)-sphere. The unit ball in
Rd is the set Bd = {x ∈ Rd : |x| ≤ 1}, and the unit sphere is the set Sd−1 = {x ∈
Rd : |x| = 1}. We can talk about a lower dimensional ball or sphere in Rd: this is
a ball or sphere in an affine subspace. The intersection of a sphere with an affine
subspace or with another sphere is either a sphere, or a point, or empty.

The intersection of a sphere S with a closed affine halfspace H, assuming it is
not empty, not the whole sphere, and not a single point, is called a cap. The cap is
proper if H does not contain the center of the sphere.

For a cap C on the sphere S, there are three possible points that can be thought
of as its “center”. Let us assume, for simplicity, that S = Sd−1, and we are working
in Rd. The line ` through the center of S orthogonal to the halfspace H intersects
the sphere at two points, one of which belongs to the cap; we call this the center of
the cap. The line ` intersects the boundary of H at a point, which we call the inner
center of the cap. Finally, assuming that the cap is proper, ` contains a point from
which the visible part of the sphere is exactly C; we call this point the pole of the
cap.

Inversion. Also called “reflection in a sphere”, inversion is an involution of the
d-space. To be more precise, inversion with respect to the a (d−1)-dimensional
sphere S ⊂ Rd centered at the origin and with radius r is defined as the map

(A.1) x 7→ r2

|x|2
x.

Inversion with respect to a sphere with another center can be defined by shifting
the coordinate system accordingly. This definition is valid in every dimension, but
we will use it mostly in dimension 2.

The points of the sphere are fixed by this transformation, and interior points
are mapped onto exterior points and vice versa. For the origin, inversion is not
defined by (A.1). We can say that this involution is a transformation of Rd \{0},
or—often better—we can add a “point at infinity”, denoted by ∞, and define 0
and ∞ to be images of each other. The inner center and pole of a proper cap are
inverses of each other (Figure A.3).

Perhaps the most important property of involution is that it is sphere-
preserving. More precisely, inversion preserves the set of (d−1)-dimensional spheres
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Figure A.3. Left: A pair of inverse points as the center and pole
of a cap on a 1-dimensional sphere. Right: The inverse of a circle.

and hyperplanes (we can consider hyperplanes as degenerate spheres). Hyperplanes
through the origin are mapped onto themselves. Hyperplanes not going through the
origin are mapped onto spheres going through the origin, and vice versa. Spheres
not going through the origin are mapped onto spheres not going through the origin.

Inversion also preserves angles between two smooth curves intersecting each
other, in particular it preserves angles between intersecting circles and/or lines.

Stereographic projection. Let S be a sphere in the d-dimensional space, and let
a ∈ S be any point on the sphere, and let b be its antipode. Let H be a hyperplane
orthogonal to the diagonal a−b, not going through ab. Projecting the sphere from
ab onto H is called stereographic projection. While this definition is important in
every dimension, we will use it mostly in dimension 3. Sometimes we call a the
“North pole”, and its antipode, the “South pole” (Figure A.4).

The choice of H is not very important: replacing it by another, parallel hyper-
plane results only in a homothetical transformation in the plane. The plane H is
sometimes chosen to be tangent to S at the South pole, sometimes passing through
the center of the sphere; the former choice has the advantage that it is almost an
isometry near the South pole; the latter, that it leaves the equator invariant. The
inverse stereographic projection, projecting the plane onto the sphere from a to S,
is also used here and there in this book.

Figure A.4. Stereographic projection of a circle.

A little computation shows that (assuming H is the hyperplane tangent to S
at the South pole) stereographic projection can be thought of as inversion with
respect to the sphere centered at the North pole and going through the South pole.
This implies that stereographic projection and its inverse map circles and lines onto
circles and/or lines, and preserve the angle between them.
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Möbius transformations. Let us restrict our attention to a 2-sphere S. We
consider bijective homeomorphisms of S onto itself that map circles onto circles; we
call such a map circle-preserving. A trivial example is the reflection of the sphere in
a plane through its center; this reverses the orientation of circles. Circle-preserving
maps that also preserve the orientation are called Möbius transformations. It is
easy to see that every circle-preserving orientation-reversing map can be obtained
as a Möbius transformation followed by a reflection.

These transformations of a sphere S can be described in various ways. Möbius
transformations are exactly those maps of the form

z 7→ az+b

cz+d
,

−c
d
7→ ∞, ∞ 7→ a

c
.

(where a, b, c, d are complex numbers such that ad−bc 6= 0, and the sphere S is
identified with C∪{∞}). Circle-preserving transformations of S can be obtained
from projective transformations of the projective 3-space keeping S invariant, by
restricting them to S. We can also apply a stereographic projection of S to a plane
not necessarily tangent to S (keeping in mind that the North pole is mapped onto
an additional point∞), move the plane to some other position in space, and project
it back. Inversion with respect to another sphere S′ orthogonal to S, restricted to S,
is a circle preserving, but orientation reversing transformation of S, and every circle
preserving transformation of S can be decomposed as a product of such inversions.

Circle-preserving transformations of S2 form a group M, of which Möbius
transformations form a subgroup M of index 2. Another subgroup is the group
O(3) of orthogonal transformations (isometries of the sphere). We will need the
fact that every finite subgroup of M is conjugate to a subgroup of O(3).

A.4.3. Cross ratio. The cross ratio (v1 : v2 : v3 : v4) of four vectors
v1,v2,v3,v4 in a 2-dimensional subspace of a linear space, no two of which are par-
allel, is defined as follows: we can write v3 = λ1v1 +λ2v2 and v4 = µ1v1 +µ2v2,
and define

(v1 : v2 : v3 : v4) = (λ1µ2)/(λ2µ1).

This number is invariant under scaling of the vectors vi by nonzero real numbers,
which implies that the cross-ratio can be defined for any four distinct collinear
points in a projective space. Under duality, cross-ratio can be defined for any four
distinct hyperplanes sharing a hyperline.

A much more significant property of the cross-ratio of vectors is that it is invari-
ant under linear transformations of the linear space (equivalently, under projective
transformations of the projective space). In particular, projecting a line ` in the
projective space onto another line `′ from any point not on either one of them, the
cross ratio of any four points is preserved.

Cross ratios are also important in circle geometry. For four points u, v, w, z in
the complex plane, we can define the complex cross ratio

(u : v : w : z) =
(w−u)(z−v)

(w−v)(z−u)
.

This quantity is real if and only of the four points are on a circle or on a line. It is
invariant under Möbius transformations of the complex plane (see Section A.4.2).
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A.4.4. Rank, dimension and hull. One potentially confusing thing about
these different spaces is that notions like “hull” and “rank” mean different con-
structions. In each case, the “hull” of a set is the smallest subspace containing it,
a set of points is “independent”, if no element of it is contained in the hull of the
others, and the “rank” of a set is the maximum size of an independent subset of it.
Specifically, we define its linear hull of a subset S ⊆ Rd as

lin(S) =
{ k∑
i=1

xiai : ai ∈ S, xi ∈ R, k ∈ N
}
,

and its affine hull as

aff(S) =
{ k∑
i=1

xiai : ai ∈ S, xi ∈ R,
∑
i

xi = 1, k ∈ N
}
.

The rank rk(S) = dim(lin(S)) is just the rank of the matrix A whose columns are
the vectors in S. We define the affine rank rkaff(S) is the rank of the matrix

(
1

A

)
.

We define the convex hull: of S ⊆ Rd by

conv(S) =
{ k∑
i=1

xiai : ai ∈ S, xi ∈ R, xi ≥ 0,
∑
i

xi = 1, k ∈ N
}
.

There are some relations between these notions, like

conv(S) ⊆ aff(S) ⊆ lin(S), and aff(S) = S+lin(S−S).

For a family F of subsets of Rd, we use the notation

rk(F) = rk
(
∪F
)

= rk
( ⋃
L∈F

L
)
.

If J ⊆ Rd is a subspace, then for every vector a, we denote by a/J its orthogonal
projection onto the orthogonal complement J⊥ of J . For any subset X ⊆ Rd, the
set X/J is defined analogously.

Generalizing linear independence of vectors, we will call a family {L1, . . . Lm}
of non-null linear subspaces of Rd linearly independent, if every set of nonzero
vectors x1, . . . , xn, where xi ∈ Li, is linearly independent. Two subspaces are
linearly independent if any only if their intersection is the zero subspace. There are
equivalent definitions, whose equivalence is easy to prove, but it is useful to collect
them in a Proposition.

Proposition A.4. For a family L = {L1, . . . Lm} of non-null linear subspaces of
Rd, the following are equivalent:

(a) {L1, . . . Lm} are linearly independent.

(b) Every Li intersects lin(L1∪· · ·∪Li−1) in the zero subspace (i = 2, . . . ,m).

(c) Whenever xi ∈ Li and x1 + . . . xm = 0, then x1 = · · · = xm = 0.

(d) dim(L1 + · · ·+Lm) = dim(L1)+ · · ·+dim(Lm).

(e) For any two indices 1 ≤ i < j ≤ m, we have

lin(L\{Li})∩ lin(L\{Lj}) = lin(L\{Li, Lj})
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In the language of projective spaces, we say that a set of projective subspaces is
independent, if the corresponding linear subspaces are linearly independent. Propo-
sition A.4 can be reformulated: for example, a family of subspaces in a projective
space is independent if and only if each of them is disjoint from the (projective)
subspace spanned by the others. If the family consists of k lines, then they are
independent if and only if they span a (2k−1)-dimensional subspace.

A.5. Exterior algebra

A.5.1. Cross product. The following construction is probably familiar from
physics to most readers. For a,b ∈ R3, we define their cross product as the vector

(A.2) a×b = |a| |b| sinφu,

where φ is the angle between a and b (0 ≤ φ ≤ π), and u is a unit vector in
R3 orthogonal to the plane of a and b, so that the triple (a,b,u) is right-handed
(positively oriented). The definition of u is ambiguous if a and b are parallel, but
then sinφ = 0, so the cross product is 0 anyway. The length of the cross product
gives the area of the parallelogram spanned by a and b.

The cross product is distributive with respect to linear combination of vectors,
it is anticommutative: a×b = −b×a, and a×b = 0 if and only if a and b are
parallel. The cross product is not associative; instead, it satisfies the Expansion
Identity

(A.3) (a×b)×c = (aTc)b−(bTc)a,

which implies the Jacobi Identity

(A.4) (a×b)×c+(b×c)×a+(c×a)×b = 0.

Another useful replacement for the associativity is the following.

(A.5) (a×b)Tc = aT(b×c) = det(a,b, c)

(here (a,b, c) is the 3×3 matrix with columns a, b and c).
Sometimes we use the cross product in the special case when the vectors lie in

a fixed plane Π. Let k be a unit vector normal to Π, then a×b is Ak, where A
is the signed area of the parallelogram spanned by a and b (this means that A is
positive if and only if a positive rotation takes the direction of a to the direction
of b, when viewed from the direction of k). In this case all the information about
a×b is contained in this scalar A, which in tensor algebra will be denoted by a∧b
(see below).

A.5.2. Exterior product. A couple of times we need the more general con-
struction of exterior product. We need to define a k-tensor over the vector space
V = Rd as a map T : V k → R that is linear in each variable. This is more restric-
tive than the usual definition, but it will suffice for our purposes. The simplification
means that we identify V with the space V ∗ of linear functionals on V : a vector
y ∈ Rd acts on Rd by x 7→ yTx. All k-tensors form a linear space of dimension dk.

A tensor is antisymmetric, if interchanging two variables multiplies the func-
tion value by −1. Perhaps the most important example is the determinant
det(v1, . . . ,vd) (v1, . . . ,vd ∈ Rd). All antisymmetric k-tensors form a linear space

∧kV of dimension
(
d
k

)
. In particular, there are no nontrivial antisymmetric k-

tensors for k > d, and antisymmetric d-tensors are scalar valued and just constant
multiples of the determinant.
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Every k-tensor T gives rise to an antisymmetric one by antisymmetrization:

AT (v1, . . . ,vk) =
1

k!

∑
π∈Sk

sgn(π)T (vπ(1), . . . ,vπ(k)).

The tensor product of two tensors T and S is defined simply as the product of
functions, with disjoint sets of variables:

(T ◦S)(v1, . . . ,vd, w1, . . . , wr) = T (v1, . . . ,vd)S(w1, . . . , wd).

For two antisymmetric tensors, this product is not antisymmetric, but it can be
made antisymmetric; this way we define their exterior product

T ∧S = A(T ◦S).

Every vector u ∈ Rd can be considered as 1-tensor, since it defines a linear map
x 7→ uTx, which is trivially antisymmetric. We can define the exterior product of
two vectors:

u∧v =
1

2
(u◦v−v◦u),

or indeed, any number of vectors:

u1∧· · ·∧uk = A(u1 ◦· · ·◦uk).

Antisymmetric k-tensors of the form u1∧· · ·∧uk generate the space ∧kV ; in fact,
it suffices to restrict u1, . . . ,uk to elements of any fixed basis. We consider the
tensors ei1 ∧· · ·∧eik (1 ≤ i1 < i2 < · · · < ik ≤ d) as the standard basis in ∧kV .
It is not hard to see that u1∧· · ·∧uk 6= 0 if and only if u1, . . . ,uk are linearly
independent.

From the dimension formula it follows that ∧kV ∼= ∧d−kV . In fact, we can
consider a tensor v1∧· · ·∧vd−k as a linear functional on ∧kV acting as

(v1∧· · ·∧vd−k)[u1∧· · ·∧uk] = det(u1, . . . ,uk,v1, . . . ,vd−k)

(extending linearly to ∧kV and ∧d−kV ). This gives an explicit identification be-
tween ∧kV and ∧d−kV . If u,v ∈ R3, then u∧v ∈ ∧2R3 ∼= R3, and so u∧v can be
considered as a vector in R3. It is easy to check that this vector is just the cross
product u×v.

If u1, . . . ,uk and v1, . . . ,vk are two sets of linearly independent vectors, then
u1∧· · ·∧uk and v1∧· · ·∧vk are nonzero scalar multiples of each other if and only
if lin(u1, . . . ,uk) = lin(v1, . . . ,vk). So if U is a linear subspace of Rd, then the
exterior product of a basis of U is an encoding of the subspace that is (almost, up
to a nonzero scalar) independent of the basis selected, and we will denote it by TU .
If U and W are two linear subspaces, then TU ∧TV 6= 0 if and only if U ∩V = 0; in
this case, TU ∧TV = TU+V .

The following identity about determinants, called the Binet–Cauchy Formula,
will be useful. For a matrix A and subset S of its rows, we denote by AS the
submatrix consisting of the rows in S. Let A,B ∈ Rn×m, where m ≤ n. Then

(A.6) det(ATB) =
∑

S∈([n]
m)

det(AT
SBS).





APPENDIX B

Graphs

B.1. Basics

A graph, unless otherwise emphasized, is a simple graph, i.e., it has no loops
(edges connecting a node to itself) or parallel edges. We use the word node for the
node of a graph, the word vertex for the vertex of a polytope, and the word point
for points in the plane or in other spaces. If we need multiple edges, we use the
word multigraph. If we need loops, we say this explicitly.

For the graph denoted by G, we denote its node set by V and its edge set by
E, and the numbers of nodes and edges of G by n and m, respectively. Unless
we state otherwise, we tacitly assume that V = [n] = {1, . . . , n}. For S ⊆ V , we
denote by G[S] = (S,E[S]) the subgraph induced by S. For a simple graph G, we
denote by G = (V,E) the complementary graph, often called the complement of G.
The number of connected components of a graph G will be denoted by c(G).

A set of mutually adjacent nodes is called a clique, and a set of mutually
non-adjacent nodes, a stable set. Nonadjacent nodes are often called “indepen-
dent”, and so a stable set of nodes is called an “independent set”; but this word
is overloaded even in the context of this book, since we have to talk about “lin-
early independent vectors”, “algebraically independent numbers”, and also about
“independent events”.

We denote the neighborhood of a node v in a G (the set of nodes adjacent to it)
by NG(v), or in the case when the graph is understood, by N(v). The degree of the
node v, the number of edges with an endpoint in v, will be denoted by deg(v). For
a simple graph, deg(v) = |N(v)|. Two nodes of a graph are twins, if they have the
same neighborhoods. We say that a node w distinguishes u and v, if is connected
to one but not to the other. So two nodes are twins if and only if they are not
distinguished by any node. If no loops are allowed (most of the time in this book),
then twin nodes must be nonadjacent.

The linegraph L(G) of G is defined on V
(
L(G)

)
= E, where to edges of G are

adjacent in L(G) if and only if they have a node in common.
We have to introduce several basic graph parameters that will be used through-

out this book.

ω(G) : clique number, the number of nodes of the largest clique;

α(G) : stability number, the number of nodes of the largest stable set;

χ(G) : chromatic number, the minimum number of stable sets into which

the node set can be partitioned.

Clearly the stability number of a graph is the clique number of its complement;
we do not introduce a separate expression for the chromatic number χ(G) of the
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complement. We define a metric dG on V , where dG(u, v) is the minimum length
of path in G connecting u and v.

For X ⊆ V , we denote by N(X) the set of neighbors of X, i.e., the set of nodes
j ∈ V for which there is a node i ∈ V such that ij ∈ E. Warning: N(X) may
intersect X (if X is not a stable set). We denote by N the neighborhood in the
complementary graph: N(i) = V \N(i)\ i.

Let G = (V,E) be a directed graph. For an edge (arc) e, we denote by hd(e)
and tl(e) the head and the tail of e.

B.2. Flows and cuts

Let G be a directed graph and s, t ∈ V . A vector z ∈ RE+ is called an s-t flow,
if the flow into any node other than s or t is equal to the flow out of this node:∑

e: hd(e)=v

ze =
∑

e: tl(e)=v

ze (v ∈ V \{s, t}).

It is easy to check that∑
e: hd(e)=t

ze−
∑

e: tl(e)=t

ze
∑

e: tl(e)=s

ze−
∑

e: hd(e)=s

ze;

the common value ω of the two sides is the value of the flow. All these equations
can be written compactly as BTz = ω(1t−1s).

From the rich theory of flows, we only recall its central result, the Max-Flow-
Min-Cut Theorem [Ford–Fulkerson 1962] (see e.g. [Schrijver 2003] for much more).
An s-t cut (s, t ∈ V ) is defined by a set of nodes U with s ∈ U but t /∈ U , as the
set of edges e ∈ E with tl(e) ∈ U but hd(e) /∈ U . Every edge e of the graph has a
capacity ce ≥ 0 assigned to it. A flow z is feasible, if 0 ≤ ze ≤ ce for every edge e.
The capacity of a cut C is the sum of capacities of its edges.

Theorem B.1 (Max-Flow-Min-Cut Theorem). The maximum value of a fea-
sible s-t flow is equal to the minimum capacity of an s-t cut. �

A fundamental theorem in graph theory, Menger’s Theorem is closely related to
flow theory; it can be derived from the Max-Flow-Min-Cut Theorem. ForX,Y ⊆ V ,
we denote by κ(X,Y ) connectivity between X and Y , defined as the minimum
number of nodes that cover all X-Y paths in G (paths connecting a node in X to
a node in Y ).

Theorem B.2 (Menger’s Theorem I). κ(X,Y ) the maximum number of node
disjoint X-Y paths.

(If X and Y are not disjoint, some of these paths may consist of a single node.)
A graph G is k-connected if and only if n > k and κ(X,Y ) = k for any two

k-subsets X and Y . The largest k for which this holds is the node-connectivity of G,
denoted κ(G). The complete graph Kn is (n−1)-connected but not n-connected.
A version of Menger’s Theorem characterizes node connectivity:

Theorem B.3 (Menger’s Theorem II). A simple graph G is k-connected if and
only if n > k and any two nodes are connected by k paths that are disjoint except
for their endpoints.

Further versions of Menger’s Theorem concern edge-disjoint paths and sepa-
rating sets by edges; for these, we refer to any basic graph theory book.
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B.3. Matrices associated with graphs

Let G be a (finite, undirected, simple) graph with node set V (G) = [n]. The
adjacency matrix of G is be defined as the n×n matrix AG = A = (Aij) in which

Aij =

{
1, if i and j are adjacent,

0, otherwise.

(We suppress the subscript G if the graph is understood.)
We can extend this definition to the case when G has multiple edges: we just

let Aij be the number of edges connecting i and j. We can also have weights on
the edges, in which case we let Aij be the weight of the edge. We could also allow
loops and include this information in the diagonal.

The Laplacian of the graph is defined as the V ×V matrix LG = L = (Lij) in
which

Lij =

{
deg(i), if i = j,

−Aij , if i 6= j.

In the case of edge-weighted graphs, we define deg(i) =
∑
j Aij . So L = D−A,

where D = DG is the diagonal matrix of the degrees of G. Clearly L1 = 0. The

normalized Laplacian is defined as L̂ = D−1/2LD−1/2.
The (generally nonsquare) incidence matrix of G comes in two flavors. For

an undirected graph G, we define its node-edge incidence matrix M = MG as the
E×V matrix for which

Mev =

{
1 if v is an endpoint of e,

0 otherwise.

Often, however, the following matrix is more useful. We consider a directed graph
G, and let B = BG denote the E×V matrix for which

Bev =


1 if v = hd(e),

−1 if v = tl(e),

0 otherwise.

While BG depends on the orientation of G, changing the orientation only means
scaling some rows by −1, which often does not matter much, and we can use B
for any undirected graph, giving it an arbitrary reference orientation. Column
bv = BT

G1v of B, corresponding to node v, satisfies |bv|2 = deg(v). For an edge
e = uv, the corresponding column of BT is 1v−1u. In topological terms, B is
the (0-dimensional) coboundary operator. Its transpose BT is the (1-dimensional)
boundary operator.

It is easy to check that, independently of the orientation, L = BTB. This
implies that the Laplacian L is positive semidefinite. It is worth while to express
this equation in terms of quadratic forms:

(B.1) xTLx = (Bx)T(Bx) =

n∑
ij∈E

(xi−xj)2.

We need some general terminology. Given a graph G, a G-matrix is a symmetric
matrix M ∈ RV×V such that Mij = 0 for every edge ij ∈ E. A G-matrix is well-
signed, if Mij < 0 for all ij ∈ E. (Note that we have not imposed any condition on
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the diagonal entries.) So the adjacency matrix A is a G-matrix, and the Laplacian
L is a well-signed G-matrix. We denote the linear space of G-matrices by MG.

B.3.1. Nullspaces and ranges. Let us fix a connected graph G. Every
vector x in the (right) nullspace of B satisfies xi = xj for every edge ij. So x is
scalar multiple of 1. The row space of B is the orthogonal complement of this space,
i.e., the set of all vectors in RV with coordinates summing to 0. (B.1)) implies that
the nullspace of L is the same as the nullspace of B, and similar conclusion holds
for the row space of L. It follows that rk(L) = rk(B) = n−1.

To determine the column space of B (equivalently, the range of BT), notice
that (Bx)e = xhd(e)−xtl(e) for x ∈ RV . A vector on the (oriented) edges arising as
differences of a vector on the nodes is called a potential. Potentials form a linear
space A = AG = Rng(B), with dim(A) = rk(B) = n−1. (See Section 4.1 for more
on potentials.)

The nullspace of BT is more interesting. A vector z ∈ RE is called a circulation
if BTz = 0. Explicitly, this means that z satisfies the flow condition (conservation
condition) at each node:

(BTz)v =
∑

e: hd(e)=v

ze−
∑

e: tl(e)=v

ze = 0.

Every cycle C in G defines two circulations, obtained by sending one unit of flow
around the cycle, in either direction. In other words, the circulation fC defined by
a cycle C with an orientation (not necessarily an oriented cycle!) is defined by

(B.2) (fC)e =


1, if e is a forward edge of C,

−1, if e is a backward edge of C,

0, otherwise.

Circulations form a linear space A⊥ ⊆ RE , which is generated by the special circu-
lations fC . It is easy to see that dim(A⊥) = m−n+1.

Reversing the orientation of an edge corresponds to multiplying the correspond-
ing coordinate by −1, both for A and A⊥. Reversing all edges does not change
these linear spaces.

The rank, nullspace and range of the adjacency matrix A do not have such a
nice and easy descriptions (but see Section 9.1).

B.4. Spectra of graphs

Eigenvalues of matrices associated with graphs are often closely related to
their geometric representations, but of course they represent a topic about
which several monographs have been written [Chung 1997, Brouwer–Haemers 2011,
Colin de Verdière 1998b]. Here we give a very incomplete survey of some of the
properties that play a role in our treatment, or at least motivate some of our con-
siderations.

To fix notation, let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency
matrix A of a graph G, let µ1 ≤ µ2 ≤ · · · ≤ µn be the eigenvalues of the Laplacian
L, and let ν1 ≤ ν2 ≤ · · · ≤ νn be the eigenvalues of the normalized Laplacian

L̂ = D−1/2LD−1/2. For a d-regular graph, we have µi = d−λi and νi = µi/d.
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B.4.1. The leading eigenvalue. The Perron–Frobenius Theorem implies
immediately that if G is connected, then λ1 has multiplicity 1. This eigenvalue
is relatively uninteresting, it is a kind of “average degree”. More precisely, let d,
dmax and dmin denote the average, maximum and minimum degree, respectively.
Then the following inequalities hold:

(B.3) max{d,
√
dmax} ≤ λ1 ≤ dmax.

In particular, λ1 = d for every d-regular graph. Inequalities (B.3) imply that
dmin ≤ λ1, which in turn implies by induction the following bound on the chromatic
number:

(B.4) χ(G) ≤ λ1 +1.

Hence

(B.5) ω(G) ≤ λ1 +1,

which is of course weaker than (B.4), but it is useful as a starting point of general-
izations in Chapter 11.

The smallest eigenvalue of the Laplacian LG is really uninteresting, since
µ1 = 0. It follows from (B.1) that the Laplacian LG is singular and positive semi-
definite. Furthermore, the multiplicity of 0 as an eigenvalue is equal to the number
of connected components of G. Similar statement is not true for the adjacency
matrix (if the largest eigenvalues of the connected components of G are different,
then the largest eigenvalue of the whole graph has multiplicity 1). This illustrates
the phenomenon that the Laplacian is often better behaved algebraically than the
adjacency matrix.

B.4.2. The smallest eigenvalue. It is a nice elementary fact that a graph
is bipartite if and only if its spectrum is symmetric about the origin. For connected
graphs, it suffices to look at the largest and smallest eigenvalues: A connected graph
G is bipartite if and only if λn(G) = −λ1(G).

For chromatic number larger than 2, no similar full characterization in terms of
eigenvalues can be given; but at least the necessity part of the result above can be
generalized [Hoffman 1970]. The ratio between the largest and smallest eigenvalues
can be used to give a lower bound on the chromatic number in terms of the spectrum
(recall that (B.4) provides an upper bound):

(B.6) χ(G) ≥ 1− λ1

λn
.

The smallest eigenvalue is closely related to the characterization of linegraphs.
It was noted in [Hoffman 1977] that the smallest eigenvalue of the linegraph of a
simple graph is at least −2. This property “almost” characterizes linegraphs. It
was proved in [Cameron et al. 1976] that if G is a simple graph on at least 37 nodes,
then λn(G) ≥ −2 if and only if G is obtained from the line-graph L(H) by deleting
a set of disjoint edges from each clique of L(H) corresponding to the edges of H
connecting a node to nodes of degree 1.

B.4.3. The eigenvalue gap. The difference between the second and the first
eigenvalues (the “eigenvalue gap”) is an extremely important parameter in many
branches of mathematics, and graph theory is no exception. We start with dis-
cussing the Laplacian L of a connected graph G. The smallest eigenvalue of the
Laplacian, which is zero, has multiplicity 1. It is often important to bound the
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next smallest eigenvalue λ2 from below (and sometimes, from above). This is of-
ten called the Fiedler value of the graph. There are many good upper and lower
bounds for λ2 in terms of various graph parameters; for us, it will suffice to know
that λ2 ≥ n−2 (see [Zhang 2007] for a survey). In Section 5.4, we illustrate the use
of geometric methods by proving an upper bound on the Fiedler value of planar
graphs.

Since the smallest and the next smallest eigenvalues of L are equal if and only
if the graph is disconnected, we can expect that the gap between them is some kind
of connectivity measure of the graph. Indeed, fundamental results relate the eigen-
value gap to expansion (isoperimetric) properties of graphs. These results (which
have many related, but not equivalent, versions) can be considered as discrete ana-
logues of Cheeger’s inequality in differential geometry.

We illustrate this connection by two spectral estimates of the node-expansion
and edge-expansion of a graph.

Expanders. This highly nontrivial class of graphs (more precisely, class of graph
sequences) is the key element in many graph-theoretic constructions. An expander
is a regular graph with small degree in which the number of neighbors of any set
containing at most half of the nodes is at least a constant factor of its size. To
be precise, the node-expansion xp(G) of a graph G is defined as the largest ε such
that |N(S)\S| ≥ ε|S| for every set S ⊂ V with |S| ≤ n/2. An (a, b)-expander is an
a-regular graph with xp(G) ≥ b.

Expanders play an important role in many applications of graph theory, in
particular in computer science. The most important expanders are d-regular ex-
panders, where d ≥ 3 is a small constant. Such graphs are not easy to construct.
One method is to do a random construction: for example, we can pick d random per-
fect matchings on 2n nodes (independently, uniformly over all perfect matchings),
and let G be the union of them. Deterministic constructions are much more difficult
to obtain, and are typically based on deep algebraic facts. The first construction
was given in [Margulis 1973]; see [Lubotzky–Phillips–Sarnak] for a construction
that is optimal in some sense.

The following spectral bounds on the node-expansion of a d-regular graph
[Alon–Milman 1985, Alon 1986], play an important role in analyzing the above
mentioned algebraic constructions:

(B.7)
1

2d
µ2 ≤ xp(G) ≤ 3

√
µ2.

Since we are considering only regular graphs, these bounds are easily translated to
the spectrum of the adjacency matrix or of the transition matrix.

Edge expansion. There is an equally important connection between the eigen-

value gap of the normalized Laplacian L̂ and a quantity that can be viewed
as an edge-counting version of the expansion. For every subset S ⊆ V , let
deg(S) =

∑
i∈S deg(i), and define

Φ(G) = min
∅⊂S⊂V

2meG(S, V \S)

deg(S) deg(V \S)
.

For a d-regular graph, this can be written as

Φ(G) = min
∅⊂S⊂V

n

d

eG(S, V \S)

|S| |V \S|
.
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The following basic inequality [Jerrum–Sinclair 1989] is a discrete analogue of
Cheeger’s Inequality in differential geometry:

(B.8)
Φ(G)2

16
≤ 1−ν2 ≤ Φ(G).

This inequality plays a central role in the theory of rapidly mixing Markov chains,
which is however not the subject of this book.

B.4.4. Multiplicity of eigenvalues. Multiplicity of eigenvalues usually cor-
responds to symmetries in the graph (although the correspondence is not exact).
It was proved in [Mowshowitz 1971] and [Petersdorf–Sachs 1970] that if all eigen-
values of A are different, then every automorphism of A has order 1 or 2.

There is also an interesting graph-theoretic property related to the other ex-
treme case, when the graph has very few distinct eigenvalues. A graph G is called
strongly regular, if it is regular, and there are two nonnegative integers a and b such
that for every pair i, j of nodes the number of common neighbors of i and j is{

a, if i and j are adjacent,

b, if i and j are nonadjacent.

Many interesting, highly symmetrical graphs are strongly regular. These graphs
can be characterized in terms of their spectra: A connected graph G is strongly
regular if and only if it is regular and AG has at most 3 different eigenvalues.

The multiplicity of the second largest eigenvalue is also important; it is dis-
cussed in Chapter 16 in connection with the Colin de Verdière number.





APPENDIX C

Convex Bodies

C.1. Polytopes and polyhedra

A convex body in Rd is a closed, bounded convex set that has an interior point.
The convex hull of a finite set of points in Rd is called a (convex) polytope. The
intersection of a finite number of halfspaces in Rd is called a (convex) polyhedron.
(We’ll drop the adjective “convex”, because we never need to talk about nonconvex
polyhedra.) Every polytope is a polyhedron. A polyhedron is a polytope if and
only if it is bounded.

For every polyhedron, there is a unique smallest affine subspace that contains
it, its affine hull. The dimension of a polyhedron is the dimension of its affine
hull. A polyhedron [polytope] in Rd that has dimension d (equivalently, that has
an interior point) is called a d-polyhedron [d-polytope].

A hyperplane H is said to support the polyhedron if it has a point in common
with the polyhedron and the polyhedron is contained in one of the closed halfspaces
with boundary H. A face of a polyhedron is its intersection with a supporting
hyperplane. A face of a polyhedron that has dimension one less than the dimension
of the polyhedron is called a facet. A face of dimension 0 (i.e., a single point) is
called a vertex, a face of dimension 1 is called an edge. The vertices and edges of a
polytope P form a simple graph GP , which we call the skeleton of the polytope.

Every face of a polyhedron [polytope] is a polyhedron [polytope]. Every vertex
of a face is a vertex of the polyhedron. Every polytope has a finite number of faces.
Every polytope is the convex hull of its vertices. The set of vertices is the unique
minimal finite set of points whose convex hull is the polytope.

Every facet of a d-polyhedron P spans a (unique) hyperplane, and this hy-
perplane is the boundary of a uniquely determined halfspace that contains the
polyhedron. The polyhedron is the intersection of the halfspaces determined by its
facets this way.

A convex cone in Rn is a set of vectors is closed under sum and multiplication
by positive scalars. Note that according to this definition, the set Rn is a convex
cone. We call the (topologically) closed cone pointed, if the origin is a vertex of
it; equivalently, if it does not contain a line. Any system of homogeneous linear
inequalities

aT1x ≥ 0, . . . , aTmx ≥ 0

defines a convex cone; convex cones defined by such (finite) systems are called
polyhedral.

Let P be a polytope in Rd, let a ∈ Rd, and let u be a vertex of P . Suppose
that P has a vertex v such that aTu < aTv. Then P has a vertex w such that uw
is an edge of P , and aTu < aTw.

413
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Another way of formulating this is that if we consider the linear objective
function aTx on a polytope P , then from any vertex we can walk on the skeleton
to a vertex that maximizes the objective function so that the value of the objective
function increases at every step. This important fact is the basis for the Simplex
Method. For our purposes, the following corollary this fact will be important as well:
If G is the skeleton of a d-polytope, H is an (open or closed) halfspace containing
an interior point of the polytope, then the subgraph of G induced by those vertices
of P contained in this halfspace is connected.

C.2. Polyhedral combinatorics

As mentioned in the Preface, many applications of geometry in combinatorics
make use of polyhedra defined by combinatorial structures. We cannot develop this
large theory here, but we need some of these polyhedra.

The Stable Set Polytope of a graph is an important example studied in Section
11.4.2. Here we describe a couple of other families related to flows and cuts only.
We formulate these examples for directed graphs, but we can get the corresponding
definitions and facts for undirected graphs by replacing every undirected edge by
two, oppositely directed edges.

A few special properties of polytopes (more generally, of convex sets) are often
encountered in combinatorial situations. A convex set K ⊆ Rd is called ascending,
if x ∈ K, y ∈ Rd and y ≥ x implies that y ∈ K. For any convex body K, we define
its dominant as

K̂ = {y ∈ Rd : ∃x ∈ K, x ≤ y}.
This dominant is an ascending convex set. A convex set K ⊆ Rd is called a convex
corner, if K ⊆ Rd+, and x ∈ K, y ∈ Rd+ and y ≤ x implies that y ∈ K. A polytope
which is a convex corner will be called a corner polytope.

C.2.1. Flows and cuts. In the following examples of particularly important
combinatorial polyhedra, we fix a directed graph G and two nodes s, t ∈ V . While
there will be perhaps more versions than one would like to memorize, these are
often related to each other in simple ways (containment, domination). We consider
directed graphs, but corresponding notions and facts for undirected graphs can be
obtained by replacing each edge by a pair of oppositely oriented edges.

We start with the path polytope, which is a polytope in Rd+, defined as the
convex hull of indicator vectors of edge-sets of directed s-t paths. Every vector in
the path polytope is an s-t flow of value 1. If we add circulations to these flows,
we get all s-t flows of value 1. Such flows form the 1-valued flow polyhedron (this is
not a polytope, since circulations can be unbounded).

The flow polyhedron is the set of all s-t-flows. The 1-valued flow polyhedron is
the intersection of it with a hyperplane.

Often one considers the feasible flow polytope: every edge e has a capacity
ce ≥ 0, and we impose the conditions xe ≤ ce on the flow values xe. Those capacity
assignments that allow a feasible flow of value 1 also form a convex polyhedron; by
the Max-Flow-Min-Cut Theorem, this is described by the inequalities

ce ≥ 0,∑
e∈C

ce ≥ 1 (for every s-t cut C).
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This polyhedron is just the dominant of the path polytope, and we call it the path
polyhedron.

We can also work on the node set of G. The node-path polytope is the convex
hull of indicator vectors of interior nodes of directed s-t paths. This is a poly-
tope in RV \{s,t}. Its dominant, the node-path polyhedron can be described by the
inequalities

xv ≥ 0,∑
v∈S

xv ≥ 1 (S ⊆ V separates s and t).

Closely related to the above constructions is another class of polyhedra. The
cut polytope is the convex hull of indicator vectors of directed s-t cuts. Its dominant,
the cut polyhedron consists of all assignments of nonnegative “lengths” xe to the
edges for which the length of every s-t path is at least 1; formally,

xe ≥ 0,∑
e∈E(P )

xe ≥ 1 (for every s-t path P ).

Again, we can consider the version for nodes. The node-cut polytope, defined in
RV \{s,t}, is the convex hull of indicator vectors of s-t node-cuts (minimal subsets of
V \{s, t} intersecting every s-t path). The node-cut polyhedron is the dominant of
the node-cut polytope. The node-cut polyhedron can be described by the inequal-
ities

xv ≥ 0,∑
v∈S

xv ≥ 1 (S ⊆ V separates s and t).

C.3. Polarity and variations

C.3.1. Polarity. Let K be a convex body containing the origin as an interior
point. The polar of K is defined by

K∗ = {x ∈ Rd : xTy ≤ 1 ∀y ∈ K}.

It is clear that K∗ is a convex body as well, containing the origin in its interior.
For every convex body K we have (K∗)∗ = K.

The polar of a polytope (containing the origin) is a polytope. Platonic bodies
in the 3-dimensional space come in polar pairs, except that the regular tetrahedron
is congruent to its own polar (Figure C.1).

For every vertex v of a polytope P , the inequality vTx ≤ 1 defines a facet of
P ∗, and vice versa. The vector v is a normal vector of the facet vTx ≤ 1. More
generally, if v0, . . . ,vm are the vertices of a k-dimensional face F of P , then

F⊥ = {x ∈ P ∗ : vT
0x = 1, . . . ,vT

mx = 1}

defines a d−k−1-dimensional face of P ∗. Furthermore, (F⊥)⊥ = F (Figure C.2).
We can, at least formally, define K∗ for more general convex sets. If K is

convex cone with its apex at the origin, then the condition xTy ≤ 1 for all y ∈ K
implies that xTy ≤ 0. So the polar of a convex cone is a convex cone. It is often
more convenient to work with the negative of this, called the dual cone, defined as
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Figure C.1. The 5 platonic bodies, in polar pairs (the tetrahe-
dron is congruent to its own polar).

a
a

T
x�1

Figure C.2. A 2-dimensional polytope and its polar.

{x ∈ Rn : xTy ≥ 0 ∀y ∈ K}. This is again a convex cone. If K is closed (in the
topological sense), then applying either duality or polarity twice, we get K back.

The nonnegative orthant is self-dual, and so is the cone of positive semidefinite
matrices. If K is a linear subspace, then its polar (or dual) is the orthogonal
subspace K⊥.

C.3.2. Blocking. There are two constructions similar to polarity that concern
convex bodies not containing the origin in their interior; rather, contained in the
nonnegative orthant.

The blocker of an ascending convex set K ⊆ Rd+ is defined by

Kbl = {x ∈ Rd+ : xTy ≥ 1∀y ∈ K}

(Figure C.3).

a 

b 

c 

aTx�1 

bTx✁1 

cTx✁1 

Figure C.3. A 2-dimensional ascending polytope and its blocker.
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The blocker of an ascending convex set is a closed ascending convex set. The
blocker of an ascending polyhedron is an ascending polyhedron. For every ascending
closed convex set K, we have (Kbl)bl = K.

The correspondence between faces of a polyhedron P and those of P bl is a
bit more complicated than for polarity, and we describe the relationship between
vertices and facets only. Every vertex v of P gives rise to a facet of P bl, determined
by the supporting hyperplane vTx ≥ 1. This construction gives all the facets of
P bl, except possibly those corresponding to the nonnegativity constraints xi ≥ 0,
which may or may not define facets.

Example C.1. Fixing two nodes s and t of a graph G, the blocker of the path
polyhedron is the cut polyhedron. The blocker of the node-path polyhedron is the
node-cut polyhedron. �

It is easy to see that every ascending convex body K has a unique point x
which is closest to the origin. (This point has combinatorial significance in several
cases.) It is not hard to prove that this point is closely related to the analogous
point of the blocker.

Proposition C.2. Let K ⊆ Rd+ be an ascending convex set, and let x ∈ K min-

imize the objective function |x|2. Then y = (1/|x|2)x is in the blocker Kbl, and
it minimizes the objective function |y|2 over Kbl. It follows in particular that
d(0, P ) d(0, P bl) = 1. �

C.3.3. Antiblocking. The antiblocker of a convex corner K is defined by

Kabl = {x ∈ Rd+ : xTy ≤ 1∀y ∈ K}

(see Figure C.4).

a
aTx�1

b

bTx�1

Figure C.4. A 2-dimensional convex corner and its antiblocker

The antiblocker of a convex corner is a convex corner. For every convex corner
K, we have (Kabl)abl = K.

If the convex corner P is a polytope, then so is its antiblocker P abl. To describe
the correspondence between the faces of P and those of P abl is again a more com-
plicated than for the polars. The nonnegativity constraints xi ≥ 0 always define
facets, and they do not correspond to vertices in the antiblocker. All other facets of
P correspond to vertices of P abl. Not every vertex of P defines a facet in P abl. The
origin is a trivial exceptional vertex, but there may be further exceptional vertices.
A vertex of P defines a facet of P ∗ if and only if there is no other vertex w such
that v ≤ w.
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C.3.4. Gale duality. Let V be a finite set of n elements, and let u : V → Rd
be a vector labeling of V , where we assume that u(V ) spans Rd. Consider u as a
d×V matrix A, then rk(A) = d, and the row space L of A d-dimensional subspace
L of RV . Let b1, . . . , bn−d be a basis of L⊥, which we consider as the rows of an
(n−d)×V matrix B. Let {vj : j ∈ V } be the columns of the matrix B. The
vector labeling v of V is called a Gale dual of u.

Being Gale duals is a symmetric relation between vector labelings of the same
set. The Gale dual is not uniquely determined: choosing a different basis in L⊥

results in a different Gale dual. But all Gale duals are images of each other under
linear transformations of Rn−d.

Let v : V → Rn−d be a Gale dual of the vector labeling u : V → Rd. Let
X ⊆ V , |X| = d be a basis for u. Then V \X is a basis for v. More generally, we
can express the rank of a subset of V in the labeling v in terms of the rank of its
complement in the labeling u:

(C.1) rk(v(X)) = rk(u(V \X))+ |X|−d.

C.4. Balls, spheres and caps

C.4.1. Volume. We denote by πd the volume of the d-dimensional unit ball
Bd. It is known that

(C.2) πd =
πd/2

Γ
(
1+ d

2

) =


πk

k!
if d = 2k,

2k+1πk

(2k+1)!!
if d = 2k+1.

For both the even and odd case, Stirling’s Formula gives the asymptotics

(C.3) πd ∼
1√
πd

(2eπ

d

)d/2
.

(It is funny that both classical transcendental numbers e and π occur together
here.) The surface area of this ball (the (d−1)-dimensional measure of the sphere
Sd−1) is dπd.

A cap on this ball can be described as the set Cu,s = {x ∈ Sd−1 : uTx ≥ s},
where u ∈ Sd−1 is the center of the cap, and −1 ≤ s ≤ 1. We will need good
bounds on the (d−1)-dimensional surface area of this cap; it suffices to restrict
our attention to the case when s > 0. In dimension d = 3, the area of this cap
is 2π(1−s). If the spherical radius of this cap is ρ, then this area can also be
expressed as 4π sin2(ρ/2).

In higher dimension, the surface area cannot be expressed so explicitly. It is
easy to derive the integral formula:

(C.4) voln−1(Cu,s) = (n−1)πn−1

1∫
s

(1−x2)(n−3)/2 dx.

but it is hard to bring this into a more manageable form. Instead of explicit
formulas, the following estimates will be more useful for us:

(C.5)
(

1− 2

s
√
n−1

)πn−1

s
(1−s2)(n−1)/2 ≤ voln−1(Cu,s) ≤

πn−1

s
(1−s2)(n−1)/2.
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(The lower bound is meaningful for s ≥ 2/
√
n−1.) The upper bound follows from

the estimate
1∫
s

(1−x2)(n−3)/2 dx ≤ 1

s

1∫
s

x(1−x2)(n−3)/2 dx =
1

(n−1)s
(1−s2)(n−1)/2.

The lower bound uses a similar argument with a twist. Let s ≤ t ≤ 1, then

1∫
s

(1−x2)(n−3)/2 dx ≥
t∫
s

(1−x2)(n−3)/2 dx ≥ 1

t

t∫
s

x(1−x2)(n−3)/2 dx

=
1

(n−1)t

(
(1−s2)(n−1)/2−(1− t2)(n−1)/2

)
Optimizing for t, we get the estimate with a somewhat tedious but routine compu-
tation.

C.5. Volume of convex bodies

C.5.1. Classical inequalities. We start with a simple formula. Let K be a
convex body in Rn containing the origin in its interior, and for every unit vector v,
let hK(v) denote the length of the segment in K of the semiline determined by v.
Choosing v randomly and uniformly from Sn−1, we have

(C.6) vol(K) = πnE(hK(v)n).

Let K1, . . . ,Kd be convex bodies in Rd. It is not hard to see that the function
f(x1, . . . , xd) = vol(x1K1 + · · ·+xdKd) is a homogeneous polynomial of degree d in
the variables x1, . . . , xr ≥ 0. The coefficient of x1 . . . xd in this polynomial, divided
by d!, is called the mixed volume of K1, . . . ,Kd, denoted by V (K1, . . . ,Kd).

This quantity has many deep and useful properties. It is easy to see that
V (K, . . . ,K) = vol(K). It is less trivial that the mixed volume is nonnegative. A
deep inequality concerning mixed volume is the Alexandrov–Fenchel Inequality:

(C.7) V (K1,K1,K3, . . . ,Kd)V (K2,K2,K3, . . . ,Kd) ≤ V (K1,K2,K3, . . . ,Kd)
2.

One can derive the Brunn–Minkowski Theorem from the Alexandrov–Fenchel
Inequality (but it is easier to prove):

For any two convex bodies A,B ⊂ Rd, the value vol(tA+(1− t)B)1/d is a con-
cave function of 0 ≤ t ≤ 1.

We need a consequence of this theorem. For a convex body K, we define its
difference body K−K = {x−y : x,y ∈ K}. It is trivial that vol(K−K) ≥ vol(K)
(since K−K contains a translated copy of K). The Brunn–Minkowski Theorem
implies a much sharper bound:

(C.8) vol(K−K) = 2dvol
(1

2
K+

1

2
(−K)

)
≥ 2dvol(K).

The volumes of a convex body and its polar are closely related. For every
0-symmetric convex body K ⊆ Rd,

(C.9)
πd

d!
≤ vol(K)vol(K∗) ≤ π2

d.

Using (C.2), it is easy to see that the upper bound is less than (2π)d/d!, which is at-
tained when both K and K∗ are balls; this was proved for d ≤ 3 by [Blaschke 1917]
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and for all dimensions by [Santaló 1949]. The lower bound (with a smaller constant
instead of π) was proved by [Bourgain–Milman 1987]. The currently known best
bound above was proved by [Kuperberg 2008]. Mahler’s unsettled conjecture states
that the minimum of this product over n-dimensional 0-symmetric convex bodies is
attained when K is a cube and K∗ is a cross-polytope (or the other way around),
which would give a lower bound of 4d/d!.

C.5.2. Projection. We conclude with some inequalities concerning the length
of projections in high dimensions; while these are well known and often used, it does
not seem easy to find their proofs, and so I include proofs for several of them.

For a set K ⊆ Rn and linear subspace L ⊆ Rn, let KL denote the orthogonal
projection of K onto L. In the case when L is a one-dimensional subspace generated
by a vector v, then we also use the notation Kv = KL.

The question about the area of caps can be generalized as follows: given a
number 0 < c < 1, what is the surface area of Sn−1 whose projection onto the
subspace formed by the first d coordinates has length at most c? If d = n−1,
then this set consists of two congruent caps, but if d < n, then the set is more
complicated. The cases c ≤

√
d/n and c >

√
d/n are quite different. We only need

the first one in this book.
Let x′ and x′′ denote the projections of a vector x onto the first d coordinates

and onto the last n−d coordinates, respectively. It is easy to see that if u is chosen
randomly, uniformly from Sn−1, then

(C.10) E(|u′|2) =
d

n
.

Let us assume that d ≤ n−2 and (for the time being) c < 1. We want to find good
estimates for the (n−1)-dimensional measure of the set

A =
{
x ∈ Sn−1 : |x′| ≤ s

}
.

Define φ(x) = x′+(x′′)0, then φ maps A onto A′ = (sBd)×Sn−d−1 bijectively.
It is not hard to compute that the Jacobian of φ−1 (as a map A′ → A) is (1−
|x′|2)(n−d−2)/2 ≤ 1, and hence

(C.11) voln−1(A) ≤ voln−1(A′) = sd(n−d)πdπn−d.

(For n = d+2 the Jacobian is identically 1, whence voln−1(A) = voln−1(A′), which
implies, for n = 3, the well-known formula for the surface area of caps mentioned
before.)

Another way of formulating this inequality is that choosing a random vector u
uniformly from Sn−1, it bounds the probability that its orthogonal projection to a
d-dimensional subspace is small:

(C.12) P(|u′| ≤ s) ≤ (n−d)πdπn−d
nπn

sd.

Using the asymptotics for factorials, it is easy to derive the slightly weaker but
more explicit bound

(C.13) P(|u′| ≤ s) <
(

2s

√
n

d

)d
.
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This estimate is interesting when s is smaller than the expectation of |u′|, say

s = ε
√
d/n for some 0 < ε < 1. Then we get

(C.14) P
(
|u′| ≤ ε

√
d

n

)
< (2ε)d.

To prove tighter bounds on the concentration of |u′| around its expectation, we
can use an explicit description of generating a uniform random element of Sn−1. We
generate n independent standard Gaussian variables X1, . . . , Xn, and normalize:

(C.15) u =
1√

X2
1 + · · ·+X2

n

(X1, . . . , Xn).

Here the random variable X2
1 + · · ·+X2

n is from a chi-squared distribution with
parameter n, and many estimates are known for its distribution. We need the
following estimate (see e.g. [Massart 2003])

(C.16) P(
∣∣X2

1 + · · ·+X2
n−n

∣∣ > εn) ≤ 2e−ε
2n/8.

If we generate a random unit vector u as described above, then

|u′|2 =
X2

1 + · · ·+X2
d

X2
1 + · · ·+X2

n

.

By (C.16), the numerator is concentrated around d, and the denominator is con-

centrated around n. Hence the length of u′ is concentrated around
√
d/n. To be

more precise, it follows that for every ε > 0,

(C.17)
1

1+ε

√
d

n
≤ |u′| ≤ (1+ε)

√
d

n

with probability at least 1−4e−ε
2d/4.

Next, we turn to projections of convex bodies. Let K ⊂ Rn be a convex body,
let v ∈ Sn−1 be chosen randomly from the uniform distribution, and let Kv be
the projection of K onto the line containing v. Let |Kv| denote the length of this
projection, which is the width of K in direction v. It is easy to check that

(C.18) |Kv| =
1

h(K−K)∗(v)
.

Combining with (C.6), we can express the volume of (K−K)∗:

(C.19) vol
(
(K−K)∗

)
= πnE

(
h(K−K)∗(v)n

)
= πnE

(
|Kv|−n

)
.

By the Blaschke–Santaló Inequality (C.9) and (C.8), this implies

(C.20) E
(
|Kv|−n

)
=

vol
(
(K−K)∗

)
πn

≤ πn
vol(K−K)

≤ πn
2nvol(K)

.

Markov’s Inequality implies that for every s > 0,

(C.21) P(|Kv| ≤ s) = P(|Kv|−nsn ≥ 1) ≤ πns
n

2nvol(K)
.

This inequality can be extended to the case when K is not full-dimensional,
but d-dimensional (d < n), and so we have to consider a lower dimensional measure
of its volume. Let u be the projection of v onto Rd. The length |u| and the
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direction u0 are independent random variables. Clearly |Kv| = |u| |Ku|, where |u|
and Ku = Ku0 are independent as random variables. Then, using (C.12),

P(|Kv| ≤ s) = P
(
|u| ≤ s

|Ku|

)
≤ Eu0

( (n−d)πdπn−d
nπn

( s

|Ku0 |

)d)
=

(n−d)πdπn−d
nπn

sdEu0(|Ku0 |−d),

and using (C.20) (noting that the projection K → Ku0 happens in dimension d)
we get

(C.22) P
(
|Kv| ≤ s

)
≤ (n−d)π2

dπn−d
nπn2dvol(K)

sd.

Applying the asymptotic formula for πn, we get the more explicit bound

(C.23) P
(
|Kv| ≤ s

)
≤
(4s
√
n

d

)d 1

vol(K)
.
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Szemerédi, Endre, 137, 140, 199

T. Sós, Vera, 389



440 AUTHOR INDEX

Tamassia, Roberto, 27

Tao, Terence, 140

Taraz, Anush, 197
Tarjan, Robert E., 14, 71

Tarski, Alfred, 277

Teng, Shang-Hua, 71, 73
Terhal, Barbara M., 219

Theran, Louis, 261, 284

Thomas, Robin, 73, 202, 203, 306
Thorup, Mikkel, 208

Thurston, Dylan P., 261, 286

Thurston, William, 71, 75, 119
Tiwari, Prasoon, 45

Tollis, Ioannis G., 27
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